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Théorème de Müntz

On désigne par C([0, 1]) l’espace vectoriel des fonctions réelles continues sur [0, 1]. On utilise les deux normes
classiques N∞ ou N2 définies par :

N∞(f) = sup
x∈[0,1]

|f(x)| et N2(f) =

(∫ 1

0

|f(x)|2dx
)

1

2

Pour tout λ ≥ 0, on note φλ l’élément de C([0, 1]) défini par φλ(x) = xλ. Par convention on a posé 00 = 1 de sorte
que φ0 est la fonction constante 1.

Un résultat classique d’analyse, le théorème de Weierstrass, permet d’affirmer que l’espace W = R[X ] des fonctions
polynomiales est dense dans E pour les normes N∞ ou N2. Cela signifie que toute fonction continue sur [0, 1] est limite
uniforme (ou en norme 2) d’une suite de fonctions polynômes. L’objectif est ici en s’appuyant sur ce résultat (qui sera
admis), de le généraliser.

Soit (λk)k∈N une suite de réels ≥ 0 deux à deux distincts. On note W le sous- espace vectoriel de C([0, 1]) engendré
la famille (φλk

)k∈N. Le but du problème est d’établir des critères de densité de l’espace W dans C([0, 1]) pour l’une
ou l’autre des deux normes choisies.

La question préliminaire et les parties I,II sont indépendantes ;
les parties suivantes n’utilisent que les conclusions finales des précédentes.

Question préliminaire
Q1. Montrer que (φλ)λ≥0 est une famille libre de C([0, 1]).

I Déterminants de Cauchy
On considère un entier n > 0 et deux suites finies (ak)1≤k≤n et (bk)1≤k≤n de réels telles que ak + bk 6= 0 pour tout

k ∈
{

1, 2, . . . , n
}

. Pour tout entier m tel que 0 < m ≤ n, le déterminant de Cauchy d’ordre m est défini par :

Dm =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1
a1+b1

1
a1+b2

. . . 1
a1+bm

1
a2+b1

1
a2+b2

. . . 1
a2+bm

...
...

...
1

am+b1

1
am+b2

. . . 1
am+bm

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

On définit la fonction suivante, en tout point x ∈ R \ {b1, . . . bn} : R(x) =

n−1
∏

k=1

(x− ak)

n
∏

k=1

(x+ bk)
.

Q2. Prouver que, si les bk sont distincts, R(x) peut se mettre sous la forme R(x) =
n
∑

k=1

Ak

x+bk
, avec des coefficients

Ak que l’on précisera. On demande une preuve, sans supposer connu de résultat de décomposition en éléments simples.
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Q3. En supposant encore que les bk sont distincts, montrer que AnDn = R(an)Dn−1. Pour cela, on pourra considérer
le déterminant obtenu à partir de Dn en remplaçant la dernière colonne par













R(a1)

R(a2)
...

R(an)













.

Q4. En déduire que

Dn =

∏

1≤i<j<≤n

(aj − ai)(bj − bi)

∏

1≤i≤n

1≤j≤n

(ai + bj)
.

II Distance à un sous-espace de dimension finie
Dans cette partie, on suppose que la norme sur l’espace vectoriel E est définie à partir d’un produit scalaire

〈

·
∣

∣·
〉

sur E : ‖x‖ =
√

〈

x
∣

∣x
〉

. On note pour x ∈ E et V partie non vide de E,

d(x, V ) = inf{‖x− v‖, v ∈ V }

Q5. Montrer que si V est un sous-espace vectoriel de dimension finie de E, alors pour tout x ∈ E, la projection
orthogonale de x sur V est l’unique élément y ∈ V vérifiant d(x, V ) = ‖x− y‖.
Pour toute suite finie (x1, x2, . . . , xn) ∈ En, on désigne par G(x1, x2, . . . , xn) le déterminant de la matrice de Gram

d’ordre n définie par :

M(x1, x2, . . . , xn) =













〈

x1
∣

∣x1
〉 〈

x1
∣

∣x2
〉

· · ·
〈

x1
∣

∣xn
〉

〈

x2
∣

∣x1
〉 〈

x2
∣

∣x2
〉

· · ·
〈

x2
∣

∣xn
〉

...
...

...
〈

xn
∣

∣x1
〉 〈

xn
∣

∣x2
〉

· · ·
〈

xn
∣

∣xn
〉













.

Q6. Montrer que G(x1, x2, . . . , xn) = 0 si et seulement si la famille (x1, x2, . . . , xn) est liée.

Q7. On suppose que la famille (x1, x2, . . . , xn) est libre et l’on désigne par V l’espace vectoriel qu’elle engendre.
Montrer que, pour tout x ∈ E,

d(x, V )2 =
G(x1, x2, . . . , xn, x)

G(x1, x2, . . . , xn)
.

Si vous séchez ici, demandez des indications.

III Un critère de densité de W pour la norme N2

Pour tout n ∈ N, on note Wn l’espace vectoriel engendré par la famille finie (φλk
)0≤k≤n.

Grâce au théorème de Weierstrass, pour prouver que l’espace W est dense dans C([0, 1]) pour la norme N2, il est
suffisant d’approcher toute fonction monôme φµ, µ ∈ N. On dispose ainsi d’une condition nécessaire et suffisante simple
et naturelle, que l’on admettra :

condition de densité (C) : pour tout entier µ ≥ 0, lim
n
d(φµ,Wn) = 0

Q8. Montrer que pour tout µ ≥ 0,

d(φµ,Wn) =
1√

2µ+ 1

n
∏

k=0

|λk − µ|
λk + µ+ 1
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Q9. Montrer que pour tout µ ≥ 0, la suite
( |λk − µ|
λk + µ+ 1

)

k∈N

tend vers 1 si et seulement si la suite (λk)k∈N tend

vers +∞. On pourra pour cela étudier les variations de la fonction x ∈ [0, µ] 7→ µ− x

x+ µ+ 1
.

Q10. En déduire que l’espace W est dense dans C([0, 1]) pour la norme N2 si et seulement si la série
∑

k

1

λk
est

divergente.

IV Un critère de densité de W pour la norme N∞
De nouveau, on pourra considérer que pour montrer que W est dense dans C([0, 1]) au sens de la norme N∞, il est

suffisant, pour toute fonction monôme φµ, µ ∈ N, de pouvoir l’approcher par une suite de fonctions au sens de N∞.

Q11. Montrer que si W est dense dans C([0, 1]) pour la norme N∞, alors la série
∑

k

1

λk
est divergente.

Q12. Soit ψ =
∑n

k=0 akφλk
un élément quelconque de Wn. Montrer que si λk ≥ 1 pour tout k ∈ {0, 1, . . . , n}, alors

pour tout µ ≥ 1, on a :

N∞(φµ − ψ) ≤ N2

(

µφµ−1 −
n
∑

k=0

akλkφλk−1

)

.

Q13. On suppose que la suite (λk)k∈N vérifie les deux conditions suivantes :
{

(i) : λ0 = 0

(ii) : λk ≥ 1 pour tout k ≥ 1.

Montrer que sous ces conditions, si la série
∑

k

1

λk
est divergente, alors W est dense dans C([0, 1]) pour la norme N∞.

Q14. Montrer que la conclusion précédente est encore valable si on remplace la condition (ii) par la condition plus
faible :

(ii′) : inf
k≥1

λk > 0

V Annexe : questions du sujet original
Je les ai coupées mais vous pouvez les regarder.

Une partie sur la distance d’un point à une partie d’un espace normé
Soit E un espace vectoriel normé par une norme ‖ · ‖. On rappelle que la distance d’un élément x ∈ E à une partie

non vide A de E est le réel noté d(x,A) défini par :

d(x,A) = inf
y∈A

‖x− y‖

— Montrer que d(x,A) = 0 si et seulement si x est adhérent à A.
— Montrer que si (An)n≥0 est une suite croissante de parties deE et si A =

⋃

n≥0An alors d(x,A) = limn→∞ d(x,An).
On considère un sous-espace vectoriel V de dimension finie de E, et on note B =

{

y; ‖y − x‖ ≤ ‖x‖
}

.

— Montrer que B ∩ V est fermée bornée et que d(x, V ) = d(x,B ∩ V ) pour tout x ∈ E.
— En déduire que pour tout x ∈ E, il existe un élément y ∈ V tel que d(x, V ) = ‖x− y‖.

Une partie pour comparer l’étude avec les normes N∞ et N2 et justifier les conditions de densité
Pour toute partie A de C([0, 1]), on note A

∞
et A

2
les adhérences de A pour les normes N∞ et N2 respectivement.

Pour f ∈ C([0, 1]), la notation d(f,A) désigne toujours la distance de f à A relativement à la norme N2 (on ne
considérera jamais, dans l’énoncé, la distance d’un élément à une partie relativement à la norme N∞).

— Montrer que pour tout f ∈ C([0, 1]), N2(f) ≤ N∞(f). En déduire que pour toute partie A de C([0, 1]), on a
A

∞ ⊂ A
2
.

On considère l’ensemble V0 =
{

f ∈ C([0, 1]); f(0) = 0
}

, et on rappelle que φ0 désigne la fonction constante 1.
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— Montrer que φ0 ∈ V0
2
.

— En déduire que V0 est dense dans C([0, 1]) pour la norme N2, mais n’est pas dense pour la norme N∞.

— Montrer que si V est un sous-espace vectoriel d’un espace vectoriel normé, alors son adhérence V est également
un espace vectoriel.

— Montrer qu’un sous-espace vectoriel V de C([0, 1]) est dense pour la norme N∞ si et seulement si pour tout
entier m ≥ 0, φm ∈ V

∞
.

— En déduire qu’un sous-espace vectoriel V de C([0, 1]) est dense pour la norme N2 si et seulement si pour tout
entier m ≥ 0, φm ∈ V

2
.
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