Exercice 1 | Calculs

Montrer l'existence et calculer les intégrales suivantes :

1.
$$I = \int_0^{+\infty} \frac{\mathrm{d}x}{(x+1)(x+2)}$$

2.
$$J = \int_0^{+\infty} \frac{dx}{(\exp(x) + 1)(\exp(-x) + 1)}$$

3.
$$K = \int_0^{+\infty} \ln\left(1 + \frac{1}{x^2}\right) dx$$

$$4. L = \int_0^{+\infty} e^{-\sqrt{x}} dx$$

5.
$$M = \int_0^{+\infty} \frac{\ln x}{(1+x)^2} dx$$

6.
$$N_a = \int_a^{+\infty} \frac{1}{x^2 - 1} dx$$
 où $a \in]1; +\infty[$

7.
$$P = \int_0^{+\infty} \frac{\mathrm{d}x}{\sqrt{\exp(x) + 1}}$$

8.
$$Q = \int_1^{+\infty} \frac{\mathrm{d}x}{\mathrm{sh}(x)}$$

9.
$$R = \int_0^{\pi/2} \sin(x) \ln(\sin x) dx$$

Solution (Ex.1 – Calculs)

1. $f: x \mapsto \frac{1}{(x+1)(x+2)}$ continue positive sur $[0; +\infty[$, $f(x) \underset{x \to +\infty}{\sim} \frac{1}{x^2}$: conver-

$$I = \int_0^{+\infty} \frac{1}{x+1} - \frac{1}{x+2} dx = \left[\ln \frac{x+1}{x+2} \right]_0^{+\infty} = \ln 2.$$

2. $f: x \mapsto \frac{1}{(e^x+1)(e^{-x}+1)}$ continue positive sur $[0; +\infty[, f(x)] \sim e^{-x}$:

$$J \stackrel{u=e^x}{=} \int_1^{+\infty} \frac{1}{(u+1)^2} du = \frac{1}{2}.$$

3. $f: x \mapsto \ln\left(1 + \frac{1}{x^2}\right)$ continue positive sur $]0; +\infty[$

$$\sqrt{x}f(x) = \sqrt{x}\ln(1+x^2) - 2\sqrt{x}\ln x \xrightarrow[x\to 0]{} 0 \text{ donc } f(x) = o\left(\frac{1}{\sqrt{x}}\right) \text{ en } 0 \text{ et}$$

 $f(x) \sim \frac{1}{x^{-1}}$: convergence par domination en 0 et équivalence en $+\infty$.

$$K \stackrel{\text{IPP.}}{=} \left[x \ln(1 + 1/x^2) \right]_0^{+\infty} + \int_0^{+\infty} \frac{2}{1 + x^2} dx = \pi.$$

4. $f: x \mapsto \exp(-\sqrt{x})$ continue positive sur $[0; +\infty[, x^2f(x) \xrightarrow[x \to +\infty]{} 0 \text{ donc } f(x) =$ $o\left(\frac{1}{r^2}\right)$ en $+\infty$: convergence par domination en $+\infty$.

$$L \stackrel{u=\sqrt{x}}{=} \int_{0}^{+\infty} 2u e^{-u} du \stackrel{\text{IPP.}}{=} \left[-2u e^{-u} \right]_{0}^{+\infty} + \int_{0}^{+\infty} 2e^{-u} du = 2.$$

5. $f: x \mapsto \frac{\ln x}{(1+x)^2}$ continue sur $]0; +\infty[$, $\sqrt{x}f(x) = \xrightarrow[x \to 0]{} 0$ donc $f(x) = o\left(\frac{1}{\sqrt{x}}\right)$ en 0 et $x^{3/2}f(x) \xrightarrow[x \to +\infty]{} 0$ donc $f(x) = o\left(\frac{1}{x^{3/2}}\right)$ en $+\infty$: convergence par

$$M \stackrel{u=1/x}{=} - \int_{1}^{+\infty} \frac{\ln u}{(u+1)^2} du = -M \text{ donc } M = 0.$$

6. $f: x \mapsto \frac{1}{x^2 - 1}$ continue positive sur $[a; +\infty[, f(x)] \sim \frac{1}{x \to +\infty}]$ convergence par

$$N_a = \frac{1}{2} \int_a^{+\infty} \frac{1}{x-1} - \frac{1}{x+1} dx = \frac{1}{2} \left[\ln \frac{x-1}{x+1} \right]_a^{+\infty} = \frac{1}{2} \ln \frac{a+1}{a-1}.$$

7. $f: x \mapsto \frac{1}{\sqrt{e^x + 1}}$ continue sur $[0; +\infty[, x^2 f(x) \xrightarrow[x \to +\infty]{} 0 \text{ donc } f(x) = o\left(\frac{1}{x^2}\right)]$

$$P \stackrel{u=\sqrt{e^x+1}}{=} \int_{\sqrt{2}}^{+\infty} \frac{2}{u^2-1} du = 2N_{\sqrt{2}} = \ln \frac{\sqrt{2}+1}{\sqrt{2}-1} = 2\ln(1+\sqrt{2}).$$

8. $f: x \mapsto \frac{1}{\sinh x}$ continue sur $[1; +\infty[$, $x^2f(x) \xrightarrow[x \to +\infty]{} 0$ donc $f(x) = o\left(\frac{1}{x^2}\right)$ en

$$Q \stackrel{u=e^x}{=} \int_{e}^{+\infty} \frac{2}{u^2 - 1} du = 2N_e = \ln \frac{e+1}{e-1}.$$

9. $f: x \mapsto \sin x \ln(\sin x)$ continue sur $]0; \pi/2], f(x) \xrightarrow[x \to 0]{} 0$ donc intégrale fausse-

$$R \stackrel{x=\cos t}{=} \frac{1}{2} \int_0^1 \ln(1-t^2) dt = \frac{1}{2} \int_0^1 \ln(1-t) + \ln(1+t) dt = \ln 2 - 1.$$

Exercice 2 Intégrales jumelles On considère, pour $n\in\mathbb{N}$ et sous réserve d'existence, les intégrales :

$$I_n = \int_0^{+\infty} \frac{dt}{(1+t^2)(1+t^n)} \text{ et } J_n = \int_0^{+\infty} \frac{t^n}{(1+t^2)(1+t^n)} dt.$$

- **1.** Justifier que I_n et J_n existent. Que vaut $I_n + J_n$?
- **2.** À l'aide du changement de variable u = 1/t, en déduire I_n et J_n .

Solution (Ex.2 – Intégrales jumelles)

- 1. Convergence : $\frac{1}{(1+t^2)(1+t^n)} \underset{t \to +\infty}{\sim} \frac{1}{t^{n+2}}$ avec n+2 > 1 et $\frac{t^n}{(1+t^2)(1+t^n)} \underset{t \to +\infty}{\sim} \frac{1}{t^2}$ avec 2 > 1.
 - $I_n + J_n = \int_0^{+\infty} \frac{dt}{1 + t^2} = \pi/2.$
- **2.** $I_n \stackrel{u=1/t}{=} J_n$, donc $I_n = J_n = \pi/4$.

Exercice 3 Équivalent d'une suite d'intégrales Pour n dans \mathbb{N}^* , on pose :

$$I_n = \int_0^{+\infty} e^{-nx} \ln(n+x) dx.$$

- 1. Établir que, pour tout entier naturel non nul n, I_n existe.
- 2. À l'aide d'une intégration par parties, montrer que

$$I_n = \frac{\ln n}{n} + O\left(\frac{1}{n^3}\right).$$

Solution (Ex.3 – Équivalent d'une suite d'intégrales)

- $\begin{array}{ll} \textbf{1.} & \lim_{x \to +\infty} \frac{\mathrm{e}^{-nx} \ln(n+x)}{1/x^2} = \lim_{x \to +\infty} \frac{x^3}{\mathrm{e}^{nx}} \frac{\ln(n+x)}{x} = 0 \times 0 = 0, \, \mathrm{ainsi} \\ & \mathrm{e}^{-nx} \ln(n+x) = \mathop{o}_{x \to +\infty} \left(\frac{1}{x^2}\right) \, \mathrm{et} \, \, \mathrm{on} \, \, \mathrm{conclut} \, \, \mathrm{par} \, \, \mathrm{n\'egligeabilit\'e} \, \ldots \end{array}$
- 2. $I_n \stackrel{\text{IPP.}}{=} \left[\frac{-e^{-nx}}{n} \ln(n+x) \right]_0^{+\infty} + \int_0^{+\infty} \frac{e^{-nx}}{n(n+x)} dx = \frac{\ln n}{n} + \int_0^{+\infty} \frac{e^{-nx}}{n(n+x)} dx.$ Alors $\forall x > 0, 0 \leqslant \frac{e^{-nx}}{n(n+x)} \leqslant \frac{e^{-nx}}{n^2} \text{ et } \int_0^{+\infty} e^{-nx} dx \stackrel{\text{primit.}}{=} \frac{1}{n} \text{ donne}$ $\frac{\ln n}{n} \leqslant I_n \leqslant \frac{\ln n}{n} + \frac{1}{n^3}, \text{ donc } I_n \frac{\ln n}{n} = O\left(\frac{1}{n^3}\right)$

Exercice 4 Développement asymptotique du reste de l'intégrale de Gauss

1. Justifier l'existence de l'intégrale de $Gau\beta$:

$$I = \int_0^{+\infty} e^{-t^2} dt.$$

- **2. a)** On pose, pour tout $x \ge 0$, $R(x) = \int_{x}^{+\infty} e^{-t^2} dt$. Que vaut $\lim_{x \to +\infty} R(x)$?
 - **b)** Vérifier que, pour tout x > 0, $\int_x^{+\infty} \frac{e^{-t^2}}{2t^2} dt = \frac{e^{-x^2}}{2x} R(x)$.
 - c) En déduire que : $R(x) \sim \frac{e^{-x^2}}{2x}$.

Solution (Ex.4 – Développement asymptotique du reste de l'intégrale de Gauss)

- 1. $e^{-t^2} = o(e^{-t})$ assure la convergence en $+\infty$.
- **2. a)** $R(x) = I \int_0^x e^{-t^2} dt \xrightarrow[x \to +\infty]{} 0$ comme tout reste d'une intégrale convergente.

b)
$$\int_{x}^{+\infty} \frac{e^{-t^2}}{2t^2} dt \stackrel{\text{IPP.}}{=} \left[\frac{-e^{-t^2}}{2t} \right]_{x}^{+\infty} - \int_{x}^{+\infty} e^{-t^2} dt = \frac{e^{-x^2}}{2x} - R(x).$$

c) Par croissance de l'intégrale : $0 \leqslant \int_{x}^{+\infty} \frac{e^{-t^2}}{2t^2} dt \leqslant \frac{1}{2x^2} \int_{x}^{+\infty} e^{-t^2} dt \leqslant \frac{R(x)}{2x^2}$

En divisant par R(x) (car $R(x) \neq 0$), on obtient $\frac{e^{-x^2}/(2x)}{R(x)} \xrightarrow[x \to +\infty]{} 1 \dots$

Exercice 5 Fonction gamma d'Euler et suite double d'intégrales Pour tout x de $]0; +\infty[$, on pose, sous réserve d'existence,

$$\Gamma(x) \stackrel{\text{def.}}{=} \int_0^{+\infty} t^{x-1} e^{-t} dt.$$

- **1.** Justifier que la fonction Γ est effectivement définie sur $]0; +\infty[$. Γ s'appelle la fonction gamma d'Euler.
- **2. a)** Montrer que, pour tout x de $]0; +\infty[$,

$$\Gamma(x+1) = x\Gamma(x).$$

b) Montrer que, pour tout n de \mathbb{N}^* ,

$$\Gamma(n) = (n-1)!$$

En quelque sorte, Γ prolonge la factorielle sur] 0 ; $+\infty$ [... au décalage d'une unité près.

- 3. On admet que Γ est une fonction continue. Déterminer un équivalent de $\Gamma(x)$ au voisinage de 0.
- **4.** Pour tous p et q de \mathbb{N} , on pose sous réserve d'existence.

$$I_{p,q} \stackrel{\text{déf.}}{=} \int_0^1 z^p \ln^q z dz.$$

En utilisant le changement de variable $u = -(p+1) \ln z$, justifier l'existence de $I_{p,q}$ et la calculer.

Solution (Ex.5 – Fonction gamma d'Euler et suite double d'intégrales)

- 1. $t^{x-1}e^{-t} = o\left(\frac{1}{t^2}\right)$ en $+\infty$ assure la convergence en $+\infty$.
 - $t^{x-1}e^{-t} \sim t^{x-1}$ et x-1 > -1 assure la convergence en 0 (et aussi la divergence si $x \leq 0...$).
- **2. a)** Soit x > 0. Les fonctions $t \mapsto t^x$ et $t \mapsto -e^{-t}$ sont de classe \mathcal{C}^1 sur l'intervalle $]0; +\infty[$. Comme $t^x e^{-t} \xrightarrow[t \to +\infty]{} 0$ et $t^x e^{-t} \xrightarrow[t \to 0]{} 0$, par une intégration par parties, j'obtiens :

$$\Gamma(x+1) = \int_0^{+\infty} t^x e^{-t} dt = \left[-t^x e^{-t} \right]_0^{+\infty} + \int_0^{+\infty} x t^{x-1} e^{-t} dt = x \Gamma(x).$$

- **b)** Par récurrence sur $n \in \mathbb{N}^*$...
- 3. $\forall X > 0, \Gamma(x) = \frac{\Gamma(x+1)}{x}$ or $\Gamma(x+1) \xrightarrow[x \to 0]{} \Gamma(1)$ par continuité donc $\Gamma(x+1) \underset{x \to 0}{\sim} 1$. D'où $\Gamma(x) \underset{x \to 0}{\sim} \frac{1}{x}$.
- **4.** Le changement proposé étant une bijection \mathbb{C}^1 strictement décroissante, $I_{p,q} \stackrel{u=1}{=} \int_{-1}^{1} \left(e^{-u/(p+1)}\right)^p \left(\frac{-u}{n+1}\right)^q \left(\frac{-1}{n+1}e^{-u/(p+1)}\right) du$

$$f_{+\infty} \left(\begin{array}{c} f_{+\infty} \\ f_{+$$

Exercice 6 Quelques séries de Bertrand

- 1. Étudier la nature de la série $\sum_{n>2} \frac{1}{n \ln(n)}$.
- 2. Soit $\beta > 1$. Étudier la nature de la série $\sum_{n\geqslant 2} \frac{1}{n \ln^{\beta}(n)}$.

Solution (Ex.6 – Quelques séries de Bertrand)

- 1. Soit $f: [2; +\infty[\to \mathbb{R}, t \mapsto \frac{1}{t \ln(t)}]$. $\int_{2}^{T} f(t) dt = [\ln(\ln(t))]_{2}^{T} \xrightarrow[T \to +\infty]{} +\infty, \text{ et comme } f \text{ est continue, positive et décroissante, par comparaison série/intégrale, } \sum_{n \in \mathbb{N}} \frac{1}{n \ln(n)} \text{ diverge.}$
- 2. Soit $f_{\beta}: [2; +\infty[\to \mathbb{R}, t \mapsto \frac{1}{t \ln^{\beta}(t)}]$. $\int_{2}^{T} f(t) dt = \left[\frac{1}{(1-\beta) \ln^{\beta-1}(t)} \right]_{2}^{T} \xrightarrow{T \to +\infty} \frac{1}{(\beta-1) \ln^{\beta-1}(2)} \text{s, et comme } f \text{ est continue, positive et décroissante, par comparaison série/intégrale, } \sum_{n \geqslant 2} \frac{1}{n \ln^{\beta}(n)} \text{ converge.}$

Exercice 7 Limite d'une famille de séries

- **1.** Soit $a \in]0; +\infty[$.
 - a) Justifier la convergence de la série $\sum_{n\geqslant 1} \frac{a}{n^2+a^2}$ converge.
 - **b)** Montrer que : $\frac{\pi}{2}$ Arctan $\left(\frac{1}{a}\right) \leqslant \sum_{n=1}^{+\infty} \frac{a}{n^2 + a^2} \leqslant \frac{\pi}{2}$.
- 2. Montrer l'existence de $\lim_{a\to +\infty} \sum_{n=1}^{+\infty} \frac{a}{n^2+a^2}$, puis la calculer.

Solution (Ex.7 – Limite d'une famille de séries)

- 1. a) $\frac{a}{n^2 + a^2} \underset{n \to +\infty}{\sim} \frac{1}{n^2}$ assure la convergence par le critère des équivalents pour ces séries à terme général positif et par la convergence de la série de Riemann de paramètre 2.
 - **b)** Soit $n \in \mathbb{N}^*$.

$$\forall t \in [n; n+1], \frac{a}{n^2 + a^2} \geqslant \frac{a}{t^2 + a^2}, \text{ donc } \frac{a}{n^2 + a^2} \geqslant \int_n^{n+1} \frac{a}{t^2 + a^2} dt$$

$$\forall t \in [n-1; n], \frac{a}{n^2 + a^2} \leqslant \frac{a}{t^2 + a^2}, \text{ donc } \frac{a}{n^2 + a^2} \leqslant \int_{n-1}^n \frac{a}{t^2 + a^2} dt$$

En sommant ces inégalités pour $n \in [[1; N]]$

$$\int_{1}^{N+1} \frac{a}{t^2 + a^2} dt \leqslant \sum_{n=1}^{N} \frac{a}{n^2 + a^2} \leqslant \int_{0}^{N} \frac{a}{t^2 + a^2} dt.$$

À l'aide de la primitive $t\mapsto \operatorname{Arctan}\left(\frac{t}{a}\right)$ de $t\mapsto \frac{a}{t^2+a^2},$

$$\operatorname{Arctan}\left(\frac{N+1}{a}\right) - \operatorname{Arctan}\left(\frac{1}{a}\right) \leqslant \sum_{n=1}^{N} \frac{a}{n^2 + a^2} \leqslant \operatorname{Arctan}\left(\frac{N}{a}\right).$$

Par conservation des inégalités (larges) en passant à la limite :

$$\frac{\pi}{2}$$
 - Arctan $\left(\frac{1}{a}\right) \leqslant \sum_{n=1}^{+\infty} \frac{a}{n^2 + a^2} \leqslant \frac{\pi}{2}$.

2. Puisque $\lim_{a \to +\infty} \operatorname{Arctan}\left(\frac{1}{a}\right) = 0$, $\lim_{a \to +\infty} \sum_{n=1}^{+\infty} \frac{a}{n^2 + a^2}$ existe par le théorème d'encadrement et

$$\lim_{a \to +\infty} \sum_{n=1}^{+\infty} \frac{a}{n^2 + a^2} = \frac{\pi}{2}.$$

Exercice 8 Fonction définie par une intégrale Soit, pour $a \in \mathbb{R}$ et sous réserve d'existence,

$$f(a) = \int_{1}^{+\infty} \frac{\mathrm{d}t}{t^a + 1}.$$

- 1. Déterminer l'ensemble de définition de f.
- **2.** Montrer que f est décroissante.
- 3. Déterminer la limite de f en $+\infty$.

Solution (Ex.8 – Fonction définie par une intégrale)

- 1. $t \mapsto \frac{1}{t^a + 1}$ est continue et positive sur $[1; +\infty[$ et :
 - pour a > 0, $\frac{1}{t^a + 1} \sim \frac{1}{t^{a+1}}$ donc par équivalence f(a) existe si, et seulement si, a > 1;
 - pour $a \le 0$, $\forall t \ge 1, t^a = e^{a \ln(t)} \le 1$ donc $\frac{1}{t^a + 1} \ge \frac{1}{2}$ donc par comparaison $\int_1^{+\infty} \frac{dt}{t^a + 1}$ diverge et f(a) n'est pas définie. Bilan: l'ensemble de définition de f est $]1; +\infty[$.

2. Soit $1 < a \le b$. $\forall t \ge 1, \frac{1}{t^b+1} \le \frac{1}{t^a+1}$ donc par croissance de l'intégrale $f(b) \ge f(a)$. Donc f est décroissante.

3. Soit 1 < a. $\forall t \ge 1$, $\frac{1}{t^a + 1} \le \frac{1}{t^a}$ donc par croissance de l'intégrale : $0 \le f(a) \le \int_1^{+\infty} \frac{\mathrm{d}t}{t^a} = \frac{1}{a - 1}$, d'où par encadrement $f(a) \xrightarrow[a \to +\infty]{} 0$.

Exercice 9 Que faire d'un logarithme?

- 1. Établir la convergence de $I = \int_{1}^{+\infty} \frac{\ln(t)}{t^2} dt$.
- 2. Calculer I.

Solution (Ex.9 – Que faire d'un logarithme?)

- 1. $\frac{\ln(t)}{t^2} = \underset{t \to +\infty}{o} (1/t^{3/2})$ et on conclut par le critère de domination.
- **2.** $I \stackrel{\text{IPP.}}{=} \left[-\frac{\ln t}{t} \right]_{1}^{+\infty} + \int_{1}^{+\infty} \frac{dt}{t^{2}} \stackrel{\text{primit.}}{=} 1.$

Exercice 10 Intégrale à paramètre Soit a un réel.

- 1. Établir la convergence de $I_a = \int_0^{+\infty} \ln\left(1 + \frac{a^2}{t^2}\right) dt$.
- 2. Calculer I_a.

Solution (Ex.10 – Intégrale à paramètre)

- 1. $\ln\left(1+\frac{a^2}{t^2}\right) \underset{t\to+\infty}{\sim} \frac{a^2}{t^2}$ donne la convergence en $+\infty$ par équivalence (Riemann en $+\infty$). $\ln\left(1+\frac{a^2}{t^2}\right) = \ln(t^2+a^2) 2\ln(t) \underset{t\to0}{\sim} -2\ln(t)$ donne la convergence en 0 par équivalence $\left(\int_0^1 \ln(t) \mathrm{d}t \text{ converge}\right)$.
- 2. $I_a \stackrel{\text{IPP.}}{=} \left[t \ln \left(1 + \frac{a^2}{t^2} \right) \right]_0^{+\infty} \int_0^{+\infty} t \left(\frac{2t}{t^2 + a^2} \frac{2}{t} \right) dt = \int_0^{+\infty} \frac{2a^2}{t^2 + a^2} dt$ $I_a = 2 \int_0^{+\infty} \frac{1}{(t/a)^2 + 1} dt \stackrel{u = t/a}{=} 2 \int_0^{+\infty} \frac{1}{u^2 + 1} a du = 2a \frac{\pi}{2} = a\pi \text{ (happy?)}$

Exercice 11 Racines imbriquées

- 1. Montrer que I = $\int_0^1 \frac{\mathrm{d}t}{\sqrt{1-\sqrt{t}}}$ existe.
- **2.** Calculer I en posant $t = \sin^4 x$.

Solution (Ex.11 – Racines imbriquées)

- 1. $\frac{1}{\sqrt{1-\sqrt{t}}} = \frac{\sqrt{1+\sqrt{t}}}{\sqrt{1-t}} \underset{t \to 1}{\sim} \frac{\sqrt{2}}{\sqrt{1-t}} \text{ donc I existe par \'equivalence et convergence de l'intégrale de Riemann sur } [0;1[.$
- 2. I $\stackrel{x=\sin^4 t}{=} 4 \int_0^{\pi/2} \sin^3 x dx = \left[-3\cos x + \frac{\cos(3x)}{3} \right]_0^{\pi/2} = \frac{8}{3}$ car $\sin^3 x = \frac{1}{4} \left(3\sin(x) \sin(3x) \right)$: toujours linéariser pour primitiver des puissances de sin ou cos.

Exercice 12 | Arc-tangente like

- 1. Justifier la convergence de $I = \int_{-\infty}^{+\infty} \frac{1}{4u^2 + 4u + 5} du$.
- 2. Calculer I à l'aide du changement de variable x = u + 1/2

Solution (Ex.12 – Arc-tangente like)

- 1. Remarquer que $4u^2 + 4u + 5 = 4\left[(u + \frac{1}{2})^2 + 1\right] > 0$. $\frac{1}{4u^2 + 4u + 5} \underset{u \to \pm \infty}{\sim} \frac{1}{4u^2}$ assure la convergence.
- **2.** $I \stackrel{x=u+1/2}{=} \frac{1}{4} \int_{-\infty}^{+\infty} \frac{dx}{x^2+1} \stackrel{\text{primit.}}{=} \frac{\pi}{4}.$