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Décomposition de Frobenius

Notations et définitions

Dans tout le probléme, K désigne R ou C, N désigne ’ensemble des entiers naturels et n est un entier naturel. On
note K, [X] le sous-espace vectoriel de K[X] des polynomes de degré inférieur ou égal a n a coefficients dans K et,
pour n > 1, M, (K) le sous-espace vectoriel des matrices carrées de taille n & coefficients dans K. La matrice unité est
notée I, et on désigne par GL,(K) le groupe des matrices inversibles de M,,(K).

Pour toute matrice A de M, (K), on note AT la transposée de la matrice A, rg(A4) son rang, tr(A4) sa trace,
xa = det(X I, — A) son polynome caractéristique, et sp(A) I’ensemble de ses valeurs propres dans K.

Dans tout le probléme, F désigne un espace vectoriel sur le corps K de dimension finie n supérieure ou égale a 2, et
L(E) est Pespace vectoriel des endomorphismes de E. On note f un endomorphisme de E.

On note fO =Idg et Vk € N, f*t1 = fFo f. On utilise les notations suivantes, similaires & celles des matrices, pour
un endomorphisme f de E : rg(f), tr(f), xr et sp(f).

SiQeK[X]avec Q(X)=ao+ a1 X + -+ anX™, Q(f) désigne '’endomorphisme agldg + a1 f + -+ + am f™. On
note K[f] le sous-espace vectoriel de L(E) constituée des endomorphismes Q(f) quand @ décrit K[X].

Enfin, on dit que f est cyclique si et seulement s’il existe un vecteur o dans E tel que (xo, f(x0), ..., f" 1(x0))
soit une base de E. On dit en outre dans ce cas qu’un tel vecteur xg est cyclique pour f.

On pourra utiliser le théoréme de Cayley-Hamilton dans le sujet, sauf bien sir dans la partie IITA - ITIB ou ’on
demande d’en faire une démonstration.

I. Matrices compagnons et endomorphismes cycliques

I.A.

Soit M € M, (K).
Q1. Montrer que M et M ont méme spectre.

Q2. Montrer que M ™ est diagonalisable si et seulement si M est diagonalisable.
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I.B.
Q3.

Q4.
Q5.

I.C.
Q6.

Qr.

I.D.

Matrices compagnons

Soit (ag,ai,...,an—1) € K¥et Q(X)=X"+a, 1 X" '+ -+ ag. On considére la matrice

0O ... ... ... 0 —ap
0 oo ... 0 —ai
0o 1 . D —ay
Co =
. 0 —Aan—2
0O ... ... 0 1 —ap—

Matrice qui est appelée matrice compagnon associée au polynéme Q.
Déterminer en fonction de @ le polynéme caractéristique de Cg.

. T , . .,
Soit A une valeur propre de (Cg)~ . Déterminer le sous-espace propre associé ; on montrera notamment que c’est
une droite vectorielle.

Une matrice de M,,(K) est-elle toujours semblable & une matrice de la forme Cgq ?

Endomorphismes cycliques

Soit f un endomorphisme de E. Montrer que f est cyclique si et seulement s’il existe une base B de E dans
laquelle la matrice de f est de la forme Cg, ot () est un polynéme unitaire (c’est-a-dire de coefficient dominant
1) et de degré n.

cosf) —sinf

Soit # un réel non multiple de 7. On note R = ( ) et r ’endomorphisme canoniquement associé

sinf  cosf
(ainsi r est la rotation d’angle # dans R? muni de sa structure euclidienne orientée canonique).
Montrer que 7 est cyclique, que tout vecteur non nul de R? est cyclique, et que la seule matrice compagnon

i , . 0o -1
pouvant représenter I’endomorphisme r est .
1 2cosf

Propriétés des endomorphismes cycliques

Soit f un endomorphisme de E, supposé cyclique.

Q8.

Q9.

I.E.

On suppose que f un endomorphisme cyclique. Montrer que f est diagonalisable si et seulement si x ¢ est scindé
sur K et a toutes ses racines simples.

On suppose encore que f un endomorphisme cyclique. Montrer que (Id, f, f2,..., f*~1) est libre dans £L(E) et
que les polynémes annulateurs de f, a part 0, sont de degré supérieur a n.

Commutant d’un endomorphisme cyclique

On suppose que f est un endomorphisme cyclique et on choisit un vecteur cyclique xy dans E, de sorte que
(w0, f(x0), ..., f" 1(x0)) est une base de E.

On appelle commutant de f l'ensemble C(f) ={g € L(E)/ fog=go f}.

Soit g € C(f), un endomorphisme qui commute avec f.

Q10.
Q11.

Q12.

Justifier que C(f) est un sous-espace vectoriel de L(E).

Justifier existence de Ag, A\1,..., A\,_1 de K tels que

9(xo) = z_: N f* (0)
k=0

Montrer alors que g € K[f].
Etablir que g € C(f) si et seulement s’il existe un polynome R € K,,_1[X] tel que g = R(f).
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II. Cas particuliers

II.A. Cyclicité des endomorphismes diagonalisables

Q13. On suppose que f est un endomorphisme diagonalisable. On note (eq,...,e,) une base de vecteurs propres et
A, ..., A\, les valeurs propres associées.
n
Soit u = > w;e; un vecteur de E; donner une CNS portant sur les scalaires (u1,...,un, A1,...,A,) pour que

i=1
(u, f(u),..., f"1(u)) soit une base de E.

Q14. En déduire une condition nécessaire et suffisante pour qu'une matrice diagonalisable soit cyclique, préciser alors
ses vecteurs cycliques.

I1.B. Cyclicité des endomorphismes nilpotents
Dans cette sous-partie, on suppose que f est un endomorphisme nilpotent de E. On note r le plus petit entier
naturel tel que f7 = 0.

Q15. Montrer que f est cyclique si et seulement si » = n. Préciser alors la matrice compagnon.

ITI. Annulateur ponctuel, décomposition de Frobenius

On suppose encore que f un endomorphisme de E, non nécessairement cyclique. L’objectif de cette partie IITA /TIIB
est notamment de prouver le théoréme de Cayley-Hamilton ; on est donc prié de ne pas 'utiliser jusqu’a la fin de
IT1.B.!

III.A. Annulateurs ponctuels

Pour chaque vecteur 2 non nul de E, on note P, le polynome unitaire de plus petit degré tel que P(f)(x) = 0. On
note d, son degré.

Q16. Justifier que P, est bien défini.

Q17. On note e; = x,...,eq, = f¥=~1(z) et E; = Vect(ey,...,eq,). Montrer que F; est un sous-espace vectoriel de
E stable par f et préciser la matrice de I’endomorphisme induit.

Q18. Justifier que P, divise .

II1.B. Application & une démonstration du théoréme de Cayley-Hamilton

Q19. Démontrer que x¢(f) est 'endomorphisme nul.

On pourra dorénavant utiliser ce résultat.

II1.C. Annulateur ponctuel et annulateur global

T
Q20. Si x, est scindé sous la forme x,(z) = [] (z — A\;)™ avec des \; distincts et des entiers m; > 0, combien y a-t-il
i=1
de polynomes unitaires divisant y, ?
Q21. Montrer que si la réunion d’un nombre fini de sous-espaces vectoriels F1, ..., F;. de E est un sous-espace vectoriel,
alors I'un des sous-espaces F; contient tous les autres. On pourra considérer deuzx points bien choisis y,z et la

droite affine y + Az, A € K passant par ces deux points.
Q22. Déduire de ITIL.A. et des questions précédentes qu’il existe z1 € E tel que Py, (f) = 0.
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III.D. Décomposition de Frobenius

On se propose de poursuivre la démarche de la question ITI.A. pour démontrer le théoréme de décomposition de
Frobenius : si E est un espace vectoriel de dimension finie et u est un endomorphisme de E, alors E se décompose
en somme directe d’espaces sur lesquels u induit un endomorphisme cyclique. On note qu’une telle décomposition a
I’avantage de fonctionner qu’on soit sur le corps R ou C.

On fixe un endomorphisme f de F, on note x; un point tel qu’'introduit dans la derniére question de la partie II1.C.
On note P = P,, et d = deg(P). On note e; = x1,...,eq = f%~!(x;) et E; = Vect(ey,...,eq).

On compléte cette famille libre en une base ey, ..., e, de E. On note enfin e 'application qui & z € E associe sa
composante sur eq dans cette base : e}(z) = zq € K.

Q23. On pose F = {x € E,Vk € N,e4(f*(z)) = 0}. Montrer que F' est un sous-espace vectoriel de E stable par f.

Q24. On note ¥ : z +— (ey(x),...,e5(f4(x))). Montrer que ¢ est une application linéaire de £ dans K¢ dont on
précisera le noyau. En déduire que F = FE; & F.

Q25. Prouver le théoréme de décomposition de Frobenius annoncé en en-téte.

Q26. Enoncer 'analogue matriciel du théoréme de Frobenius pour une matrice M € M,,(K).

IV. Applications de la décomposition de Frobenius

On pourra faire appel aux résultats de la partie précédente.

IV.A. Application : caractérisation de la cyclicité

Soit f un endomophisme de E.

Q27. Montrer que f est cyclique si et seulement si (Id, f,..., f*~1) est une famille libre de L(E).

Q28. Soit f un endomophisme de E. Montrer que f est cyclique si et seulement si K[f] est de dimension n.

IV.B. Application : commutant d’un endomorphisme quelconque

Soit f un endomophisme de E. On rappelle que le commutant de f est ’ensemble C(f) = {g € L(E)/ fog=gof};
c’est un sous-espace vectoriel de L(E).

Q29. Montrer que la dimension de C(f) est supérieure ou égale a n.
Q30. Montrer que f est cyclique si et seulement si K[f] = C(f).

IV.C. Application : réduction de Jordan des matrices nilpotentes

Q31. Montrer que tout matrice M € M, (K) nilpotente est semblable & une matrice N dont les coefficients N;; vérifient
Vi € [[1,71 — 1]]7Ni+1,i S {0, 1}, Nij = 0 sinon.

Q32. En déduire que si M € M, (C) posséde une unique valeur propre A, alors elle est semblable 4 une matrice N

telle que
Vi € ﬂl,nﬂ,Ni,i =\, Vi € [[1,71 — 1ﬂ, Ni+1,i S {0, 1}, Nij = ( sinon.

Remarque : si on est sur C,
ks

On peut également prouwver que pour M € M,,(C) de polyndéme caractéristique [ (X — X\;)™, on a
i=1

Cn = EB ker(M — \; Id)™,

i=1

appelée décomposition en sous-espaces caractéristiques. La preuve ressemble a celle vue pour la CNS de diagonalisation :
partir d’une décomposition polynomiale du polyndme constant 1. Avec les deux questions précédentes, cela termine de
prouver le théoréme de réduction de Jordan (toute matrice complexe est trigonalisable avec des coefficients nuls, sauf
certains sur la sous-diagonale qui valent 1).



