PSI* 2024/25 DL 11

Etude spectrale d'un opérateur

Travail minimum demandé : partie 1 + partie 4 questions 13 à 17. Pour mercredi 29/1.

Soit V un \mathbb{C} -espace vectoriel et T un endomorphisme de V: on dira que le complexe λ est une valeur propre de T s'il existe un élément f de V non nul tel que $Tf = \lambda f$.

Soit \mathcal{C}_1^0 l'espace des fonctions de $\mathbb R$ dans $\mathbb C$ qui sont continues et 1-périodiques. Cet espace est normé par

$$||f||_{\infty} = \sup\{|f(x)|, \ x \in \mathbb{R}\}\$$

On désigne par e_0 la fonction constante égale à 1 sur tout \mathbb{R} et par D le sous-espace vectoriel de \mathcal{C}_1^0 engendré par e_0 . Si $f \in \mathcal{C}_1^0$, on définit

$$T(f)(x) = \frac{1}{2} \left(f(\frac{x}{2}) + f(\frac{x+1}{2}) \right)$$

L'objet du problème [avant que je le bidouille, du moins] est l'étude des propriétés spectrales de diverses restrictions de T à des sous-espaces invariants de \mathcal{C}^0_1 . On mettra en évidence sur certains de ces sous-espaces la propriété de "trou spectral" : il existe 0 < r < 1 tel que les valeurs propres autres que 1 sont de module inférieur ou égal à r.

1. Utilisation de T pour établir une identité

- 1. Montrer que si f appartient à \mathcal{C}_1^0 alors T(f) aussi.
- 2. Montrer que pour tout élément f de C_1^0 on a l'inégalité $\|T(f)\|_\infty \leq \|f\|_\infty$ puis que

$$\sup_{\|f\|_{\infty}=1} \|T(f)\|_{\infty} = 1$$

- 3. En déduire que les valeurs propres de T sont toutes de module inférieur à 1.
- 4. Soit g la fonction donnée par $g(x) = \left(\frac{\pi}{\sin(\pi x)}\right)^2$. Calculer $g(\frac{x}{2}) + g(\frac{x+1}{2})$ en fonction de g(x). Peut-on dire que g est un vecteur propre de T?
- 5. On pose $f_1(x) = \sum_{n=1}^{+\infty} \frac{1}{(x-n)^2}$. Donner le domaine de définition de f_1 et montrer qu'elle est continue sur]-1,1[.
- 6. On pose $f(x) = f_1(x) + f_1(-x) + \frac{1}{x^2}$. Montrer que f g est une fonction 1-périodique qui se prolonge en une fonction $h \in \mathcal{C}_1^0$.
- 7. Montrer que T(h) = 2h et en déduire que f = g.
- 8. Montrer que pour tout $x \in \mathbb{R} \setminus \mathbb{Z}$,

$$g'(x) = \sum_{n=0}^{+\infty} \frac{-2}{(x-n)^3} + \sum_{n=1}^{+\infty} \frac{-2}{(x+n)^3}$$

2. Un hyperplan stable

On appelle H° l'hyperplan de \mathcal{C}_{1}^{0} des fonctions u telles que

$$\int_0^1 u(t) \ dt = 0$$

- 9. Montrer que H° est stable par T.
- 10. Expliciter la projection P sur D parallèlement à $H^{\circ}.$

3. Fonctions trigonométriques.

Pour tout entier relatif k, on note $e_k(x) = e^{2i\pi kx}$ de sorte que e_k est continue et 1-périodique, c'est-à-dire que e_k appartient à \mathcal{C}_1^0 . Pour tout entier n, on désigne par E_n le sous-espace de \mathcal{C}_1^0 engendré par $e_0, e_1, e_{-1}, \ldots, e_n, e_{-n}$.

11. Déterminer $T(e_k)$ (respectivement $P(e_k)$) pour tout entier relatif k et en déduire que les espaces E_n sont T-stables (respectivement P-stables).

On note T_n (respectivement P_n) l'endomorphisme de E_n induit par T (respectivement par P).

12. Soit $n \in \mathbb{N}^*$ et k l'unique entier tel que $2^{k-1} \le n < 2^k$. Montrer pour tout entier $p \ge k$, l'identité suivante :

$$T_n^p = P_n$$

4. Fonctions höldériennes.

NB: la fonction "f" n'a rien à voir avec celle de la partie 1.

Soit $\alpha \in]0,1[$. On appelle \mathcal{C}^{α} le sous-espace de \mathcal{C}^0_1 des fonctions f telles que

$$\left\{\frac{|f(x)-f(y)|}{|x-y|^{\alpha}}/\;(x,y)\in\mathbb{R}^2,\;x\neq y\right\}$$
 soit majoré

On admet qu'il s'agit d'un espace vectoriel. On notera alors

$$m_{\alpha}(f) = \sup \left\{ \frac{|f(x) - f(y)|}{|x - y|^{\alpha}} / (x, y) \in \mathbb{R}^2, \ x \neq y \right\}$$

et

$$||f||_{\alpha} = m_{\alpha}(f) + ||f||_{\infty}$$

13. Montrer que pour tous les réels x et y,

$$|e^{ix} - e^{iy}| \le |x - y|$$

- 14. Montrer que $f \mapsto ||f||_{\alpha}$ définit une norme sur \mathcal{C}^{α} .
- 15. Montrer que \mathcal{C}^{α} est stable par T. On notera T_{α} l'endomorphisme de \mathcal{C}^{α} induit par T.
- 16. Montrer que pour tout $f \in \mathcal{C}^{\alpha}$, $||T_{\alpha}(f)||_{\alpha} \le ||f||_{\alpha}$ puis que $\sup_{||f||_{\alpha}=1} ||T_{\alpha}(f)||_{\alpha} = 1$.

Soit λ un nombre complexe de module strictement inférieur à 1. On pose, pour tout réel x.

$$S_n(x) = \sum_{k=0}^n \lambda^k e_{2^k}(x)$$

- 17. Montrer que la série de fonctions $\sum_{k} \lambda^k e_{2^k}$ converge normalement sur \mathbb{R} vers une fonction $f_{\lambda} \in \mathcal{C}_1^0$ et que $T(f_{\lambda}) = \lambda f_{\lambda}$.
- 18. Soit maintenant λ tel que $|\lambda| \leq 2^{-\alpha}$ et deux réels x et y tels que

$$2^{-n-1} < |x-y| < 2^{-n}$$

En considérant séparément les sommes avec $k \leq n$ et k > n dans la série ayant pour valeur $f_{\lambda}(x) - f_{\lambda}(y)$, montrer que $f_{\lambda} \in \mathcal{C}^{\alpha}$.

- 19. Montrer que T_{α} laisse stable $H^{\alpha} = H^{\circ} \cap \mathcal{C}^{\alpha}$.
- 20. Soit $f \in \mathcal{C}_1^0$, montrer que

$$T^{n}(f)(x) = 2^{-n} \sum_{k=0}^{2^{n}-1} f(k2^{-n} + x2^{-n})$$

21. Etablir, pour $f \in \mathcal{C}^{\alpha}$, l'inégalité suivante :

$$\sup_{x \in [0,1]} |T_{\alpha}^{n}(f)(x) - \int_{0}^{1} f(t) dt| \le m_{\alpha}(f) 2^{-n\alpha}$$

22. Montrer que si $f \in H^{\alpha}$ alors pour tout entier n, l'inégalité suivante est vérifiée :

$$||T_{\alpha}^{n}(f)||_{\alpha} \leq 2^{1-n\alpha}||f||_{\alpha}$$

23. En déduire que l'ensemble des valeurs propres de T_{α} est la réunion du singleton $\{1\}$ et du disque fermé de centre 0 et de rayon $2^{-\alpha}$ (phénomène de trou spectral).