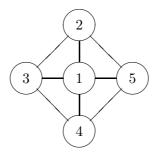
PSI* - DL7 - Marche aléatoire dans un labyrinthe

Un labyrinthe est constitué de cinq salles, numérotées de 1 à 5, qui communiquent par des tubes selon le schéma ci-dessous :



Un rat se déplace dans ce labyrinthe, et on relève sa position en des instants numérotés $0, 1, 2, \ldots, k, \ldots$ $(k \in \mathbb{N})$. On admet que, si le rat se trouve à l'instant k $(k \in \mathbb{N})$ dans la salle numéro i $(1 \le i \le 5)$, alors il empruntera aléatoirement l'un des tubes de la salle i et se trouvera donc, à l'instant k+1, avec équiprobabilité, dans l'une quelconque des salles communiquant avec la salle i. On admet que l'on peut introduire, pour tout k entier naturel, une variable aléatoire S_k donnant le numéro de la salle où se trouve le rat à l'instant k. À titre d'exemple, on aura donc

$$\forall k \in \mathbb{N}, \ \mathbb{P}(S_{k+1} = 1 | S_k = 2) = \mathbb{P}(S_{k+1} = 3 | S_k = 2) = \mathbb{P}(S_{k+1} = 5 | S_k = 2) = \frac{1}{3}$$

Pour tout $k \in \mathbb{N}$, on introduit la matrice-colonne

$$X_k = \begin{pmatrix} \mathbb{P}(S_k = 1) \\ \mathbb{P}(S_k = 2) \\ \mathbb{P}(S_k = 3) \\ \mathbb{P}(S_k = 4) \\ \mathbb{P}(S_k = 5) \end{pmatrix} \in \mathcal{M}_{5,1}(\mathbb{R}).$$

Pour une matrice B, ^tB représente sa matrice transposée.

I Premiers pas

- 1. Ecrire $\mathbb{P}(S_{k+1}=1)$ comme une combinaison linéaire des $(\mathbb{P}(S_k=i), i=1,\ldots,5)$.
- 2. Expliciter la matrice carrée $B \in \mathcal{M}_5(\mathbb{R})$ telle que $X_{k+1} = BX_k$ pour tout k entier naturel.
- 3. En observant les colonnes de la matrice B, montrer que le réel 1 est valeur propre de tB et expliciter un vecteur propre associé.

On suppose que la loi de la variable S_0 est donnée par

$$X_0 = \begin{pmatrix} 1/4\\ 3/16\\ 3/16\\ 3/16\\ 3/16 \end{pmatrix}. \tag{1}$$

- 4. Montrer qu'alors les variables aléatoires S_k ont toutes la même loi.
- 5. Est-ce que S_0 et S_1 sont indépendantes?

II Convergence dans $\mathcal{M}_n(\mathbb{R})$

Soit u un endomorphisme d'un \mathbb{R} -espace vectoriel E de dimension finie. On suppose qu'il existe une norme $\|.\|$ sur E telle que l'inégalité suivante soit satisfaite pour tout $x \in E$,

$$||u(x)|| \leqslant ||x||.$$

On dit qu'une suite de vecteurs $(x_k)_{x\in\mathbb{N}}$ converge vers un vecteur x_∞ lorsque la suite de réels $||x_k - x_\infty||$ converge vers 0. La limite est alors unique et on la note $\lim_{k\to+\infty} x_k = x_\infty$. Pour tout entier naturel k non nul, on considère l'endomorphisme

$$r_k = \frac{1}{k} \sum_{l=0}^{k-1} u^l = \frac{1}{k} (I_E + u + u^2 + \dots + u^{k-1}),$$

où I_E représente l'endomorphisme identité de E.

- 6. Soit $x \in \ker(u I_E)$. Déterminer $\lim_{k \to +\infty} r_k(x)$.
- 7. Soit $x \in \text{Im}(u I_E)$. Montrer que $\lim_{k \to +\infty} r_k(x) = 0_E$.
- 8. En déduire que $E = \ker(u I_E) \oplus \operatorname{Im}(u I_E)$.
- 9. Soit $x \in E$, un vecteur quelconque. Montrer que la suite $(r_k(x))_{k \in \mathbb{N}^*}$ converge vers un vecteur de E, que l'on notera p(x). Interpréter géométriquement l'application $p: E \to E$ ainsi définie.

Soit $A \in \mathcal{M}_n(\mathbb{R})$ une matrice carrée d'ordre n à coefficients réels. On suppose qu'il existe une norme, aussi notée $\|\cdot\|$, sur l'espace vectoriel $\mathcal{M}_{n,1}(\mathbb{R})$ identifié à \mathbb{R}^n , telle que, pour tout $X \in \mathcal{M}_{n,1}(\mathbb{R})$, on ait $\|AX\| \leq \|X\|$. Pour tout k entier naturel non nul, on considère la matrice

$$R_k = \frac{1}{k} \sum_{l=0}^{k-1} A^l = \frac{1}{k} (I_n + A + A^2 + \dots + A^{k-1}), \tag{2}$$

où I_n est la matrice identité dans $\mathcal{M}_n(\mathbb{R})$.

10. Pour cette question on considèrera que la convergence d'une suite de matrices est définie "colonne par colonne"; on s'intéressera donc à la limite de la suite des colonnes numéro 1, numéro 2, Montrer que la suite de matrices $(R_k)_{k\in\mathbb{N}^*}$ converge dans $\mathcal{M}_n(\mathbb{R})$ vers une matrice P, telle que $P^2 = P$.

III Matrices stochastiques

On fixe dans cette partie un entier $n \ge 2$.

Définition 1 On notera $U \in \mathcal{M}_{n,1}(\mathbb{R})$ la matrice-colonne dont tous les coefficients sont égaux à 1.

Définition 2 Une matrice carrée $A = (a_{i,j}) \in \mathcal{M}_n(\mathbb{R})$ est dite **stochastique** si elle vérifie les conditions suivantes :

$$\forall (i,j) \in [1,n]^2, \ a_{i,j} \geqslant 0 \ ; \tag{3}$$

$$\forall i \in [1, n], \ \sum_{j=1}^{n} a_{i,j} = 1.$$
 (4)

Nous dirons aussi qu'une matrice-ligne $L = (\lambda_1, \ldots, \lambda_n) \in \mathcal{M}_{1,n}(\mathbb{R})$ est stochastique lorsque ses coefficients λ_i sont tous positifs ou nuls, et de somme égale à 1.

- 11. Vérifier que la condition (4) équivaut à la condition AU = U.
- 12. En déduire que l'ensemble \mathcal{E} des matrices stochastiques (carrées d'ordre n) est stable pour le produit matriciel.
- 13. Sauter cette question (je la laisse pour vos archives). Montrer que cet ensemble \mathcal{E} est une partie fermée et convexe de l'espace vectoriel $\mathcal{M}_n(\mathbb{R})$.

On munit l'espace $\mathcal{M}_{n,1}(\mathbb{R})$ de la norme $\|.\|_{\infty}$ définie par $\|X\|_{\infty} = \max_{1 \leqslant i \leqslant n} |x_i|$ si $X = (x_i)_{1 \leqslant i \leqslant n}$.

14. Montrer que si $A \in \mathcal{M}_n(\mathbb{R})$ est stochastique, alors on a $||AX||_{\infty} \leq ||X||_{\infty}$ pour tout $X \in \mathcal{M}_{n,1}(\mathbb{R})$.

Dans les questions 15 à 22, on note $A \in \mathcal{M}_n(\mathbb{R})$ une matrice stochastique, et on suppose qu'il existe un entier naturel non nul p tel que la matrice A^p ait tous ses coefficients strictement positifs. Pour tout k entier naturel non nul, on posera

$$R_k = \frac{1}{k} \sum_{l=0}^{k-1} A^l.$$

- 15. Montrer que $\ker(A^p I_n)$ est de dimension 1. $Indication : soit \ X = (x_i)_{1 \le i \le n} \in \ker(A^p - I_n), \ soit \ s \in [1, n]$ un indice tel que $x_s = \max_{1 \le j \le n} x_j,$ on montrera que $x_j = x_s$ pour tout $j \in [1, n]$.
- 16. En déduire que $ker(A I_n) = Vect(U)$.
- 17. Montrer que, pour tout $k \in \mathbb{N}^*$, la matrice R_k est stochastique.
- 18. Montrer que la suite $(R_k)_{k\in\mathbb{N}^*}$ converge dans $\mathcal{M}_n(\mathbb{R})$ vers une matrice P, stochastique, de rang 1.
- 19. En déduire que l'on peut écrire P = UL, où $L = (\lambda_1, \dots, \lambda_n) \in \mathcal{M}_{n,1}(\mathbb{R})$ est une matrice-ligne stochastique.
- 20. Montrer que PA = P. En déduire que L est la seule matrice-ligne stochastique vérifiant LA = L.
- 21. Montrer que les coefficients de la matrice ligne L sont tous strictement positifs.
- 22. Montrer que le réel 1 est valeur propre simple de A. On pourra utiliser le résultat de la question 8.

IV Application au labyrinthe

On approfondit l'étude commencée dans la partie I en exploitant les résultats de la partie III.

On pose $A = {}^{t}B$ où B est la matrice construite dans la partie I.

Un calcul, qui n'est pas demandé, montre que les coefficients de la matrice A^2 sont tous strictement positifs.

- 23. Expliciter la limite P de la suite de matrices $(R_k)_{k\in\mathbb{N}^*}$ définie en (2).
- 24. Montrer qu'il existe une unique loi de probabilité sur l'ensemble [1,5] telle que, si la variable aléatoire S_0 suit cette loi, alors les variables S_k suivent toutes la même loi (autrement dit, telle que la probabilité de présence du rat dans une salle soit la même à tous les instants $k, k \in \mathbb{N}$).