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Décomposition de Frobenius

Notations et définitions
Dans tout le problème, K désigne R ou C, N désigne l’ensemble des entiers naturels et n est un entier naturel. On

note Kn[X ] le sous-espace vectoriel de K[X ] des polynômes de degré inférieur ou égal à n à coefficients dans K et,
pour n ≥ 1, Mn(K) le sous-espace vectoriel des matrices carrées de taille n à coefficients dans K. La matrice unité est
notée In et on désigne par GLn(K) le groupe des matrices inversibles de Mn(K).

Pour toute matrice A de Mn(K), on note AT la transposée de la matrice A, rg(A) son rang, tr(A) sa trace,
χA = det(XIn −A) son polynôme caractéristique, et sp(A) l’ensemble de ses valeurs propres dans K.

Dans tout le problème, E désigne un espace vectoriel sur le corps K de dimension finie n supérieure ou égale à 2, et
L(E) est l’espace vectoriel des endomorphismes de E. On note f un endomorphisme de E.

On note f0 = IdE et ∀k ∈ N, fk+1 = fk ◦ f . On utilise les notations suivantes, similaires à celles des matrices, pour
un endomorphisme f de E : rg(f), tr(f), χf et sp(f).

Si Q ∈ K[X ] avec Q(X) = a0 + a1X + · · ·+ amX
m, Q(f) désigne l’endomorphisme a0IdE + a1f + · · ·+ amf

m. On
note K[f ] le sous-espace vectoriel de L(E) constituée des endomorphismes Q(f) quand Q décrit K[X ].

Enfin, on dit que f est cyclique si et seulement s’il existe un vecteur x0 dans E tel que (x0, f(x0), . . . , f
n−1(x0))

soit une base de E. On dit en outre dans ce cas qu’un tel vecteur x0 est cyclique pour f .

On pourra utiliser le théorème de Cayley-Hamilton dans le sujet, sauf bien sûr dans la partie IIIA - IIIB où l’on
demande d’en faire une démonstration.

I. Matrices compagnons et endomorphismes cycliques
I.A.
Soit M ∈ Mn(K).

Q1. Montrer que M et MT ont même spectre.

Q2. Montrer que MT est diagonalisable si et seulement si M est diagonalisable.
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I.B. Matrices compagnons

Q3. Soit (a0, a1, . . . , an−1) ∈ Kn et Q(X) = Xn + an−1X
n−1 + · · ·+ a0. On considère la matrice
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Matrice qui est appelée matrice compagnon associée au polynôme Q.
Déterminer en fonction de Q le polynôme caractéristique de CQ.

Q4. Soit λ une valeur propre de (CQ)
T. Déterminer le sous-espace propre associé ; on montrera notamment que c’est

une droite vectorielle.

Q5. Une matrice de Mn(K) est-elle toujours semblable à une matrice de la forme CQ ?

I.C. Endomorphismes cycliques
Q6. Soit f un endomorphisme de E. Montrer que f est cyclique si et seulement s’il existe une base B de E dans

laquelle la matrice de f est de la forme CQ, où Q est un polynôme unitaire (c’est-à-dire de coefficient dominant
1) et de degré n.

Q7. Soit θ un réel non multiple de π. On note R =

(

cos θ − sin θ

sin θ cos θ

)

et r l’endomorphisme canoniquement associé

(ainsi r est la rotation d’angle θ dans R2 muni de sa structure euclidienne orientée canonique).
Montrer que r est cyclique, que tout vecteur non nul de R2 est cyclique, et que la seule matrice compagnon

pouvant représenter l’endomorphisme r est

(

0 −1

1 2 cos θ

)

.

I.D. Propriétés des endomorphismes cycliques
Soit f un endomorphisme de E, supposé cyclique.

Q8. On suppose que f un endomorphisme cyclique. Montrer que f est diagonalisable si et seulement si χf est scindé
sur K et a toutes ses racines simples.

Q9. On suppose encore que f un endomorphisme cyclique. Montrer que (Id, f, f2, . . . , fn−1) est libre dans L(E) et
que les polynômes annulateurs de f , à part 0, sont de degré supérieur à n.

I.E. Commutant d’un endomorphisme cyclique
On suppose que f est un endomorphisme cyclique et on choisit un vecteur cyclique x0 dans E, de sorte que

(x0, f(x0), . . . , f
n−1(x0)) est une base de E.

On appelle commutant de f l’ensemble C(f) = {g ∈ L(E)/ f ◦ g = g ◦ f}.
Soit g ∈ C(f), un endomorphisme qui commute avec f .

Q10. Justifier que C(f) est un sous-espace vectoriel de L(E).

Q11. Justifier l’existence de λ0, λ1, . . . , λn−1 de K tels que

g(x0) =

n−1
∑

k=0

λkf
k(x0)

Montrer alors que g ∈ K[f ].

Q12. Établir que g ∈ C(f) si et seulement s’il existe un polynôme R ∈ Kn−1[X ] tel que g = R(f).
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II. Cas particuliers
II.A. Cyclicité des endomorphismes diagonalisables
Q13. On suppose que f est un endomorphisme diagonalisable. On note (e1, . . . , en) une base de vecteurs propres et

λ1, . . . , λn les valeurs propres associées.

Soit u =
n
∑

i=1

uiei un vecteur de E ; donner une CNS portant sur les scalaires (u1, . . . , un, λ1, . . . , λn) pour que

(u, f(u), . . . , fn−1(u)) soit une base de E.

Q14. En déduire une condition nécessaire et suffisante pour qu’une matrice diagonalisable soit cyclique, préciser alors
ses vecteurs cycliques.

II.B. Cyclicité des endomorphismes nilpotents
Dans cette sous-partie, on suppose que f est un endomorphisme nilpotent de E. On note r le plus petit entier

naturel tel que f r = 0.

Q15. Montrer que f est cyclique si et seulement si r = n. Préciser alors la matrice compagnon.

III. Annulateur ponctuel, décomposition de Frobenius
On suppose encore que f un endomorphisme de E, non nécessairement cyclique. L’objectif de cette partie IIIA/IIIB

est notamment de prouver le théorème de Cayley-Hamilton ; on est donc prié de ne pas l’utiliser jusqu’à la fin de
III.B. !

III.A. Annulateurs ponctuels
Pour chaque vecteur x non nul de E, on note Px le polynôme unitaire de plus petit degré tel que P (f)(x) = 0. On

note dx son degré.

Q16. Justifier que Px est bien défini.

Q17. On note e1 = x, . . . , edx
= fdx−1(x) et E1 = Vect(e1, . . . , edx

). Montrer que E1 est un sous-espace vectoriel de
E stable par f et préciser la matrice de l’endomorphisme induit.

Q18. Justifier que Px divise χ
f
.

III.B. Application à une démonstration du théorème de Cayley-Hamilton
Q19. Démontrer que χf (f) est l’endomorphisme nul.

On pourra dorénavant utiliser ce résultat.

III.C. Annulateur ponctuel et annulateur global

Q20. Si χ
f
est scindé sous la forme χ

f
(x) =

r
∏

i=1

(x− λi)
mi avec des λi distincts et des entiers mi > 0, combien y a-t-il

de polynômes unitaires divisant χ
f
?

Q21. Montrer que si la réunion d’un nombre fini de sous-espaces vectoriels F1, . . . , Fr de E est un sous-espace vectoriel,
alors l’un des sous-espaces Fi contient tous les autres. On pourra considérer deux points bien choisis y, z et la
droite affine y + λz, λ ∈ K passant par ces deux points.

Q22. Déduire de III.A. et des questions précédentes qu’il existe x1 ∈ E tel que Px1
(f) = 0.
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III.D. Décomposition de Frobenius
On se propose de poursuivre la démarche de la question III.A. pour démontrer le théorème de décomposition de

Frobenius : si E est un espace vectoriel de dimension finie et u est un endomorphisme de E, alors E se décompose
en somme directe d’espaces sur lesquels u induit un endomorphisme cyclique. On note qu’une telle décomposition a
l’avantage de fonctionner qu’on soit sur le corps R ou C.

On fixe un endomorphisme f de E, on note x1 un point tel qu’introduit dans la dernière question de la partie III.C.
On note P = Px1

et d = deg(P ). On note e1 = x1, . . . , ed = fdx−1(x1) et E1 = Vect(e1, . . . , ed).
On complète cette famille libre en une base e1, . . . , en de E. On note enfin e∗d l’application qui à x ∈ E associe sa

composante sur ed dans cette base : e∗d(x) = xd ∈ K.

Q23. On pose F = {x ∈ E, ∀k ∈ N, e∗d(f
k(x)) = 0}. Montrer que F est un sous-espace vectoriel de E stable par f .

Q24. On note ψ : x 7→ (e∗d(x), . . . , e
∗

d(f
d−1(x))). Montrer que ψ est une application linéaire de E dans Kd dont on

précisera le noyau. En déduire que E = E1 ⊕ F .

Q25. Prouver le théorème de décomposition de Frobenius annoncé en en-tête.

Q26. Enoncer l’analogue matriciel du théorème de Frobenius pour une matrice M ∈ Mn(K).

IV. Applications de la décomposition de Frobenius
On pourra faire appel aux résultats de la partie précédente.

IV.A. Application : caractérisation de la cyclicité
Soit f un endomophisme de E.

Q27. Montrer que f est cyclique si et seulement si (Id, f, . . . , fn−1) est une famille libre de L(E).

Q28. Soit f un endomophisme de E. Montrer que f est cyclique si et seulement si K[f ] est de dimension n.

IV.B. Application : commutant d’un endomorphisme quelconque
Soit f un endomophisme de E. On rappelle que le commutant de f est l’ensemble C(f) = {g ∈ L(E)/ f ◦g = g ◦f} ;

c’est un sous-espace vectoriel de L(E).

Q29. Montrer que la dimension de C(f) est supérieure ou égale à n.

Q30. Montrer que f est cyclique si et seulement si K[f ] = C(f).

IV.C. Application : réduction de Jordan des matrices nilpotentes
Q31. Montrer que tout matriceM ∈ Mn(K) nilpotente est semblable à une matriceN dont les coefficients Nij vérifient

∀i ∈ J1, n− 1K, Ni+1,i ∈ {0, 1}, Nij = 0 sinon.

Q32. En déduire que si M ∈ Mn(C) possède une unique valeur propre λ, alors elle est semblable à une matrice N
telle que

∀i ∈ J1, nK, Ni,i = λ, ∀i ∈ J1, n− 1K, Ni+1,i ∈ {0, 1}, Nij = 0 sinon.

Remarque : si on est sur C,

On peut également prouver que pour M ∈ Mn(C) de polynôme caractéristique
r
∏

i=1

(X − λi)
mi , on a

C
n =

r
⊕

i=1

ker(M − λi Id)
mi ,

appelée décomposition en sous-espaces caractéristiques. La preuve ressemble à celle vue pour la CNS de diagonalisation :
partir d’une décomposition polynomiale du polynôme constant 1. Avec les deux questions précédentes, cela termine de
prouver le théorème de réduction de Jordan (toute matrice complexe est trigonalisable avec des coefficients nuls, sauf
certains sur la sous-diagonale qui valent 1).
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