
PSI* 2008/09 - DL10a - Algèbres de Lie
Dans tout ce problème, n est un entier au moins égal à 1. On note Mn,p(C) l’espace vectoriel des matrices à n lignes

et p colonnes, à coefficients complexes.
On identifiera une matrice colonne X (un élément de Mn,1(C)) et le vecteur de Cn dont les composantes dans la base

canonique de Cn sont les coefficients de la matrice X . Pour M ∈ Mn,n(C), on note M l’endomorphisme canoniquement
associé de Cn : M est l’endomorphisme de Cn dont M est la matrice dans la base canonique de Cn. Par ailleurs, Eλ(M)
est l’espace propre associé à la valeur propre λ de l’endomorphisme M .
Pour une matriceM ∈ Mn,n(C) de coefficients (mij , i, j = 1, . . . , n) et pour k = 0, . . . , n−1, on appelle k-ième diagonale

supérieure de M , notée Dk(M), l’ensemble des coefficients (mi,i+k, i = 1, . . . , n− k). Une diagonale supérieure Dk(M) est
dite nulle lorsque tous ses éléments sont nuls.
Si V etW sont deux espaces supplémentaires de Cn, on note pV la projection sur V parallèlement àW : pour x = xV +xW

avec xV ∈ V et xW ∈ W , pV (x) = xV .
Pour un endomorphisme u de Cn, on note uV sa restriction à V .

I Algèbres de Lie
On appelle crochet de Lie de deux éléments X et Y de Mn,n(C) la matrice, notée [X,Y ], définie par

[X,Y ] = XY − Y X.

Définition 1 Soit U un sous-espace vectoriel de Mn,n(C). On note [U ] l’espace vectoriel engendré par les crochets de
Lie [X,Y ] lorsque X et Y décrivent U . On dit que U est une algèbre de Lie lorsque

[U ] ⊂ U .

Soit U et V deux algèbres de Lie qui vérifient
[U ] ⊂ V ⊂ U .

On souhaite prouver le théorème suivant.

Théorème 1 Si X ∈ Mn,1(C) est une colonne propre pour toute matrice M dans V et si A est une matrice dans U
alors AX est soit la matrice nulle, soit une matrice colonne propre pour toute matrice M dans V . De plus, si pour M ∈ V ,
MX = λX alors M(AX) = λ(AX).

Soit X ∈ Mn,1(C) une matrice colonne propre pour toute matrice M dans V , et soit A une matrice de U .

� 1 - Établir l’existence d’une forme linéaire λ sur V , à valeurs dans C, telle que pour tout M ∈ V , MX = λ(M)X .

� 2 - Montrer que pour tout M ∈ V , [M,A] appartient à V .

On considère la suite de matrices colonnes (Xk, k ≥ 0) définie par

X0 = X, Xk+1 = AXk, pour tout k ≥ 0.

Pour M ∈ V , on considère la suite de nombres complexes (λk(M), k ≥ 0) définie par

λ0(M) = λ(M)

λk+1(M) = λk([M,A]), pour tout k ≥ 0.

� 3 - Démontrer, pour tout entier i ≥ 0 et pour tout M ∈ V , les identités suivantes :

MXi =

i
∑

j=0

(

i

j

)

λi−j(M)Xj (1)

[M,A]Xi =

i
∑

j=0

(

i

j

)

λi−j+1(M)Xj. (2)
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� 4 - On identifie dorénavant matrices colonnes et vecteurs de Cn. Démontrer qu’il existe un plus grand entier q tel que
la famille de vecteurs {X0, X1, X2, . . . , Xq} soit libre.

On note G l’espace vectoriel engendré par la famille {X0, X1, X2, . . . , Xq}.

� 5 - Montrer que MG, AG et [M,A]G sont des endomorphismes de G.

� 6 - Calculer la trace de [M,A]G .

� 7 - Quelle est la matrice de [M,A]G dans la base {X0, X1, X2, . . . , Xq} ?

� 8 - Pour M ∈ V , que vaut λ([M,A]) ?

� 9 - Établir le théorème 1.

II Algèbres de Lie résolubles
Définition 2 Soit U une algèbre de Lie et p un entier naturel non nul. On dit que U est une algèbre de Lie résoluble

de longueur p lorsqu’il existe des algèbres de Lie U0, U1, . . . , Up telles que :

{0} = Up ⊂ Up−1 ⊂ · · · ⊂ U1 ⊂ U0 = U (A)

[Ui] ⊂ Ui+1 pour tout i ∈ {0, . . . , p− 1} (B)

On se propose de montrer le théorème suivant.

Théorème 2 U est une algèbre de Lie résoluble si et seulement s’il existe une matrice P inversible telle que, pour tout
M ∈ U , P−1MP est triangulaire supérieure.

Soit P une matrice inversible deMn,n(C) et TP l’ensemble des matricesM ∈ Mn,n(C) telles que P−1MP soit tiangulaire
supérieure.

� 10 - Traduire la propriété “il existe une matrice P inversible telle que, pour tout M ∈ U , P−1MP est triangulaire
supérieure” en une propriété sur les endomorphismes canoniquement associés aux éléments de U .

� 11 - Montrer que TP est une algèbre de Lie résoluble de longueur n.
On pourra considérer les sous-espaces Nk (0 ≤ k ≤ n) tels que N0 = TP et pour tout entier k (1 ≤ k ≤ n),
Nk est l’ensemble des matrices M ∈ TP telles que les k diagonales supérieures D0(P

−1MP ), D1(P
−1MP ), . . .,

Dk−1(P
−1MP ) sont nulles.

Dans les questions 12 à 17, on suppose que U est une algèbre de Lie résoluble de longueur p = 1.

� 12 - Montrer que pour tout M,M ′ ∈ U , on a MM ′ = M ′M .

� 13 - Pour cette question on admettra le fait suivant (déjà prouvé en exercice) : une matrice complexe admet au moins
une valeur propre.
Soit r un entier non nul et une famille M1,M2, . . . ,Mr d’éléments de U . Montrer qu’il existe un vecteur propre
commun aux endomorphismes M1,M2, . . . ,Mr.

� 14 - Montrer qu’il existe au moins un vecteur propre commun à tous les endomorphismes {M, M ∈ U}.

On note dorénavant :
U = {M, M ∈ U}.

Soit F et H deux sous-espaces supplémentaires de Cn et u et v deux endomorphismes de Cn. De plus, on suppose, d’une
part, que F est stable par u et v et, d’autre part, que u et v commutent.
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� 15 - Montrer les relations suivantes :
pHu = pHupH et pHv = pHvpH .

� 16 - Montrer que pHupH et pHvpH commutent puis que pHuH et pHvH commutent.

� 17 - En procédant par récurrence sur n, établir le théorème 2 dans le cas p = 1.

Soit, maintenant, U une algèbre de Lie résoluble de longueur p > 1.

On suppose établi que pour toute algèbre de Lie résoluble de longueur inférieure strictement à p, il existe un élément
P ∈ Mn,n(C), inversible, tel que pour toute matrice M dans cette algèbre, P−1MP soit triangulaire supérieure.

� 18 - Montrer qu’il existe au moins un vecteur propre commun à tous les endomorphismes M , M ∈ U1.

Soit X l’un de ces vecteurs propres. On note E l’espace vectoriel engendré par X et les éléments de la forme

A1 . . . Ak X

où k est un entier non nul, Aj ∈ U pour tout j.

� 19 - Montrer que E est un espace vectoriel stable par tous les éléments de U et que tous les éléments de E sont des
vecteurs propres communs à tous les endomorphismes de U1.

Soit M,M ′ ∈ U .

� 20 - Montrer que [M,M ′]E est une homothétie de trace nulle.

� 21 - Que peut-on en déduire ?

Le théorème 2, dans le cas général, se prouve alors par les mêmes raisonnement qu’aux questions 14 et 17.

3


