Produits infinis - Série de restes

Problème 1 - série de restes

Lorsque la série numérique $\sum_{k\geq 1} u_k$ converge, on note $R_n = \sum_{k=n+1}^{+\infty} u_k$ son reste d'ordre n.

1. Egalité sur les restes

Soit $\sum_{k\geq 1} u_k$ une série convergente; montrer pour $n\in\mathbb{N}$ la relation $\sum_{k=0}^n R_k - \sum_{k=1}^n ku_k = (n+1)R_n$

2. Application à un calcul de série

Soit un complexe $z \in \mathbb{C}$ vérifiant |z| < 1, montrer à l'aide de la question précédente la convergence de la série $\sum kz^k$ et calculer la somme $\sum_{k=1}^{+\infty} kz^k$ de cette série.

3. Cas d'une série à termes positifs

On suppose de plus que $u_k \geq 0$ pour tout $k \in \mathbb{N}^*$.

- (a) Montrer que la convergence de la série $\sum_{k\geq 0} R_k$ entraı̂ne la convergence de la série $\sum_{k\geq 1} ku_k$.
- (b) On suppose que la série $\sum_{k\geq 1} ku_k$ est convergente; quelle est la limite de la suite $(n+1)R_n$ lorsque n tend vers $+\infty$?
- (c) Déduire de ce qui précède que les séries $\sum_{k\geq 1} ku_k$ et $\sum_{k\geq 0} R_k$ sont de même nature, et, lorsqu'elles convergent, comparer leur somme.

4. Application à la série $\sum \frac{1}{k^x}$

On suppose maintenant que $u_k(x) = \frac{1}{k^x}$ pour $k \in \mathbb{N}^*$ et $x \in D =]1, +\infty[$. On pose $\zeta(x) = \sum_{k=1}^{+\infty} \frac{1}{k^x}$ pour $x \in D$. Préciser l'ensemble D_1 des $x \in D$ tels que la série $\sum_{n \geq 0} R_n(x)$ soit convergente et exprimer, pour $x \in D_1$, la

somme $\sum_{n=0}^{+\infty} R_n(x)$ à l'aide de la fonction ζ .

5. Généralisation de la formule

On suppose que la série $\sum_{k\geq 1}u_k$ est à termes réels, et toujours convergente. Montrer que la convergence absolue de la série $\sum_{k\geq 1}ku_k$ entraı̂ne la convergence de la série $\sum_{k\geq 0}R_n$ et qu'alors il y a égalité des sommes de ces deux séries.

Problème 2 - produits infinis

Conventions et notations

Si n_0 est un entier naturel et si $(u_n)_{n\geq n_0}$ est une suite de réels non nuls, on lui associe la suite $(P_n)_{n\geq n_0}$ définie

pour tout $n \ge n_0$ par $P_n = \prod_{p=n_0}^n u_p = u_{n_0} u_{n_0+1} \dots u_n$. On dit que le produit infini $\prod_{n\ge n_0} u_n$, de terme général u_n , converge si la suite $(P_n)_{n\ge n_0}$ converge vers un nombre fini non nul. On notera alors $\prod_{n=n_0}^{\infty} u_n$ sa limite.

Si la suite $(P_n)_{n\geq n_0}$ n'admet pas de limite finie ou si elle converge vers 0, on dit que le produit infini \prod diverge.

Généralités et exemples

Soit $(u_n)_{n>0}$ une suite de réels non nuls.

- 1. Montrer que, pour que le produit infini $\prod_{n \geq 0} u_n$ converge, il est nécessaire que la suite $(u_n)_{n \geq 0}$ converge vers 1.
- 2. Montrer que, pour tout entier $n_0 > 0$, les produits infinis $\prod_{n \geq 0} u_n$ et $\prod_{n \geq n_0} u_n$ sont de même nature.
- 3. On suppose dans cette question que le réel u_n est strictement positif pour tout entier n.
 - a. Montrer que le produit infini $\prod_{n\geq 0}u_n$ converge si et seulement si la série $\sum_{n\geq 0}\ln(u_n)$ converge.
 - b. Montrer que le produit infini $\prod_{n\geq 0} (1+u_n)$ converge si et seulement si la série $\sum_{n\geq 0} u_n$ converge.
- c. Si de plus, pour tout entier naturel n, on a $0 < u_n < 1$, montrer que le produit infini $\prod_{n \geq 0} (1 u_n)$ converge si et seulement si la série $\sum_{n\geq 0}u_n$ converge.
 - 4. Déterminer la nature des produits infinis suivants

a.
$$\prod_{n\geq 1} \left(1 - \frac{1}{4n^2}\right)$$
.

b.
$$\prod_{n\geq 1} \left(1-\frac{x^2}{n^2\pi^2}\right)$$
 pour x réel, $x\in]-\pi,\pi[$.

c.
$$\prod_{n>1} (1+\frac{x}{n}) e^{-\frac{x}{n}}$$
 pour x réel, $x \in]0, +\infty[$.

5. On suppose que les réels u_n vérifient $u_n > -1$ pour tout entier n et sont tels que la série $\sum u_n$ converge. Déterminer la nature du produit $\prod_{n \in \mathbb{N}} (1+u_n)$ en fonction de la nature de la série $\sum u_n^2$.

Applications

- **6.** Retrouver, en utilisant un produit infini que la série harmonique $\sum_{n\geq 1}\frac{1}{n}$ diverge.
- 7. Une définition possible de la fonction Γ d'Euler est de poser, pour tout complexe z tel que -z n'est pas un naturel $(z \in \mathbb{C} \text{ et } -z \notin \mathbb{N}):$

$$\frac{1}{\Gamma(z)} = ze^{\gamma z} \prod_{n=1}^{+\infty} \left(1 + \frac{z}{n}\right) e^{-\frac{z}{n}}.$$

2

Justifier que le produit infini figurant au membre de droite converge.