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Noyau de Jackson

Travail min. demandé : jusqu’à Q16 ce serait bien. Et plus pour qui veut ! Pour mercredi 21 janvier.
Notations

Si a et b sont deux entiers tels que a 6 b on note [[a, b]] l’ensemble des entiers k tels que a 6 k 6 b.

Pour n ∈ N, on appelle polynôme trigonométrique de degré inférieur ou égal à n toute fonction de R dans C de la
forme

x 7−→

n
∑

k=−n

cke
ikx,

où, pour tout k ∈ [[−n, n]], ck ∈ C. On note Tn l’ensemble des polynômes trigonométriques de degré inférieur ou égal
à n. C’est un C-espace vectoriel, ce qu’on ne demande pas de vérifier.

On note C0
2π le C-espace vectoriel des fonctions continues 2π-périodiques de R dans C et C1

2π le sous-espace vectoriel
des fonctions de classe C1 2π-périodiques. Pour g ∈ C0

2π et h > 0, on pose :

ωg(h) = sup
|t−s|6h

|g(s)− g(t)|.

Pour toute fonction bornée f de R dans C, on pose : ‖f‖∞ = sup
t∈R

|f(t)|.

Partie A – Préliminaires

Q 1. Montrer que si g est la fonction sinus, alors, pour tout h > 0, ωg(h) 6 h.
Q2. (a) Montrer que, pour tous g ∈ C0

2π et h > 0, ωg(h) est un réel bien défini.
(b) On suppose que g ∈ C1

2π. Montrer que, pour tout h > 0, ωg(h) 6 h ‖g′‖∞. En déduire que lim
h→0

ωg(h) = 0.

On admet que lim
h→0

ωg(h) = 0 est vrai pour tout g ∈ C0
2π.

Q3. Soit h et h′ deux réels strictement positifs et soit g ∈ C1
2π.

(a) Montrer que, si h 6 h′, alors ωg(h) 6 ωg(h
′).

(b) Montrer que ωg(h+ h′) 6 ωg(h) + ωg(h
′).

(c) En déduire que pour tout entier naturel n supérieur ou égal à 1 et pour tout réel λ strictement positif :

ωg(nh) 6 nωg(h) et ωg(λh) 6 (1 + λ)ωg(h).

Q4. Soit g ∈ C0
2π. Montrer que pour tout x ∈ R,

∫ π+x

−π+x

g(t) dt =

∫ π

−π

g(t) dt.

Q5. Soit g ∈ C0
2π et n ∈ N. Pour tout p ∈ Tn, on note ∆(p) la fonction de R dans C définie par

∀x ∈ R, ∆(p)(x) =

∫ π

−π

p(x− t)g(t) dt.

Montrer que ∆ définit un endomorphisme de Tn.
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Partie B –

I – La fonction Jn

Pour tout n ∈ N, on définit la fonction φn de R dans C en posant, pour tout t ∈ R,

φn(t) = e−ni t

2

n
∑

k=0

eikt et fn(t) = φn(t)
4.

Dans cette sous-partie, on fixe un entier n ∈ N.

Q6. Montrer que pour tout réel t n’appartenant pas à 2πZ,

φn(t) =
sin(n+ 1) t2

sin t
2

et fn(t) =

(

sin(n+ 1) t2
sin t

2

)4

.

Q7. Montrer que φ2
n appartient à Tn, puis que fn appartient à T2n.

Avertissement : L’énoncé d’origine demandait de montrer que φn et φ2
n appartiennent à Tn, ce qui est faux

pour φn dans le cas impair.

Q8. Montrer qu’il existe un réel strictement positif cn tel que
∫ π

−π

cnfn(t) dt = 1.

Pour tout n ∈ N, on pose désormais Jn = cnfn, de sorte que Jn est une fonction réelle positive vérifiant

Jn ∈ T2n et
∫ π

−π

Jn(t) dt = 1.

II – Une majoration de
∫ π

−π

|t|Jn(t) dt

Soit n ∈ N.

Q9. Montrer que
∫ π

−π

|t|Jn(t) dt =

∫ π

0

tfn(t) dt
∫ π

0

fn(t) dt

.

Q10. Montrer que pour t ∈
[

0,
π

2

]

,
2

π
t 6 sin t 6 t.

Q11. En déduire
∫ π

0

t fn(t) dt 6 π4

(

n+ 1

2

)2 ∫ (n+1)π

2

0

sin4 u

u3
du.

Q12. En déduire également que
∫ π

0

t fn(t) dt > 2(n+ 1)3
∫ (n+1)π

2

0

sin4 u

u4
du.

Q13. Montrer qu’il existe a > 0 tel que, pour tout n ∈ N,
∫ π

−π

|t|Jn(t) dt 6
a

n+ 1
.

III – Approximation uniforme par des polynômes trigonométriques

Dans cette sous-partie, on fixe g ∈ C0
2π.

Pour tout n ∈ N, on définit la fonction Tng en posant, pour tout x ∈ R,

Tng(x) =

∫ π

−π

Jn(x− t)g(t) dt.

L’objectif de cette sous-partie est de montrer que (Tng) est une suite de polynômes trigonométriques qui converge
uniformément vers g sur R.

Q14. Pour tous n ∈ N et x ∈ R, montrer que

Tng(x) =

∫ π

−π

Jn(t)g(x− t) dt et g(x) =

∫ π

−π

Jn(t)g(x) dt.

En déduire que |Tng(x)− g(x)| 6

∫ π

−π

Jn(t)|g(x − t)− g(x)| dt.
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Q15. Le cas C1. On suppose, seulement dans cette question, que g est C1.
(a) Montrer que, pour tout n ∈ N,

‖Tng − g‖∞ 6
a‖g′‖∞
n+ 1

,

où le réel a a été défini à la question Q13.
(b) Conclure que (Tng) est une suite de polynômes trigonométriques qui converge uniformément vers g sur R.

Q16. Le cas C0. Dans cette question, on ne suppose plus que g est de classe C1.
On rappelle le résultat admis à la question Q2. : lim

h→0
ωg(h) = 0.

(a) Montrer que, pour tout n ∈ N∗ et tous réels t et x,

|g(x− t)− g(x)| 6 (1 + n|t|)ωg(1/n).

(b) En déduire qu’il existe b > 0 tel que, pour tout n ∈ N∗,

‖Tng − g‖∞ 6 b ωg(1/n).

(c) Conclure que la suite (Tn) converge uniformément vers g sur R.

Partie C –

Dans cette partie, on considère l’espace vectoriel C[X ] des polynômes à coefficients complexes. Pour n ∈ N, on note
Cn[X ] le sous-espace vectoriel des polynômes de degré inférieur ou égal à n.

I –

Dans cette sous-partie on fixe un entier n ∈ N∗ et on note T le polynôme Xn + 1.

Q17. Montrer que T admet n racines simples dans C.

On note z1, . . . , zn les racines de T .

Q18. Soit k ∈ [[1, n]]. Montrer que
∏

j 6=k

(zk − zj) = T ′(zk).

Soit ℓ ∈ [[0, n]]. On considère la fraction rationnelle F donnée par F =
Xℓ

Xn + 1
.

On rappelle que, par décomposition en éléments simples de F , il y a existence et unicité de µ1, . . . , µn dans C et de E
dans C[X ] tels que

F =
n
∑

k=1

µk

X − zk
+ E.

Q19. Montrer que, pour tout k ∈ [[1, n]], µk = −
zℓ+1
k

n
et que E est soit le polynôme nul, soit le polynôme constant égal

à 1.

Q20. Calculer F ′(1) et en déduire que ℓ =
n

2
+

2

n

n
∑

k=1

zℓ+1
k

(zk − 1)2
.

Q21. En déduire que :

(a) pour tout polynôme P ∈ Cn[X ], XP ′(X) =
n

2
P (X) +

2

n

n
∑

k=1

zkP (zkX)

(zk − 1)2
;

(b)
n
∑

k=1

zk
(zk − 1)2

= −
n2

4
.

II –

Pour tout P ∈ C[X ], on pose ‖P‖ = sup
|z|=1

|P (z)|.

Q22. Montrer que ‖ · ‖ est une norme sur C[X ].
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Q23. Montrer que, si z est un nombre complexe de module 1 et si z 6= 1, alors
z

(z − 1)2
est un réel négatif.

Q24. À l’aide de Q21., en déduire que pour tout P ∈ Cn[X ], ‖P ′‖ 6 n‖P‖.
Q25. En déduire que pour tout q ∈ Tn, ‖q′‖∞ 6 3n‖q‖∞.

Partie D – Fonctions höldériennes
Soit g une fonction définie sur un intervalle I ⊂ R et à valeurs dans C et soit α ∈ ]0, 1].
On dit que g est α-höldérienne s’il existe K > 0 tel que, pour tous réels x et y de l’intervalle I, |g(x)−g(y)| 6 K|x−y|α.

I – Exemples
Soit α ∈ ]0, 1[ et soit hα la fonction définie sur R+ par hα : x 7→ xα.

Q26. Soit y un réel positif, montrer que pour tout x > y on a : 0 6 xα − yα 6 (x− y)α.
Q27. En déduire que hα est α-höldérienne sur R+.
Q28. Soit β ∈ ]0, 1] tel que β 6= α. Montrer que hα n’est pas β-höldérienne.

Soit k la fonction définie sur R+ par

k : x 7−→

{

x lnx si x > 0

0 si x = 0

Q29. Soit y ∈ ]0, 1]. Montrer que pour tout x ∈ [0, 1− y],

(x+ y) ln(x + y)− x lnx 6 (y − 1) ln(1− y).

Q30. En déduire que k est α-höldérienne sur [0, 1] pour tout α ∈ ]0, 1[.

II – Espace Hα
2π et approximation uniforme par des polynômes trigonométriques

Dans la suite du problème, pour α ∈ ]0, 1[, on note Hα
2π l’ensemble des fonctions α-höldériennes 2π-périodiques de R

dans C.

Pour tout f ∈ C0
2π, on pose δn(f) = inf

p∈Tn

‖f − p‖∞.

Q31. Montrer que Hα
2π est un sous-espace vectoriel de C0

2π.

Q32. Montrer que si g ∈ Hα
2π, alors δn(g) =

n→+∞
O

(

1

nα

)

.

III – Étude d’une réciproque
L’objectif de cette sous-partie est d’établir une réciproque à la question Q32.

On fixe un réel α ∈ ]0, 1[ et une fonction f ∈ C0
2π telle que δn(f) =

n→+∞
O

(

1

nα

)

. Il existe ainsi un réel C > 0 tel que,

pour tout n ∈ N
∗, δn(f) 6

C

nα
.

Q33. Pour n ∈ N, montrer qu’il existe qn ∈ Tn tel que δn(f) = ‖f − qn‖∞.

Pour tout n ∈ N, on considère un polynôme pn ∈ T2n tel que ‖f − pn‖∞ = δ2n(f).

Q34. Montrer, en appliquant l’inégalité établie à la questionQ25., qu’il existe un réel C′ > 0 tel que, pour tout n ∈ N,

‖p′n+1 − p′n‖∞ 6 C′ 2n(1−α).

Q35. En déduire que, pour tout n ∈ N,

‖p′n‖∞ 6 ‖p′0‖∞ +
C′

21−α − 1
2n(1−α).

Q36. En déduire l’existence d’un réel A > 0 tel que, pour tout n ∈ N,

‖p′n‖∞ 6 A 2(1−α)n.

Q37. Montrer que, pour tout (x, y) ∈ R2, |f(x)− f(y)| 6 C 21−nα +A 2(1−α)n |x− y|.
Q38. En déduire que f est α-höldérienne.

Indication : lorsque 0 < |x−y| 6 1, on pourra choisir n ∈ N tel que
1

2n+1
6 |x−y| 6

1

2n
et majorer |f(x)−f(y)|

à l’aide de la question précédente.
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