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ON THE DETERMINANT OF (0,1) MATRICES

by
J. KOMLÓS

I. Introduction

a) In the present paper we consider nXn  matrices with elements 0,1 and our 
purpose is to investigate the number of all non-singular ones. We shall prove that 
the singular matrices form a negligible percent asymptotically. More precisely, 
we shall prove the following

Th e o r e m
Let A„ denote the number of nX n  matrices with elements 0, 1 having determinant 

0, then

lim
  = + oo

A
2"2 = 0.

b) In other words let us choose at random a matrix from the set of nX n  (0, 1) 
matrices such that all matrices have the same probability (2- "2). If a„ means the 
probability of the event that the determinant of the chosen matrix equals 0, then 
lim an — 0. It is easy to see that the following fact is equivalent to our theorem:

  =  +    

If Ejj are independent random variables which take the values 0 and 1 with 
probabilities 4, \  and

/
el , l e l,2 ■ • £l,n

Pn =  P £2,1 e2,2 • • ^2,n =  0

4 En.l £n,2 • • ^n,n
then

lim p„ — 0.
  =  +  oo

We shall use all versions at the same time. In the section VI. we deal with a general 
ization of this problem in the case of infinite matrices.

c) The proof goes as follows: We show that the probability of the event, that 
the rank of an n X n (0, 1) matrix is   + 2, where   denotes the rank of the (n — 1) X 
X(n — 1) matrix, consisting of its first n — 1 rows and columns, or is equal to n, 
tends to 1 if n —► oo.

Using this fact we prove that

lim inf-^4 =  0.n = + ~ 2"

Having proved this, we prove the convergence of the sequence A J2"2. 
Before the proof of the theorem we give some definitions and lemmas.
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8 J. KOMLÓS

II. Definitions and Lemmas

a) Let A„tk denote the number of n X« (0, 1) matrices whose rank is equal to k. 
Clearly

  — 1
An = 2  An,k = 2

Then we have to prove that

lim =  1.
.= + ~  2"

First we give a known lemma.

Le mma  1. Let at , a2, a„ be real numbers different from 0 and c an arbitrary

real number, then at most among the sums ^   , ; (e; is equal to 0 or 1)

are equal to c.
n n

Pr o o f . Let us consider instead of the numbers 2  8fa; the sums 2 • 2 V , -

— 2  = 2  where cpt = 2ef —1, then cpt is equal to 1 or — 1 if st is equal
i= 1 i= 1

n n

to 1 or 0, respectively. The sum 2  siai equals c if the sum 2  (Piai equals d =
i= 1 t=l

n

=  2c — 2  ai. Then we can reformulate the lemma so that the numbers    are
i = 1

equal to 1 or —1. In this case we can suppose without violating the generality, 
that the numbers al , a2, are all positive.

Then it is enough to prove the following: if ai , a2, ■■■, an are positive numbers
n

among the numbers 2  eiaiand d is an arbitrary real number, then at most 

(8; equals 1 or — 1) are equal to d.
n

Let us correspond for every sum 2  eiai the set of those natural numbers i
i= 1

n n

for which 8; = 1 holds. If for two different sums 2 Eiai = 2  \    then the
i= 1 i= 1

corresponding sets of the two sums cannot contain each other.
The Sperner-theorem implies that the number of sums equal to any constant/ \ n

is at most

Clearly we can formulate the lemma as follows: if at , a2, am are real 
numbers, among which n are different from 0 and c is an arbitrary real number
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ON THE DETERMINANT OF (0 ,1) MATRICES 9

then among the numbers ^  (fi; equals 0 or 1) at most
i= l

are equal to c.
b)
D e f in it io n s .
A system of   linearly independent row (resp. column) vectors of a matrix o f 

rank   is called a row (resp. column) basis of the matrix.
We shall use that any row (resp. column) vector is a uniquely determined 

linear combination of the vectors o f any fixed row (resp. column) basis.
1) The degree of a row (resp. column) vector with respect to a given row (resp. 

column) basis, is the number o f those elements of the row (resp. column) basis, which 
have coefficients different from 0 in the above mentioned linear combination.

2) The degree of a row (resp. column) vector is the largest one among the degrees 
of this row (resp. column) vector with respect to all possible row (resp. column) 
basises.

3) The row (resp. column) degree of a matrix is the largest one among the 
degrees o f its row (resp. column) vectors.

Le mma  2. I f  the row-degree of an m X n  (0 ,1 )  matrix is l and its rank is k, 
then we can add to the matrix a column vector (with components 0, 1 ) so that the
rank of the obtained m X(n + 1) matrix is   again, at most 2-2m „-  different ways.

Pr o o f . For the sake of simplicity let us suppose that the first   row vectors 
form the basis, with respect to which the degree of the t-th row vector is equal to /.

Let us denote the  -th row vector by a;, the y-th column vector by b, and the 
additional (the (u+l)-th) column vector by b„ + 1, i. e.

a, ( d .l ? ^i,2 ) ••• ) ^i.n),

( K j  } V
K j »  /i + 1 —

b2

fim  
The row vectors of the enlarged matrix are

a,- =  (a/  ; aif2 ; ...;a it„; bfi
So we have at =  c1a 1 + c 2a2 +  ... +     where among the constants ct l are 

different from 0.
If the degree of the new (m X (n + 1)) matrix is also   then (because the maximal 

numbers of linearly independent row and column vectors are equal to each other 
and clearly  \,  '2, ..., '  are also linearly independent)

hence
a; =   1 '1 +  2 2 +  ... +c*a* 

b, = cibl +c2b2 + ... + ckbk.
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10 J. KOMLÓS

But bi is equal to 0 or 1 and among the numbers ct l are different from 0,
2kso by Lemma 1 we can choose the vector (bt , b2, ..., bk) at most - — different ways
r ^

2ksuch that b, = 0 holds; similarly we can choose (bl ,b 2, bk) at most - different
\ L

2*2mways such that b, =  1 holds. That is, we have at most possibilities to choose 

the vector bn+1. Q. e.d.
Similarly, if the column-degree of a matrix is /, then we can construct to the

2 - 2"matrix a row vector at most — different ways such that the maximal numbers
ÍI

of linearly independent vectors of both matrices are equal to each other,
c)
Le mma  3. By   m-dimensional vectors (with elements 0, 1 ) we can construct 

at most 22k different vectors (with components 0, 1 ) with linear combinations.

Pr o o f . Let us consider a k X m  matrix with row vectors a 1} a2 , a&. It
contains at most 2k different column vectors (because it has only 0 or 1 components). 
If the i'i-th, z2-th, ..., z'f-th column vectors are the different ones ( i S 2k), so any 
of the others is equal to one of these, then in the linear combinations of the row 
vectors the q-tb, /2-th, ..., z'(-th components can arbitrarily vary. Then among the 
linear combinations, whose components are 0 ,1 ,  at most 2‘^ 2 2  can be different.

Q. e. d.

Le mma  4. There exists a natural number m0 so that the number o f those m Xn  
(0, 1) matrices whose row-degree is at most log m but not equal to 1, is less than 
2n(m-i).2m4/5 if m > m 0.

Pr o o f . Let us denote by Dt the number of those m Xn  (0, 1) matrices, whose 
row-degree is / and by D,  ; the number of those (0, 1) matrices in which the z'-th 
row vector has degree /. Then

m

A  s  2 !  A ,i = m  • A ,m
i= 1

(because evidently A ,i — A , 2 =  — A,m)-
We shall prove that

A,™ (/S  2),

what proves our Lemma because the number of those matrices whose row-degree 
is at most log m but is not equal to 1 is
[log m] [log m]

Dt   ^  m -m 1- 22‘ <  2n(m_ • log m • m • znlogm • 22'°im <  • 2",4/5
1=2 1=2

if z?7>m0 for some suitable natural number m0.
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ON THE DETERMINANT OF ( 0 ,1 ) MATRICES 11

If we fill in the first m — 1 rows of the matrix arbitrarily (it can be done by 
2 n(m-i) different ways) we can construct the last row using a row-basis consisting 
of the first m — 1 rows by a linear combination (because 2) but actually we use 
only / rows of the row-basis, because the coefficients of the other rows are equal

to 0. We have <ml possibilities to choose the / vectors and by / vectors
we can construct at most 22' vectors as linear combinations according to Lemma3, 
that is

( / ^  2).
Q. e. d.

Similarly the number of m X n  (0, 1) matrices whose column-degree is at most 
log« but is not equal to 1, is less than 2"'(”_1)-2"4/5, if n> m 0.

If the row-(resp. column) degree of an m X n matrix is equal to 1, then we have 
two possibilities: either there are two rows(resp. columns) which are equivalent 
(the number of such matrices is less than m2 • 2<m_ ,)n(resp. n2 or the rank 
of the matrix is m (resp. rí) — these are the good cases for us.

d) Let us consider an n X n  (0, 1) matrix (n>«70).
A) If its rank is n, then any additional column vector is linearly dependent 

of the column vectors of the matrix.
B) 1. If its rank is /c<n and its row-degree is /=» log n then by Lemma 2 we 

2 - 2"  2 - 2"have at most -  - - - <  , possibilities to add a column vector so that the rank
/ /  /log  

of the obtained nX(n+  1) is also k.
B) 2. The number of those   (  +  1) (0, 1) matrices for which the row- 

degree of the nXn  matrix consisting of its first n columns is less than log n but not
2"4/5equal to 1 —  by Lemma 4 — is less than 2n(n+1>--

B) 3. If an nX (n  +  l) matrix has the property that the row-degree of the 
n X n  matrix consisting of its first n columns is equal to 1, then (because / < ) 
in the latter matrix there exist two rows which are equivalent. So the number of

fi2
these matrices is less than 2n(n+1)’^ ir.

Let   denote the set of matrices of the types B)2. and B)3. The number of 
elements of   is less than

2"("+1) 2"(»+D. 1
2 "/2

if for some suitable natural number n0.
By a similar way we can prove that if we enlarge the obtained   (  +  1) matrix 

by a row vector and if the matrix is not an element of the set B, then the probability 
of the event, that the rank of the new matrix is larger than the rank of the first mat 
rix is at least

/log«
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12 J. KOMI.ÓS

111 .

a) So we have proved the following

Le mma  5. Let us consider an arbitrary n X n  (0, 1) matrix which is not element 
o f the set B. Let us enlarge the matrix by a column vector (with components 0, 1 ) 
and let us add to the new matrix a row vector in all possible ways. So we obtain 22n+1 
(n +  1) X (n + 1) matrix.

I f  the rank of the first matrix is   <  n, then the rank of the new matrices are 
2 + 2 except for at most •22"+1 matrices, and if  the rank of the first matrix

flog n
2

is   =n, then the rank o f the new matrices are n +  1 except for at most •2 2n+1
flog«

matrices.
b) Using Lemma 5 we obtain

Le mma  6. There exists a sequence nl ,n 2, ...,«*, ••• of natural numbers such that

Ank,„k >  2-41
flog>h

(k = 1,2,...),

where Am r denotes the number o f mXm  (0, 1) matrices whose ranks are equal to r. 
By other words

lim inf =  lim inf — " = lim sup
  =  +       =  +  CO J J 1

=  0.

Pr o o f . Let us put S„ = Ank-k and /(«) =  - f The inequality Sn  
k = o '  2 "

n
-  2   „' ‘  =  '2"2 implies that /(«)<«. Let An k denote the number of those

k  = 0
n X n  matrices whose ranks are   and which are not elements of the set   and 
Bn,  —   }  —  „  . We can obtain all (n + l)X(« +  l) matrices so that we enlarge 
the n X n  matrices by a column vector to the right and after it by a row vector 
upwards in all possible ways.

So we can obtain from the nX n  matrices of number A,hk and of rank   new 
(n X_l) +  (n+ l) matrices the number of which is A„ik 22n+1 and among them 
xn,k^n,k22n+1 have rank smaller than min (k + 2, n +  1). By Lemma 5.

2
xn,k <  /,------ {  = 0, 1, 2, n).

Hog «
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ON THE DETERMINANT OF (0.1 ) MATRICES 13

c) So we have

S„+i = 2 k - A K+uk^ 2 2"+1 2    ' ( \ -   ' )(1 +2) +
k = 0 k = 0

f t -  1

+  22n+1 2    ' -   ' -  + 22 +1 „' ( 1-  „' )(  +  1) +  22 +1  '„-  ' - 
k = 0 

n — 1

k  = 0
=  22"+1 2   ' (  + 2) +   ' ( + \)  - 2 2"*1 2- 2  „, -  '  +   '   ' \ g

f l -  1

k = 0 

n -  1
s  22»+1 2    ' (  + 2) +     ( + 1) - 2 2-+‘ 2 . 2  An,k + An,n

\ k  = 0 J  \  k - 0

=  22 " + ‘ \ Z Â „ , k{k +  2 ) - Â n \ - 2 ^ ^  (2 - 2  Ânik-Â„_n

/log «

=  22n+1 ^  • £ + 2 • 2(n+1)2 1 —
k = 0 /log n

k = 0

-22"+1- „

|/log /2 

2
/log«

2 • 22n+1 1— — =- 2   ,  = 22n+1 2 '   ^  + 2-2(»+1)2 1 -
yiogn

22"+1-A, „Il

/c = 0 /log «

/log«
— 2-2 2n+1 1

/log«
2  Bn.k

' 22n+1 Z 5 (Ij r *  + 22"+‘ .Z? I l -

22n+1 •S'„ + 2-2(n+1)2 1

« + 2

/log«

/log«

— 22n+1 • A„„ 1 —

22n+i ,2nl- ~ -  g  22'1+1-5  + 2.2<"+1>2 l l -  

tl) Dividing by 2( +1)2 we get

/(«  + 1) =  /(«) + 2 Íl

/log«

/log«

— 22"+1- ,„ 1 /log«

"" 1
/log« J 2"2 ( /log« 

If we suppose that there exists a number N0 such that

62"2 1 -
/log«
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14 J. KOMLÓS

holds for all n S N 0 then we have

/( « +    S / H  + 2 1 -

that is

( 1)

for all n S N 0. But 2  ___
k - N o  flog  

we obtain

f(n +  1) S /0 0  + 

1

/log n 

1 +

/log n

f  log n

+ °o therefore using Relation (1) (  — N0) times

f(n +  1) S /W 0) + («-7V0) +  2  - , = ■ •
flogK

a  1
for all n S N 0. If TV is so large that ^  ___  >   '0 +1 holds, then we have

k = No flog  
/(TV+1)>TV+1 which is a contradiction. Q.e.d.

IV.

a) Lemma  7.
Let fix , y) be a function defined for all pairs x S y  o f natural numbers with the 

following properties:
There exists a natural number n and a real number 0 -<   < 1 such that

1° f(x, y) SO 
2° f(x, X )  =  1 
3° f i x ,y + \ ) S f i x ,  y)
4° fin, n — 1) <  c
5° fim  + 1,  ) S  cfim,  ) + (1 -  c)fim ,  -  2) +  dm 

for all m Sn  and O s fc ë m , where {dm\ is a sequence of positive numbers.
We show that these properties imply that

(2) fim , m — 1) <  2c + 2  ds
s = n

or all m Sn.
b) By a double application of 5° we get

(3) fim  + 2 ) = c2fim , k) +  2c(l -  c)f(m,   — 2) +  ( 1 -  o')2fim ,   -  4) + dm + dm +1

m S n  t
O ^ k ^ m )

and this inequality implies (as fim ,   — 4 )^ fim ,  — 2)):
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ON THE DETERMINANT OF (0 ,1 ) MATRICES 15

(4) f(m  + 2 ,k ) ^ c 2f(m , k) + ( 1 - c2)f(m, k - 2 )  + dm+dm+1.
m ^ n  

0 =5   gm
The relation

f (N + ] ,k )S c f(N ,  ) +  (1 - c)f(N, k - l )  + dN^  
Sf(N , k)[c + (1 —c)] + dN=f{N, k) + dN 

N s n  '
O rSk^N,

and Relation 1° (/( , n — l)< c) show that
m - 1

(5) f(m ,  ) < c + ^  ds for all     n — 1 (m ^  n).

Now we prove by induction that the following inequality holds:

(6)
m -

f(n-\-t,n  — 2 + / — i) = c +  ^ Ï + 5 
5

n + t -  1

Ci + s +2+  ^  4s
s=n

(t S  2 , i s  0).
/I +  Í -  1

If /> /  — 2, then we have to prove that f(n  + t, n — (/ — < + 2))sc  4- ^  i/s;
s = n

but this is an immediate consequence of (5). Let us suppose that
2.

c) In the case t — 2 (and so i = 0) the inequality is

f(n  + 2, n )^ c  + c2 +dn+dn+l.
By (4) we have

/(  + 2,  ) S   2/( ,  ) + (1 -   2)/( ,   -  2) + dn + dn+1 ^  
â c 2 + ( l  -  c 2) c  +  í/„ +  í/,1+1< c  +  c 2 + í/„ +  í/„+1 .

In the case / = 3 the inequality is (for i =  1 or i — 0)

/(« + 3, Íl)ác + c4rf„ + rf„+i + 4. + 2
/(  +  3, n +  1)SC +  C2 + í/„ +  r/„+1 +í/„+2-

Using Relation (4):
/(  + 3, ri)^c2f(n +  1, w) + (l - c 2)/(n +  1, « — 2) + i/„ + j +i/„ + 2^

S  c2[cf(n, n) + ( 1 -  c)f(n, n -  2) +  d„] +  (1 -  c2)(c + d„) + dn +x + dn + 2 S  
s=c3+ c 3(l _ c) +  c(i - c 2) + dn + dn+l +dn + 2<

<c + c3 +d„ + dn+l +dn+2

Studia Scientiarum  M athematicarum Hungarlca 2 (J967>



16 J. KOMLÓS

or similarly:

f(n  + 3, n + l)SC 2/(f l+  1, n + 1)+(1 - c 2)f(n + 1, n -  l) + d„+1 + dn+2^  
^ c 2+ ( l - c 2)(c + dn) + d„+1+dn+2<

< c + c2 +dn + dn+x + dn + 2.
That is the inequality is proved in the cases t = 2 and t = 3.
d) Let us suppose that the inequality is proved for t= T  and let us prove

it for t = T+ 2. Denote 

if k > n  or

= w. Applying (3) we get, if i s  2 L I  = 0  per. def.

/(n  + T  + 2, n — 2 +  (7’ + 2) — /) =  f(n + T +2, n + T —i) ^  c2f(n  + T, n + T —1) +

+ 2 ( 1 -  ) /(   +  ,  - 2  +   - / )  + ( 1 -  )2/ (   +   ,  - 4  +  - 0  + 4 +  +  ̂ +  +1 —

C +  2  I
s = 0 V

H- 2c(l —  ) I c + /*!

i yv—2

c + 2
s= 0

fi + s-2'l .. n+̂ +l Ï
I l C‘+ s +  2 j  ds \ +

s  = n )

n + T -  1

+  2  ds
w — 1

2s= 0
i+s

s c‘Í + S + 2 +

i +  s + 2 
s

n + T -  1
c;+s+4+ 2  ds\+d„ + T + dr

S — li
n + T +  1

n + T + 1

+  ^  <4 +  2
i i+ s —2

o l
ni + s+ 2 + 2 2 1

i + s — 1 
s — 1

ni + s + 2 __

- 2 Z
w+ 1

2 1
s = 2

i + s — 2 
s —2

ni + s + 2 +

i + s  —2
s — 4

!- 2 Zs = 3 

c i + s + 2  —  S .

i 4 -s  — 1 
s — 3

ni + s + 2 +

Using the following identity

i + s —2 
s + 2 i+ s  — 1 

s — 1 - 2 i + s — 2 
s — 2 +

i+ s
s —2

i + s —l 
5 — 3 +

i +  s  — 2 
s — 4

i+ s
s

one can see, that
(this identity holds for s ^ l ,  i s l )

n + T  + 1  w

S = c + dx +  ^s—n s=0
i+s

s
çi + s + 2 _  2 i + w — 1 

w -  1
£l + W+ 3 _

- 2 Í / + " ) d « « + í , + " ; ) ^ * + í i + ’vT 1]c l\w — 2) [w — 2) { w — 3 )
i + w + 3
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ON THE DETERMINANT OF (0 ,1 ) MATRICES 17

and as

we get the relation
i+W7 +  " - 1w — 21 I w — 3

/' +  >v 
tv — 2 1 ’

f(n  + (T + 2 ) ,n -2  + (T + 2 )- i)    S  =s c +  2
s=0 f s

i + s

what we had to prove.
If i =  0 or /= 1 , then the estimate

W
f(n  + T ,n  + T — i) S  c + 2 i + s — 2 

s

 +  +  1

+ s + 2 2  ds

n + T  -  1

+  2  ds

and also the identity was false. Instead of this estimate we write f(n  +  T, n +  T — i) S 1, 
and so we get for S the same formula as above.

e) Let us apply the proved inequality in the case i =  0.

Hence

f(n  + t, n + t — 2) s  c +
 -
2 cS+2 + 2 ds ( t  S  2).

f{n + t + 1, n + t) S  cf(n + t,   +  0 + (1 — c)f(n + t, n + t - 2 )  + dn+t S

c + (l — c)
 -

+ 2  cs+2 + 2  ds\ + dn+, <  c +  ( l - c )  c + 2 c ° + 2\ +

2 d, = c + c - c 2 + (l +  2  ds = 2c + 2  ds
s = n 1 C s = 0 s = n

for all /   2. 
But

f(n  + 2 ,n + l)  ^  cf{n + \ , n + \ ) + ( \ - c ) f ( n + \ ,n - \ )  + dnJrl S  

=  c + ( I -£■)(£■+  / ) +  / +1 < 2 c + 2  ds
S =   

and

f(n +  1, n) ^  cf(n, n) + (l —c)f(n, n — 2) + dn ^  c + (l -c )c  + dn < 2 c + 2  ds,
s = n

hence we proved that for all

f(m, m -  1) <  2c + 2  ds
s = n

holds. Q. e.d.
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18 J. KOMLÓS

V.

Now we can already prove the theorem:
Let   be an arbitrary positive number. Let the integer N be so large that for 

the ,/V-th element of the sequence nk (defined in Lemma 6)

Let us put

13
llogu.v

<  £.

k)
  j

 7 A m, iZj  9„,2 >
1 =  0 ^

6
/log nN

n = nN,

. _  1
< m 2m!2 '

It is easy to see that for the function f(m, k) 1°—2°—3° hold.
The fulfilment of 4° follows from the definition of the sequence {nk} (in lemma 6). 

Let us prove that 5° holds.
From the Am>k̂ .i matrices of rank   — 1 except for at most c-Amk- l -22m+1 

ones, and from the Anitk matrices of rank   except for at most   ,„ -22 +1 ones 
we get such matrices, which have at least   +1 as rank. So we have

X»+VfOn+l,k) ^  Z  Amj  • 22m +1 + c • 22m+1 (Am k- l +Tra>fe) +
í  =  0

k - 2

+  22m+ '-d m- 2'"2 si Z  Amwi • 22™+ * + c • 22m+1 +    ) + dm • 2<"+ ‘>2

= f(m, k - 2) - 2(m + ')2 +  c-  2( +1>2(/(  ,  ) - f (m,  -  2)) + dm • 2(m+ D2 =

=  2(m+ 1)2[c/(w, k) + ( 1   ~  2) + d,„].

Dividing by 2(m+1)2 we obtain

f(m  +  1, k) ^  cf(m,  ) + (1 -  c)f(m,   -  2) + dm,
that is 5° holds.

By lemma 7 we get:

f(m , m -  1) < 2c + Z  (,s
s  = n

for all m ^n . But
V  J _ V  1 4 1

s £  2d2 -  2"/2
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that is
f(m , m — 1)

for all m ^ n N or in other terms

12 _ 1 ___

^log nN i\ognN
E

A m ,m  >2"|2(1 — e) for all m ^ n N , 

what proves our theorem.

VI.
a)
Professor Eg y e d  asked whether the following generalization of this theorem 

is true:
Let us consider the matrices:

O l . I 0 1 , 2  • a l , k

a 2,  1 a 2 , 2  • • •  « 2  , k

a i,  I a i}   • • ■ Oi . k

where the elements aUk equal to 0 or 1. The set of those matrices in which the rows 
or the columns are not “linearly independent”, has a measure 0.

First we have to agree in that what is the meaning of “linearly independent” 
in this case.

Let aik (/=  1 ,2 ,...; k = 1 ,2 ,...) be mutually independent random variables 
which take on the values 0, 1 with probabilities •£, Let us form by these random 
variables the above matrix.

We make use of two definitions of the linear dependence of the rows of a matrix.
The rows of a matrix are finitely linearly dependent, if there exists a natural 

number i, some natural numbers (finitely many)  \ < /2<  ... < is and real numbers
«  a2, .. as with the properties:

and
i'v / for V — 1,2, ..., 5

(7) Cti.k = ^ j  &v&iv,k for   = 1,2.
v =  1

The rows of a matrix are infinitely linearly dependent, if there exists a natural 
number i and real numbers ax, a2, ..., a ,-! ,    =  0, a i+1, ... such that

(8) a,   =  2  avav,k for k = 1 , 2 , . . . .
v =  I

Let A denote the event that the rows of a random matrix are finitely linearly 
dependent and   the event that they are infinitely linearly dependent.

Making use of these definitions we can formulate the question as follows: 
What are the probabilities P (A) and P(S) equal to?
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b) The answer is:
(9) PM )=0,

(10) P(B)= 1.

The proofs of these relations are simple. 
Proof of (9):

Let A t denote the event that

=  Cl: ... = aistt = 0 and a, f = 1.

Clearly At , A2, ..., A t, ... are mutually independent and 0< P (T ,) = P(T2) = ...=  

=  ( ,) =... . One can see from the relation (7) that  ,   A = 0, so | (J /1,|  \  = 0
   oo

and thus \ J A , =  f ] A , Z ) A .  This fact implies that
(=i (=i

P P(A).

But we have P f) A,
j =  1

As P(A ,)cl and

  P(T ,) because the events At are independent.
r= i

P(AX) =  P(A2) = ...=  P (A ,)= ...,

we get IJP(At)= 0  whence P(T) = 0.
t= i

Proof of (10):
Let B, denote the event (t = l, 2, ...) that there exists a natural number i, 

(different from ii , i 2, ..., it- 2) such that

=  ... = a,it, t -  1 0 and ait.t 1.

That is, a random matrix contains a triangular matrix, in which all diagonal 
elements are equal to 1, with probability 1. Clearly the matrix also contains an 
z'-th row vector which is different from the rows of the triangular matrix, with 
probability 1. We show that such a row of the matrix is an infinite linear combination 
of the z\-th, z2-th, ..., z'(-th, ... rows.

Put ah =aiA and define the numbers aik successively as

 -  1

îk î,k ^ j  A\Aiv,k •

Clearly P(S,) = 1, therefore P

I f  t is not one of the numbers ik then let a, =  0.
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Since
k,k ' 1 s

af„,* =  0 for

and av =  0 if v    ,,
we have

 — 1   oo
a i,k =  a ik +  Xiva iv,k =  a iva ‘v,k =  2 a ivÖl'v.fcV = 1 V = 1 V = 1

that is (10) holds.
The condition (8) says that

N

lim 2  avav k = at k for fc =  l,2 , ....
w=+°°v=l

If we substitute this condition by the condition
N

lim 2 a va v   — a i   uniformly in k ,
N= +°° v= 1

then the probability in question is equal to 0.
c)
In the proof of (10) we actually proved that the rows (and clearly the columns 

too) of a random matrix contain an infinite basis with probability 1.
(A subset of a set of vectors is called) ‘‘basis infinitely”, if any element of the 

set can uniquely be represented by an infinite linear combination of the elements 
of the subset.

A subset of a set of vectors is called to be “ basis finitely” (it can contain in 
finitely many vectors) if any element of the set can uniquely be represented by a 
linear combination of finitely many vectors of the elements of the subset).

I do not know whether there exists a set o f vectors (with countably many compo 
nents) containing no “basises infinitely”.

(Finitely many vectors ever contain basis. It is easy to see that a set of countably 
many vectors also contain at least one “basis finitely” and we proved above that 
this basis is the whole set with probability 1.)

MATHEMATICAL INSTITUTE OF THE HUNGARIAN ACADEMY OF SCIENCES, 
BUDAPEST
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