Théorème de Pólya

On note Δ l'application qui à un polynôme P de $\mathbb{C}[X]$ associe le polynôme $\Delta(P)(X) = P(X) - P(X-1)$. Si $n \in \mathbb{N}$, soit $\mathbb{C}_n[X]$ l'espace des polynômes complexes de degré inférieur ou égal à n.

Si
$$R \in \mathbb{R}_+^*$$
, soit : $D_R = \{z \in \mathbb{C}, |z| < R\}$, $\overline{D_R} = \{z \in \mathbb{C}, |z| \le R\}$ et $C_R = \{z \in \mathbb{C}, |z| = R\}$.

Si $R \in \mathbb{R}_+^*$, soit : $D_R = \{z \in \mathbb{C}, |z| < R\}$, $\overline{D_R} = \{z \in \mathbb{C}, |z| \le R\}$ et $C_R = \{z \in \mathbb{C}, |z| = R\}$. On convient d'autre part que $D_{\infty} = \mathbb{C}$. Pour R dans $\mathbb{R}_+^* \cup \{\infty\}$, soit E_R l'espace vectoriel des fonctions de D_R dans

 \mathbb{C} de la forme $z\mapsto\sum_{n=0}^{+\infty}a_nz^n$ où la série entière $\sum_{n=0}^{+\infty}a_nz^n$ a un rayon de convergence supérieur ou égal à R. L'espace E_{∞} est appelé espace des fonctions entières.

On pourra utiliser la formule de Stirling : $n! \sim \sqrt{2\pi n} \left(\frac{n}{\epsilon}\right)^n$ lorsque $n \to +\infty$.

Objectif du problème, dépendance des parties

La partie I étudie les polynômes de Hilbert (partie raccourcie; l'objectif du sujet initial était de déterminer les polynômes P de $\mathbb{C}[X]$ tels que $P(\mathbb{N}) \subset \mathbb{Z}$). La partie II est complètement indépendante de I. Elle a pour but d'établir quelques propriétés des séries entières utilisées dans la partie III, laquelle montre que toute fonction entière vérifiant une certaine condition asymptotique est un polynôme. Le résultat obtenu est dû à Georg Pólya (1915). La partie III utilise II et la dernière question de I.

I Polynômes de Hilbert

- **I.A.** Soit $P \in \mathbb{C}[X]$. Calculer $\Delta^2(P)(X)$ puis $\Delta^k(P)(X)$ pour $k \in \mathbb{N}^*$.
- **I.B.** On note Δ_n la restriction de Δ à $\mathbb{C}_n[X]$. Montrer que Δ_n est un endomorphisme de $\mathbb{C}_n[X]$, en préciser l'image et le noyau.

En déduire que $\Delta_n^{n+1} = 0$

- **I.C.** Soit $(u_j)_{j\in\mathbb{N}}$ une suite complexe. On s'intéresse aux deux propositions suivantes
 - (i) il existe $P \in \mathbb{C}_n[X]$ tel que : $\forall j \in \mathbb{N}, u_j = P(j)$

(ii)
$$\forall i \in \mathbb{N}, i \ge n+1 \Rightarrow \sum_{j=0}^{i} (-1)^{i-j} {i \choose j} u_j = 0.$$
 Montrer que (i) implique (ii).

Dans le sujet original de Centrale, qui forme un sujet intéressant d'algèbre linéaire, on fait prouver la réciproque. Je peux donner l'énoncé à ceux qui seraient intéressés, mais je propose de se concentrer sur la partie série entière. On pourra donc admettre le résultat :

On admet que (i)
$$\Leftrightarrow$$
 (ii).

II Quelques propriétés des séries entières

Dans toute cette partie, on fixe R dans $\mathbb{R}_+^* \cup \{+\infty\}$, f dans E_R , ω dans D_R et r dans $]|\omega|$, R[. Pour z dans D_R , on écrit donc :

$$f(z) = \sum_{n=0}^{+\infty} a_n z^n$$

où la série entière $\sum_{n=0}^{+\infty} a_n z^n$ a un rayon de convergence supérieur ou égal à R.

Pour $k \in \mathbb{N}^*$, on note $f^{(k)}$ la fonction définie pour $z \in D_R$ par :

$$f^{(k)}(z) = \sum_{n=k}^{+\infty} n(n-1)\dots(n-k+1)a_n z^{n-k}$$

(on sait que cette série entière a même rayon de convergence que la série entière initiale).

II.A. Représentation intégrale de $f(\omega)$ à partir des valeurs de f sur C_r

II.A.1. Si $p \in \mathbb{N}$, prouver :

$$\int_{-\pi}^{\pi} f(re^{it})e^{-ipt} dt = 2\pi a_p r^p.$$

II.A.2. Montrer:

$$f(\omega) = \int_{-\pi}^{\pi} \frac{re^{it}}{re^{it} - \omega} f(re^{it}) \frac{\mathrm{d}t}{2\pi}.$$

Indication : on pourra partir de $\frac{re^{it}}{re^{it} - \omega} = \sum_{p=0}^{+\infty} \left(\frac{\omega}{re^{it}}\right)^p$.

II.B. Principe du maximum

II.B.1. Justifier la définition de $M_f(r) = \max\{|f(z)|, z \in C_r\}$.

II.B.2. Montrer:
$$|f(\omega)| \leq \frac{r}{r - |\omega|} M_f(r)$$
.

II.B.3. Montrer : $|f(\omega)| \leq M_f(r)$.

Indication : si $p \in \mathbb{N}^*$, on pourra appliquer, avec justification, le résultat de II.B.2 à f^p (puissance p-ième pour l'opération de multiplication) puis faire tendre p vers $+\infty$.

II.C. Division de $f(z) - f(\omega)$ par $z - \omega$ pour f dans E_R

- II.C.1. Si $j \in \mathbb{N}$, montrer la convergence de la série de terme général $a_n \omega^{n-1-j}$ pour $n \geq j+1$. On pose $b_j = \sum_{n=j+1}^{+\infty} a_n \omega^{n-1-j}$.
- **II.C.2.** Montrer que, lorsque $j \to +\infty$, $b_j = O\left(\frac{1}{r^j}\right)$.
- II.C.3. Montrer que le rayon de convergence de la série entière $\sum_{j=0}^{+\infty} b_j z^j$ est supérieur ou égal à R. Pour $z \in D_R$, on

pose
$$g(z) = \sum_{j=0}^{+\infty} b_j z^j$$
.

Vérifier: $\forall z \in D_R, (z - \omega)g(z) = f(z) - f(\omega)$

II.D. Minoration de $M_f(r)$ à l'aide des zéros de f

On suppose que $p \in \mathbb{N}^*$, que f s'annule en p points distincts z_1, \ldots, z_p de $\overline{D_r} \setminus \{0\}$.

II.D.1. Montrer qu'il existe F dans E_R telle que :

$$\forall z \in D_R, F(z) \times \prod_{j=1}^p (z - z_j) = f(z) \times \prod_{j=1}^p (r^2 - \overline{z_j}z).$$

II.D.2. Si
$$j \in \{1, ..., p\}$$
 et $z \in C_r \setminus \{z_j\}$, que vaut $\left| \frac{r^2 - \overline{z_j}z}{z - z_j} \right|$?

II.D.3. En appliquant II.B.3 à F au point $\omega = 0$, montrer

$$M_f(r) imes \left| \prod_{j=1}^p z_j \right| \ge |f(0)| r^p.$$

II.D.4. On suppose $f(0) = \cdots = f^{(k-1)}(0) = 0$ où $k \in \mathbb{N}^*$. Prouver:

$$M_f(r) \times \left| \prod_{j=1}^p z_j \right| \ge \frac{|f^{(k)}(0)|}{k!} r^{p+k}.$$

II.E. Étude asymptotique d'une fonction entière nulle sur N

On suppose que $R = +\infty$, $c \in]0, e[$, f est nulle sur \mathbb{N} et que lorsque $r \to \infty$, $M_f(r) = O(c^r)$.

Montrer que f = 0.

Indication: on supposera par l'absurde $f \neq 0$, on appliquera II.D.4 avec $k = \min\{i \in \mathbb{N}, f^{(i)}(0) \neq 0\}, r = p, z_1 = 1, \ldots, z_p = p$ et on fera tendre p vers $+\infty$.

III Théorème de Pólya

Soit f dans E_{∞} .

III.A. Majoration de $\left|\sum_{k=0}^{n} n(-1)^k \binom{n}{k} f^{(k)}\right|$

Soient n dans \mathbb{N}^* et r un réel tel que r > n.

III.A.1. Décomposer en éléments simples la fraction rationnelle :

$$F_n = \frac{n!}{X(X-1)\dots(X-n)}.$$

III.A.2. À l'aide de II.A.2, prouver :

$$\int_{-\pi}^{\pi} \frac{n! f(re^{it})}{(re^{it} - 1) \dots (re^{it} - n)} \frac{dt}{2\pi} = \sum_{k=0}^{n} (-1)^{n-k} \binom{n}{k} f(k).$$

III.A.3. Montrer:

$$\left| \sum_{k=0}^{n} (-1)^{n-k} \binom{n}{k} f(k) \right| \le \frac{n! M_f(r)}{(r-1)\dots(r-n)}.$$

III.B. Preuve du théorème On suppose ici :

- a) $f(\mathbb{N}) \subset \mathbb{Z}$
- b) Lorsque $r \to +\infty$, $M_f(r) = o\left(\frac{2^r}{\sqrt{r}}\right)$.

On va démontrer que f est polynomiale (théorème de Pólya).

N.B. L'exemple de $f(z) = 2^z$ montre que la condition asymptotique (b) n'est pas loin d'être optimale.

3

III.B.1. En appliquant III.A.3 à r=2n+1, prouver qu'il existe N dans $\mathbb N$ tel que

$$\forall n \ge N, \sum_{k=0}^{n} (-1)^{n-k} \binom{n}{k} f(k) = 0.$$

III.B.2. À l'aide de la partie I. et de II.E), prouver le résultat désiré.