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Graphe régulier d’excentricité
constante 2

Notations
On note Jn la matrice carrée deMn(R) dont tous les coefficients sont égaux à 1 et Kn la matrice colonne deMn,1(R)

dont tous les coefficients sont égaux à 1.
L’espace vectoriel Rn est rapporté à la base canonique (e1, e2, . . . , en). On rappelle que le produit scalaire canonique

de Rn est défini par la formule suivante, pour deux vecteurs x =
n
∑

i=1

xiei et y =
n
∑

i=1

yiei :

< x|y >=

n
∑

i=1

xiyi = X⊤Y,

en notant X la matrice colonne formée par les coordonnées (xi) et Y celle formée par les coordonnées (yi).

Objectifs
Calculatrices autorisées pour cette épreuve.
Le problème porte sur l’étude de matrices vérifiant une propriété (P ). Cette propriété a un sens concret en théorie

des graphes. On cherche les matrices d’adjacence pour un graphe G non orienté, tel que, depuis un sommet s donné,
- il y a toujours un nombre fixe δ de voisins (degré constant = graphe régulier)
- tous les autres sommets étant à distance 2 (excentricité constante),
- ainsi de s on joint tout sommet vec un arc de longueur 1 ou 2. On demande que cet arc soit unique (parmi les arcs

de longueur 1 ou 2).
Dans la partie I, on fait établir des résultats sur une matrice particulière vérifiant la propriété (P ). La partie II

conduit, à travers l’étude des matrices vérifiant la propriété (P ), à caractériser ces matrices à l’aide de matrices
semblables.
Dans la partie III, on construit, à l’aide de produits scalaires, une matrice vérifiant la propriété (P ).
Les trois parties sont indépendantes les unes des autres.
Travail demandé pour mercredi 15 janvier : parties I et II au moins SVP.

Partie I

Soit M =

















0 1 0 1 0

1 0 1 0 0

0 1 0 0 1

1 0 0 0 1

0 0 1 1 0

















∈M5(R).
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I.1. Calculer la matrice M2.

I.2. Exprimer la matrice M2 +M en fonction des matrices J5 et I5.

I.3. Exprimer la matrice J2

5 en fonction de la matrice J5.

I.4. Déduire des questions précédentes un polynôme annulateur de M .

I.5. Quelles sont les valeurs propres possibles de la matrice M ?

I.6. Une de ces valeurs possibles est un entier positif : montrer que c’est effectivement une valeur propre et déterminer
le sous-espace propre associé.

I.7. Sans calcul, expliquer pourquoi M est diagonalisable. Sans nouvelle résolution de système, donner les valeurs
propres de M et les dimensions des espaces propres.

Partie II
Dans cette partie n et δ sont des nombres entiers tels que 2 ≤ δ ≤ n−1. On dit qu’une matriceM = (mi,j) ∈Mn(R)

vérifie la propriété (P ) lorsqu’elle vérifie les quatre conditions suivantes :

(1) M est symétrique (M⊤ =M).

(2) Pour tout i ∈ J1, nK, mi,i = 0.

(3) Chaque ligne de M comporte δ coefficients égaux à 1 et n− δ coefficients égaux à 0.

(4) Pour tout (i, j) ∈ J1, nK2 avec i 6= j, le coefficient mi,j est nul si et seulement si il existe un entier k ∈ J1, nK tel
que mi,k = mj,k = 1. Et dans ce cas, un tel entier k est unique.

On pourra utiliser sans justification une conséquence de la propriété (P ) : simi,j = 1 alors pour tout entier k ∈ J1, nK
on a mi,kmj,k = 0.

Soit M = (mi,j) ∈Mn(R). On suppose que la matrice M vérifie la propriété (P ).

II.1. Expression de M2. On note M2 = (ai,j).

II.1.1. Pour i ∈ J1, nK, calculer les coefficients ai,i.

II.1.2. Pour (i, j) ∈ J1, nK2 avc i 6= j, déterminer le coefficient ai,j selon la valeur de mi,j .

II.1.3. Montrer que M2 = Jn −M + dIn où d est un nombre entier que l’on déterminera.

Dans la suite, on note f (respectivement φ) l’endomorphisme de Rn, de matrice M (respectivement de matrice Jn),
relativement à la base canonique (e1, e2, . . . , en) de Rn. On note id l’endomorphisme identité de Rn.
Soit v le vecteur de Rn dont la matrice colonne des coordonnées relativement à la base canonique de Rn est Kn.

II.2. Relation entre n et δ.

II.2.1. Déterminer Im(φ), l’image de l’application linéaire φ.

II.2.2. Soit u un vecteur du noyau de f − δid. En calculant (f ◦ f)(u), montrer que u est colinéaire à v.

II.2.3. Montrer que δ est une valeur propre de f et déterminer le sous-espace propre correspondant.

II.2.4. Déduire des questions précédentes l’égalité n = δ2 + 1.

II.3. Valeurs propres de f .

Dans la suite de cette question II.3, λ est une valeur propre de f avec λ 6= δ et u =

n
∑

i=1

xiei un vecteur propre

de f associé à la valeur propre λ. On munit Rn du produit scalaire canonique. On rappelle que, comme M est
une matrice symétrique réelle, il existe une base de Rn formée de vecteurs propres de f .
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II.3.1. Montrer que des vecteurs propres de f associés à des valeurs propres distinctes sont orthogonaux.

II.3.2. Justifier l’égalité
n
∑

i=1

xi = 0. Que vaut φ(u) ?

II.3.3. Montrer que λ est racine de l’équation (E) : x2 + x+ 1− δ = 0.

II.3.4. On note a et b les deux racines de l’équation (E). On suppose qu’une seule de ces racines est valeur propre
de f , par exemple a. En utilisant la trace de l’endomorphisme f , exprimer a en fonction de δ. En déduire
une impossibilité.

Les deux racines a et b de l’équation (E) sont donc des valeurs propres de f . Dans la suite, on suppose a > b.

II.4. Relations portant sur r, s, a, b et δ.
On note r la dimension du noyau de f − aid et s la dimension du noyau de f − bid.

II.4.1. Exprimer (a− b)2 en fonction de δ.

II.4.2. Exprimer le produit matriciel

(

r s

1 1

)(

a 1

b 1

)

en fonction de δ.

II.4.3. En déduire (r − s)(a− b) en fonction de δ.

II.4.4. Pour quelle valeur de δ a-t-on r = s ? Que valent alors r et s ?

Dans la suite, on caractérise la matrice M par une matrice diagonale semblable à M .

II.5. Premier cas. On suppose a− b /∈ Q.

II.5.1. Montrer que r = s. En déduire δ et n.

II.5.2. Déterminer a et b et donner une matrice diagonale semblable à M .

II.6. Deuxième cas. On suppose que a− b ∈ Q.

II.6.1. On écrit a − b = m
q

avec m, q ∈ N∗. Montrer que tout nombre premier qui divise q divise m. En déduire
que a− b ∈ N.

II.6.2. Montrer que a−b est un entier impair supérieur ou égal à 3. En notant a−b = 2p+1 avec p ∈ N∗, exprimer
δ en fonction de p. En déduire a et b en fonction de p.

II.6.3. On note c = a− b. Montrer que c divise (c2 + 3)(c2 − 5). En déduire que c ∈ {3, 5, 15}.

II.6.4. Pour les différentes valeurs de c, donner le tableau des valeurs de δ, n, a, b, r et s.

Partie III
On considère l’espace vectoriel euclidien R5 rapporté à la base orthonormale B = (e1, e2, e3, e4, e5).
On note (u|w) le produit scalaire de deux vecteurs u et w de R5.
On considère tous les vecteurs ui obtenus en ajoutant deux vecteurs distincts de B : ui = eα + eβ avec α 6= β.

III.1. Justifier que l’on définit ainsi 10 vecteurs ui. On les indexe de façon arbitraire ui, i ∈ J1, 10K.

III.2. Calcul des produits scalaires (ui|uj).

III.2.1. Pour i ∈ J1, 10K, calculer (ui|ui).

III.2.2. On suppose ui = eα + eβ et uj = eα + eγ avec β 6= γ. Calculer (ui|uj).

III.2.3. On suppose que ui : eα + eβ et que uj = eγ + eǫ avec les quatre indices α, β, γ, ǫ tous différents. Calculer
(ui|uj).
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III.3. Soit ψ un endomorphisme de R5 qui réalise une bijection de la base B sur elle même. Montrer que

∀i, j ∈ J1, 10K, (ui|uj) = (ψ(ui)|ψ(uj))

III.4. Soit A = (ai,j) avec ai,j = (ui|uj).

III.4.1. Ecrire une combinaison linéaire M de A, In et Jn susceptible de vérifier la propriété (P ) définie dans la
partie II.

III.4.2. Justifier que cette matrice M vérifie la propriété (P ).

III.4.3. Ecrire entièrement M et dessiner le graphe correspondant à cette matrice d’adjacence.
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