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Deux problèmes

Problème I - évolution d’une population de bactéries
Motivation : l’expérience concrète
Une éprouvette contient N = 10 bactéries, k du type A et N − k du type B. On les laisse se reproduire en

milliers d’exemplaires, les proportions de bactéries de chaque type restant inchangées. On prélève alors au hasard N

bactéries que l’on met dans une autre éprouvette. On les laisse se reproduire en milliers d’exemplaires, dans les mêmes
conditions que précédemment, et on recommence l’expérience. On cherche à savoir ce qui se passe après un grand
nombre d’expériences.

Notations
On note N un entier supérieur ou égal à 2 et k0 un entier de {0, . . . , N}.
Soit (Xn)n∈N une suite de variables aléatoires définies sur un espace probabilisé (Ω,A,P), à valeurs dans {0, . . . , N},

dont les lois de probabilité sont définies de la manière suivante :
X0 est la variable certaine égale à k0.
X1 suit la loi binomiale de paramètres N et p = k0

N
. On pose q = 1− p.

Pour tout entier n non nul et tout entier k de {0, . . . , N} tel que P(Xn = k) 6= 0, la loi conditionnelle de Xn+1

sachant (Xn = k) est la loi binomiale de paramètres N et k
N
. En d’autres termes :

P(Xn+1 = i|Xn = k) =

(

N

i

)(

k

N

)i (

1−
k

N

)N−i

On fait de plus l’hypothèse (H) :
(H) : pour tout entier n non nul, tout n-uplet (k1, . . . , kn) de {0, . . . , N}n tel que P(Xn = kn, . . . , X1 = k1) 6= 0,

pour tout entier i de {0, . . . , N},

P(Xn+1 = i|Xn = kn, . . . , X1 = k1) = P(Xn+1 = i|Xn = kn)

A. Etude du cas N = 3

• On fixe dans toute cette partie N = 3.

A1. Que dire de la suite (Xn)n∈N si k0 = 0 ? Si k0 = 3 ? Pourquoi peut-on se contenter d’étudier le cas k0 = 1 ?

• On fixe donc en outre dans toute la suite de cette partie k0 = 1.

A2.Soit n ∈ N. Quelle est la probabilité de Bn =
n
⋂

k=0

(Xk = 1) ?

A3. On note Un =

(

P(Xn=0)
P(Xn=1)
P(Xn=2)
P(Xn=3)

)

. Déterminer une matrice A ∈ M4(R) telle que Un+1 = AUn.

A4. On considère le vecteur ligne V ∈ M1,4(R) donné par V =
(

0 1 2 3
)

.

a. Montrer que E [Xn] = V Un.

b. Que vaut V A ?
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c. En déduire la valeur de E [Xn] pour tout n.

A5. Pour plus de simplicité, on note e1, . . . , e4 la base canonique de M4,1(R) et on note a l’endomorphisme de
M4,1(R) canoniquement associé à A.

a. Déterminer l’espace propre ker(a− Id).

b. Déterminer toutes les valeurs propres de a.

c. Donner une base de vecteurs propres pour a de la forme suivante : u1 = e1, u2, u3, et enfin u4 = e4.
En déduire une matrice inversible P et une matrice diagonale D telles que PA = DP .

A partir de là il est possible de calculer complètement les puissances de A et d’obtenir la loi de Xn, et d’étudier la
limite de P(Xn = k) pour observer un phénomène d’homogénéisation. On va chercher à établir ce dernier point par
une méthode plus rapide et plus générale.

B. Généralisation
• Dans cette partie N est un entier supérieur ou égal à 2 et k0 un entier appartenant à {1, . . . , N − 1}.
On pose, pour tout entier n, un = P(Xn = 0) + P(Xn = N) et vn = 1− un.

B1. Montrer que (un)n∈N est convergente.

B2. Montrer que pour tout entier n, E [Xn+1] = E [Xn].

B3. Montrer que pour tout entier n, E [Xn+1(N −Xn+1)] =
N−1
N

E [Xn(N −Xn)].
En déduire la valeur de E [Xn(N −Xn)] en fonction de n, N et k0.

B4.a. Soit X une variable aléatoire à valeurs dans N. Montrer que pour a > 0, P(X ≥ a) ≤ E[X]
a

.

b. Tracer sur [0, N ] la fonction f définie par ∀x ∈ [0, N ], f(x) = x(N − x).

c. En utilisant la question 3., montrer que pour tout entier n, 0 ≤ vn ≤ pq N2

N−1

(

1− 1
N

)n.

B5.a. Quelle est la limite de la suite (vn)n∈N ?
En déduire que pour tout entier k ∈ {1, . . . , N − 1}, lim

n→+∞
P(Xn = k) = 0.

b. Déterminer également la limite de P(Xn = 0) et celle de P(Xn = N)

B6. On définit la variable aléatoire T par
- si pour tout entier n, (Xn 6= 0) et (Xn 6= N) alors T = +∞ ;
- sinon, T = n en notant n le plus petit entier k tel que (Xk = 0) ou (Xk = N).

a. Que vaut P(T = +∞) ? Montrer que pour tout entier n non nul, P(T = n) = vn−1 − vn.

b. Montrer que T admet une espérance, qu’on ne cherchera pas à calculer, et que E [T ] ≤ pqN3

N−1 .

Problème 2 - autour de l’inégalité de Hoffman-Wielandt
Dans tout le problème n désigne un entier supérieur ou égal à 2. On appelle permutation de {1, . . . , n} toute bijection

de {1, . . . , n} dans {1, . . . , n}.
On note Bn l’ensemble des matrices bistochastiques deMn(R), c’est-à-dire l’ensemble des matrices A = (Ai,j)1≤i,j≤n

dont tous les coefficients sont positifs ou nuls et tels que
n
∑

j=1

Ai,j =
n
∑

j=1

Aj,i = 1 pour tout i ∈ {1, 2, . . . , n}.

On note Pn l’ensemble des matrices de permutation Mσ ∈ Mn(R) dont les coefficients sont de la forme :

(Mσ)i,j =

{

1 si i = σ(j)

0 sinon,

pour tous i, j dans {1, 2, . . . , n}, où σ est une permutation de {1, 2, . . . , n}.
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Points extrémaux de B
n

Soit A un sous ensemble de Mn(R). On dit que A est convexe si pour tous M,N dans A et tout λ ∈ [0, 1], la
matrice λM + (1− λ)N est encore dans A.
De plus on dit qu’une matrice A ∈ Mn(R) est extrémale dans A si pour tous M,N dans A et tout λ ∈]0, 1[ (ouvert),

on a l’implication :
A = λM + (1− λ)N =⇒ A = M = N.

1. Montrer que l’ensemble Bn est convexe. Est-il un sous espace vectoriel de Mn(R) ?

2. Montrer que Pn ⊂ Bn, et qu’une matrice de Bn est dans Pn si et seulement si elle possède exactement un
coefficient 1 dans chaque ligne et chaque colonne. L’ensemble Pn est-il convexe ?

3. Montrer que toute matrice de Pn est extrémale dans Bn .

Dans toute la suite de cette partie, on considère une matrice bistochastique A = (Ai,j)1≤i,j≤n qui n’est pas une
matrice de permutation.

4. Montrer qu’il existe un entier r > 1 et deux familles i1, i2, . . . , ir et j1, j2, . . . , jr d’indices dans {1, 2, . . . , n},
chaque ik étant distinct du suivant (ik 6= ik+1), chaque jk étant distinct du suivant (jk 6= jk+1) et tels que pour
tous k ∈ {1, 2, . . . , r}, Aik,jk ∈]0, 1[ et Aik,jk+1

∈]0, 1[, avec enfin jr+1 = j1.

5. En considérant la matrice B = (Bi,j)1≤i,j≤n de Mn(R) définie par :










Bik,jk = 1 si k ∈ {1, 2, . . . , r}

Bik,jk+1
= −1 si k ∈ {1, 2, . . . , r}

Bi,j = 0 dans les autres cas,

montrer que A n’est pas un élément extrémal de Bn. En déduire que l’ensemble des éléments extrémaux de Bn

est Pn.

Théorème de Birkhoff-Von Neumann
On considère encore une matrice bistochastique A = (Ai,j)1≤i,j≤n qui n’est pas une matrice de permutation. On

admet que pour une telle matrice, il existe une permutation σ de {1, 2, . . . , n} telle que Mσ(1),1Mσ(2),2 · · ·Mσ(n),n > 0.

On considère une telle permutation σ de {1, 2, . . . , n} et on pose λ0 = min
j

(

Aσ(j),j

)

et A0 =
1

1− λ0
(A − λ0Mσ) où

Mσ est la matrice de permutation associée à σ.

6. Montrer que A0 est bien définie, et que c’est une matrice bistochastique contenant au moins un élément nul de
plus que A.

7. En raisonnant par récurrence, démontrer que A s’écrit comme une combinaison linéaire d’un nombre fini de
matrices de permutation M0,M1, . . . ,Ms :

A = λ0M0 + λ1M1 + · · ·+ λsMs

où les coefficients λi sont tous strictement positifs et de somme
s
∑

i=0

λi = 1.

8. Soit ϕ une forme linéaire de Mn(R). Montrer que inf
M∈Pn

ϕ(M) existe. En déduire que inf
M∈Bn

ϕ(M) existe et est

atteint en une matrice de permutation.

Inégalité de Hoffman-Wielandt

Dans cette partie, on munit Mn(R) du produit scalaire défini par 〈A,B〉 = Tr (A⊤B) et de la norme euclidienne
associée : ‖A‖ =

√

Tr (A⊤A). On note Sn(R) le sous-ensemble de Mn(R) des matrices symétriques et On(R) = {M ∈
Mn(R),M

⊤M = In} (ensemble des matrices orthogonales).

9. a. Montrer que si P et Q sont dans On(R) alors Q est inversible et PQ et PQ−1 sont également dans On(R).

b. Montrer que pour tous A ∈ Mn(R) et P,Q dans On(R), on a ‖PAQ‖ = ‖A‖.

Dans la suite de cette partie, A et B désignent deux matrices symétriques réelles.
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10. Montrer qu’il existe deux matrices diagonales réelles DA, DB, et une matrice orthogonale P = (Pi,j)1≤i,j≤n telles
que ‖A−B‖2 = ‖DAP − PDB‖

2.

11. Montrer que la matrice R définie par Ri,j = (Pi,j)
2 pour tous i, j dans {1, 2, . . . , n} est bistochastique et que

‖A−B‖2 =
∑

1≤i,j≤n

Ri,j |λi(A) − λj(B)|2

où λ1(A), . . . , λn(A) désignent les valeurs propres de A et λ1(B), . . . , λn(B) celles de B.

12. En déduire que

min
σ

n
∑

j=1

|λσ(j)(A)− λj(B)|2 ≤ ‖A−B‖2

où le minimum porte sur l’ensemble de toutes les permutations de {1, 2, . . . , n}.

Soit (Ω,Υ, P ) un espace probabilisé et V l’ensemble des variables aléatoires définies sur cet espace admettant un
moment d’ordre 2 (c’est-à-dire tels que X2 admet une espérance). Pour tout X de V , on note X ∼ PX si X suit la
loi PX . Pour tout couple (P1, P2) de lois, on pose

d 2(P1, P2) = inf
X,Y ∈V

X∼P1,Y∼P2

E(|X − Y |2).

On ne s’intéresse à cette distance que dans un cas particulier. Soit (a1, . . . , an) et (b1, . . . , bn) deux familles de réels
(les ai deux à deux distincts, les bi deux à deux distincts). On note P1 la loi uniforme sur {a1, . . . , an} et P2 la loi
uniforme sur {b1, . . . , bn}.

13. Montrer que

d 2(P1, P2) =
1

n

n
∑

i=1

|a(i)− b(i)|2

où l’on a noté a(1) < · · · < a(n) et b(1) < · · · < b(n) les suites (a1, . . . , an) et (b1, . . . , bn) ré-ordonnées par
ordre croissant. En déduire que pour toutes matrices symétriques réelles A,B de valeurs propres respectives
(a1, . . . , an) et (b1, . . . , bn), on a l’inégalité :

d 2(P1, P2) ≤ ‖A−B‖2.
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