Matrices symplectiques

Notations

Dans tout le problème, n désigne un entier naturel non nul $(n \in \mathbb{N}^*)$.

— Dans $\mathcal{E}_n = \mathcal{M}_{n,1}(\mathbb{R})$ espace vectoriel réel de dimension n, on utilisera le produit scalaire canonique défini par

$$\forall U, V \in \mathcal{E}_n, \ (U|V) = U^\top V$$

- On notera $\mathcal{M}_n = \mathcal{M}_n(\mathbb{R})$, l'espace vectoriel des matrices carrées de taille n à coefficients réels.
- Pour $A \in \mathcal{M}_n$, on notera $\ker(A)$ le noyau de A vu comme endomorphisme de \mathcal{E}_n .
- Dans \mathcal{M}_n , on notera 0_n la matrice nulle et I_n la matrice unité. Le déterminant est noté det.
- $--\mathcal{G}_n = GL_n(\mathbb{R}) = \{M \in \mathcal{M}_n, \ \det(M) \neq 0\}$ désigne le groupe linéaire des matrices inversibles de \mathcal{M}_n .
- On sera amené à utiliser des décompositions par blocs. On rappelle en particulier que si $A, B, C, D, A', B', C', D' \in \mathcal{M}_n$ on a alors dans \mathcal{M}_{2n} :

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} A' & B' \\ C' & D' \end{pmatrix} = \begin{pmatrix} AA' + BC' & AB' + BD' \\ CA' + DC' & CB' + DD' \end{pmatrix}$$

— Une matrice $M \in \mathcal{M}_n$ est dite diagonalisable s'il existe une base de \mathcal{E}_n formée de vecteurs propres pour M. NB: il s'agit donc de diagonalisabilité sur le corps des réels.

Partie I - Le groupe symplectique

A. Quelques exemples

Soit $n \in \mathbb{N}^*$ et soit J_n ou simplement J la matrice de \mathcal{M}_{2n} définie par

$$J = \begin{pmatrix} 0_n & -I_n \\ I_n & 0_n \end{pmatrix}$$

On note

$$\mathcal{S}_{p_{2n}} = \{ M \in \mathcal{M}_{2n}, \ M^{\top} J M = J \}$$

les matrices M appartenant à cet ensemble étant qualifiées de matrices symplectiques.

- 1. Calculer J^2 et J^{\top} en fonction de I_{2n} et J. Montrer que J est inversible et identifier son inverse. Vérifier que $J \in \mathcal{S}_{p_{2n}}$. La matrice J est-elle diagonalisable?
- 2. On pose, pour tout réel α , $K(\alpha) = \begin{pmatrix} I_n & 0_n \\ -\alpha I_n & I_n \end{pmatrix}$. Vérifier que $K(\alpha) \in \mathcal{S}_{p_{2n}}$. Pour $\alpha \neq 0$, s'agit-il d'une matrice diagonalisable?
- 3. Pour tout $U \in \mathcal{G}_n$, vérifier que $L_U = \begin{pmatrix} U & 0_n \\ 0_n & (U^{-1})^{\top} \end{pmatrix}$ est dans $\mathcal{S}_{p_{2n}}$. Montrer que L_U est diagonalisable si et seulement si U est diagonalisable.

B. Le groupe symplectique

- 4. Si $M \in \mathcal{S}_{p_{2n}}$, montrer que $\det(M)$ ne peut prendre qu'un nombre fini de valeurs (on ne demande pas de prouver que ces valeurs sont effectivement réalisées).
- 5. Montrer que le produit de deux éléments de $\mathcal{S}_{p_{2n}}$ est un élément de $\mathcal{S}_{p_{2n}}$.
- 6. Montrer qu'un élément de $S_{p_{2n}}$ est inversible et que son inverse appartient à $S_{p_{2n}}$.
- 7. Montrer que si $M \in \mathcal{S}_{p_{2n}}$ alors $M^{\top} \in \mathcal{S}_{p_{2n}}$.

Partie II - Déterminant d'une matrice symplectique

A. Ecriture par blocs

Soit M une matrice de \mathcal{M}_{2n} écrite sous la forme

$$M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$$
 avec $A, B, C, D \in \mathcal{M}_n$

8. Déterminer les relations sur A, B, C, D caractérisant l'appartenance de M à $S_{p_{2n}}$.

Dans toute la suite de cette partie, on fixe une matrice M de $S_{p_{2n}}$ que l'on décompose sous forme de matrice blocs comme ci-dessus, en notant toujours les matrices A, B, C, D sont les matrices de cette décomposition.

B. Cas D inversible

On suppose dans les questions 9 et 10 que D est inversible.

9. Montrer qu'il existe quatre matrices Q, U, V, W de \mathcal{M}_n telles que

$$\begin{pmatrix} I_n & Q \\ 0_n & I_n \end{pmatrix} \begin{pmatrix} U & 0_n \\ V & W \end{pmatrix} = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$$

10. En utilisant la question 8, vérifier que BD^{-1} est symétrique, puis que

$$\det(M) = \det(A^{\top}D - C^{\top}B) = 1$$

C. Cas général

On suppose dorénavant D non inversible.

11. Soient $P, Q \in \mathcal{M}_n$ telles que $P^{\top}Q$ soit symétrique. On suppose qu'il existe deux réels différents s_1, s_2 et deux vecteurs V_1, V_2 non nuls dans \mathcal{E}_n tels que

$$(Q - s_1 P)V_1 = (Q - s_2 P)V_2 = 0$$

Montrer que le produit scalaire $(QV_1|QV_2)$ est nul.

12. Montrer que $ker(B) \cap ker(D) = \{0\}.$

Soit m un entier, $m \leq n$. Soit s_1, \ldots, s_m des réels non nuls et deux à deux distincts et V_1, \ldots, V_m des vecteurs non nuls tels que

$$(D - s_i B)V_i = 0$$
 pour $i = 1, \dots, m$

- 13. Montrer que pour tout $i \in \{1, ..., m\}$, $DV_i \neq 0$ et que la famille $(DV_i, i = 1, ..., m)$ forme un système libre de \mathcal{E}_n .
- 14. En déduire qu'il existe un réel α tel que $D \alpha B$ soit inversible.
- 15. Montrer alors que toute matrice de $S_{p_{2n}}$ est de déterminant égal à 1.

Partie III - Spectre d'une matrice symplectique

Soit M une matrice symplectique; soit P son polynôme caractéristique.

A. Valeurs et vecteurs propres

- 16. Si $X \in \mathcal{E}_{2n}$ est vecteur propre de M pour la valeur propre $\lambda \in \mathbb{R}$, montrer que JX est vecteur propre de M^{\top} . Que peut-on en déduire concernant les valeurs propres de M et les dimensions des espaces propres ?
- 17. Donner des exemples de matrices symplectiques $\in \mathcal{M}_4(\mathbb{R})$, diagonalisables et ayant respectivement un spectre (réel) composé de
 - (1) une seule valeur propre
 - (2) deux valeurs propres doubles distinctes
 - (3) une valeur propre double et deux valeurs propres simples
 - (4) quatre valeurs propres distinctes

B. Multiplicités

18. Montrer que les polynômes caractéristiques de M, M^{\top} et M^{-1} sont tous égaux et que

$$\forall \lambda \in \mathbb{C}, \ \lambda \neq 0, \ P(\lambda) = \lambda^{2n} P(1/\lambda).$$

- 19. Montrer que si $\lambda_0 \in \mathbb{C}$ est valeur propre (complexe) de M, de multiplicité d, alors $\frac{1}{\lambda_0}$, $\overline{\lambda_0}$, $\frac{1}{\overline{\lambda_0}}$ sont valeurs propres de M, chacune de multiplicité d.
- 20. Que peut-on dire de l'ordre de multiplicité de 1 et de -1?
- 21. Donner une matrice symplectique ayant quatre valeurs propres distinctes, non réelles et de module $\neq 1$.

Partie IV - Applications

A - Une histoire de chameau...

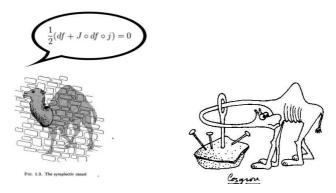
On suppose $m \geq 2$.

On note x_1, \ldots, x_{2m} les coordonnées d'un vecteur $X \in \mathbb{R}^{2m}$ dans la base canonique (e_1, \ldots, e_{2m}) . On considère les ensembles

$$B = \{x \in \mathbb{R}^{2m}, \sum_{k=1}^{2m} x_k^2 \le 1\} \qquad C_R = \{x \in \mathbb{R}^{2m}, x_1^2 + x_2^2 \le R^2\} \qquad \Gamma_R = \{x \in \mathbb{R}^{2m}, x_1^2 + x_{m+1}^2 \le R^2\}$$

où R est un réel strictement positif.

- 22. Montrer que pour tout R>0, il existe une matrice symplectique M telle que l'endomorphisme φ de \mathbb{R}^{2m} canoniquement associé vérifie $\varphi(B)\subset C_R$.
- 23. Soit M une matrice symplectique de \mathbb{R}^{2m} . Montrer que ou bien $||Me_1|| \geq 1$, ou bien $||Me_{m+1}|| \geq 1$.



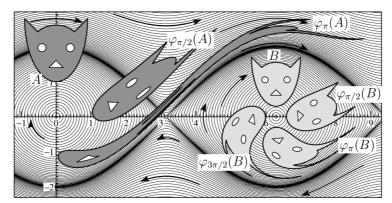
Deux vues d'"artiste" du "chameau symplectique". Je sais ce sont plutôt des dromadaires...

24. En déduire que si R < 1, il n'existe aucune matrice symplectique telle que l'endomorphisme φ de \mathbb{R}^{2m} canoniquement associé vérifie $\varphi(B) \subset \Gamma_R$.

B - Stabilité

Une matrice $M \in \mathcal{M}_n(\mathbb{R})$ est dite stable si, pour tout $X \in \mathcal{E}_n$, la suite $(\|M^pX\|)_{p \in \mathbb{N}}$ est bornée.

- 25. Montrer que si une matrice symplectique $M \in \mathcal{M}_n$ possède une valeur propre dans \mathbb{R} de module différent de 1, alors M n'est pas stable.
- 26. Montrer que la même propriété est vraie si M possède une valeur propre dans $\mathbb C$ de module différent de 1. On pourra introduire un plan réel stable par M.
- 27. La matrice $K(\alpha)$ est-elle stable?
- 28. Donner une condition nécessaire et suffisante sur $\Omega \in \mathcal{M}_n$ pour que la matrice $M = \begin{pmatrix} 0 & -\Omega \\ \Omega & 0 \end{pmatrix}$ soit symplectique et montrer que dans ce cas, elle est stable.



 $L'\'equation \ du \ pendule, \ vue \ dans \ l'espace \ des \ phases : \\ l'\'evolution \ se \ fait \ par \ des \ transformations (infinit\'esimales) \ symplectiques$