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Variables aléatoires décomposables

J’ai mis un sujet de DS des années précédentes, c’est un sujet de concours complet avec une partie que j’ai considérée
"en trop" pour le format DS.
Ce problème a pour objet la représentation de la loi d’une variable aléatoire comme loi d’une somme de variables

aléatoires indépendantes.
On s’intéresse d’abord au cas d’une somme de deux variables à valeurs entières, puis au cas de variables aléatoires
dont la loi est celle de la somme d’un nombre quelconque de variables indépendantes de même loi.

Notations
Toutes les variables aléatoires considérées dans ce problème sont discrètes. On note PX la loi d’une variable aléatoire
X .
Si X et X ′ sont deux variables aléatoires définies sur les espaces probabilisés respectifs (Ω,A,P) et (Ω′,A′,P′), la
notation X ∼ X ′ signifie que X et X ′ ont même loi, c’est à dire que PX = PX′ .
Pour toute variable aléatoire X à valeurs dans N on note GX sa fonction génératrice, définie, pour t ∈ R, par

GX(t) =

∞
∑

n=0

P(X = n)tn

lorsque la série converge.
On pourra si nécessaire utiliser librement le résultat suivant.

Si m ∈ N
∗ et si L est une loi de probabilité sur un espace probabilisé Ω , alors il existe des variables

aléatoires X1, . . . , Xm définies sur un espace probabilisé Ωm, mutuellement indépendantes et de loi
L.

Si a et b sont deux entiers tels que a ≤ b, on désigne par Ja, bK l’ensemble des entiers k tels que a ≤ k ≤ b.

I Variables aléatoires entières décomposables
Soit X une variable aléatoire à valeurs dans N. On appelle décomposition de X toute relation de la forme X ∼ Y +Z

où Y et Z sont deux variables aléatoires indépendantes à valeurs dans N, définies sur un espace probabilisé pouvant
être distinct de celui sur lequel X est définie.
On dit que X est décomposable si X admet une décomposition où Y et Z ne sont pas constantes presque sûrement.

I.A - Premiers exemples
1. Soit X et X ′ deux variables aléatoires à valeurs dans N. justifier que X ∼ X ′ si et seulement si GX = GX′ .
2. Soit X une variable aléatoire à valeurs dans N admettant une décomposition X ∼ Y + Z, où Y et Z sont des

variables aléatoires indépendantes à valeurs dans N. Quelle relation lie GX , GY et GZ ?
3. Soit X une variable aléatoire suivant la loi binomiale B(n, p) où n ≥ 1 et p ∈]0, 1[. Montrer que X est décompo-

sable si et seulement si n ≥ 2.
4. Soit A(T ) ∈ R[T ] le polynôme : A(T ) = T 4 + 2T + 1.

(a) Soit U(T ) et V (T ) deux polynômes à coefficients réels positifs ou nuls tels que U(T )V (T ) = A(T ). montrer
que l’un des polynômes U(T ) ou V (T ) est constante.
On pourra distinguer les cas selon les valeurs des degrés de U(T ) et V (T ).
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(b) En déduire qu’il existe une variable aléatoire décomposable X telle que X2 ne soit pas décomposable.
On pourra considérer le polynôme 1

4
A(T ).

I.B - Variables uniformes
Dans cette sous-partie, n est un entier naturel supérieur ou égal à 2 et X est une variable aléatoire à valeurs dans

N, définie sur un espace probabilisé (Ω,A,P) et suivant la loi uniforme sur J0, n− 1K :

P(X = k) =
1

n
si k ∈ J0, n− 1K et P(X = k) = 0 sinon

1. Variables uniformes décomposables
On suppose dans cette question que n n’est pas premier : il existe des entiers a et b, supérieurs ou égaux à 2,
tels que n = ab.

(a) Montrer qu’il existe un unique couple de variables aléatoires entières (Q,R) définies sur Ω telles que

X = aQ+R et ∀ω ∈ Ω, R(ω) ∈ J0, a− 1K

On pourra considérer une division euclidienne.

(b) Préciser la loi de (Q,R), puis les lois de Q et de R.

(c) Montrer que X est décomposable. En déduire une expression de GX comme produit de deux polynômes
non constants que l’on précisera.

Section hors DS (je l’ai quand même mise dans le corrigé)

2. Variables uniformes non décomposables
On suppose dans cette question que n est un nombre premier et on établit que X n’est pas décomposable.

(a) Montrer qu’il suffit de prouver le résultat suivant : si U et V sont des polynômes de R[T ] unitaires et à
coefficients dans R+ tels que U(T )V (T ) = 1 + T + · · · + T n−1, alors l’un des deux polynômes U ou V est
constant.

Dans ce qui suit, on fixe des polynômes U et V de R[T ] unitaires à coefficients dans R+ tels que

U(T )V (T ) = 1 + T + · · ·+ T n−1

On pose r = deg(U) et s = deg(V ) et on suppose par l’absurde que r et s sont non nuls.

(b) Montrer que U(T ) = T rU
(

1

T

)

et V (T ) = T sV
(

1

T

)

.

On note alors U(T ) = 1+u1T + · · ·+ur−1T
r−1+T r et V (T ) = 1+ v1T + · · ·+ vs−1T

s−1+T s avec r ≤ s (quitte
à échanger les rôles de U et V ).

(c) Montrer que ∀k ∈ J1, rK, ukvk = 0.

(d) En déduire que ∀k ∈ J1, rK, uk ∈ {0, 1} et vk ∈ {0, 1}.

(e) Conclure.
On pourra d’abord montrer que tous les coefficients de V sont à valeurs dans {0, 1}.

Fin de la section hors DS

II Variables infiniment divisibles : exemples
Soit X une variable aléatoire discrète à valeurs dans R. On dit que X est infiniment divisible si, pour tout m ∈ N

∗, il
existe des variables aléatoires réelles discrètes Xm,1, . . . , Xm,m mutuellement indépendantes, de même loi, et vérifiant
X ∼ Xm,1+ · · ·+Xm,m. Dans cette définition, l’espace probabilisé Ωm sur lequel sont définies les Xm,i peut dépendre
de m.
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II.A - Variables bornées
1. On suppose que X est constante égale à a ∈ R. Montrer que X est infiniment divisible.

L’objectif de cette sous-partie est de montrer que toute variable aléatoire bornée infiniment divisible est presque
sûrement constante.
Soit X une variable aléatoire bornée infiniment divisible définie sur un espace probabilisé (Ω,A,P).
On note M = supΩ |X |, de sorte que |X(ω)| ≤ M pour tout ω ∈ Ω.

2. Soit n ∈ N
∗ et soient X1, . . . , Xn des variables aléatoires indépendantes et de même loi, et telles que X1+ · · ·+Xn

ait même loi que X .

(a) Pour tout i ∈ J1, nK, montrer que Xi ≤
M

n
presque sûrement, puis |Xi| ≤

M

n
presque sûrement.

(b) En déduire que V [X ] ≤
M2

n
où V [X ] désigne la variance de X .

3. Conclure que X est presque sûrement constante.

II.B - Étude du caractère infiniment divisible de quelques variables entières
1. Une variable binomiale est-elle infiniment divisible ?

2. Soit n un entier naturel non nul et soit X1, . . . , Xn des variables aléatoires mutuellement indépendantes suivant
des lois de Poisson de paramètres respectifs λ1, . . . , λn.
Montrer que X1 + · · ·+Xn suit une loi de Poisson de paramètre λ1 + · · ·+ λn.

3. Soit X une variable aléatoire de Poisson. Montrer que X est infiniment divisible.

4. Soit r un entier naturel non nul et soitX1, . . . , Xr des variables aléatoires de Poisson mutuellement indépendantes.

Montrer que
r
∑

i=1

iXi est une variable aléatoire infiniment divisible.

II.C - Séries de variables aléatoires à valeurs entières
1. Soit X et Y deux variables aléatoires définies sur (Ω,A,P) et à valeurs dans N.

(a) Montrer que si A et B sont des événements de A, et si A et B sont leurs événements contraires respectifs,
alors

|P(A)− P(B)| ≤ P(A ∩B) + P(A ∩B)

(b) En déduire que, pour tout t ∈ [−1, 1], |GX(t)−GY (t)| ≤ 2P(X 6= Y ).

2. Soit (Ui)i∈N∗ une suite de variables aléatoires mutuellement indépendantes à valeurs dans N telle que la série
des P(Ui 6= 0) soit convergente.

(a) Soit Zn = {ω ∈ Ω, ∃i ≥ n, Ui(ω) 6= 0}. Montrer que (Zn) est une suite décroissante d’événements et que
lim

n→+∞
P(Zn) = 0.

(b) En déduire que l’ensemble {i ∈ N
∗, Ui 6= 0} est presque sûrement fini.

(c) On pose Sn =
n
∑

i=1

Ui et S =
∞
∑

i=1

Ui. Justifier que S est définie presque sûrement. Montrer que GSn
converge

uniformément vers GS sur [−1, 1].

3. Soit (λi)i∈N∗ une suite de réels positifs ou nuls. On suppose que la série
∑

λi est convergente, et on note

λ =
∞
∑

i=1

λi.

Soit (Xi)i∈N∗ une suite de variables aléatoires indépendantes telles que, pour tout i, Xi suive une loi de Poisson
de paramètre λi. On convient que, si λi = 0, Xi est la variable aléatoire nulle.

(a) Montrer que la série
∑

P(Xi 6= 0) est convergente.

(b) Montrer que la série
∑

i≥1

Xi est presque sûrement convergente et que sa somme (définie presque sûrement)

suit une loi de Poisson de paramètre λ.

(c) Montrer que la série
∑

i≥1

iXi est presque sûrement convergente et que sa somme X =
∞
∑

i=1

iXi définit une

variable aléatoire infiniment divisible.
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III V.a. entières infiniment divisibles : étude générale
III.A - Série entière auxiliaire
Dans cette sous-partie, X est une variable aléatoire à valeurs dans N telle que P(X = 0) > 0.

1. Montrer qu’il existe une unique suite réelle (λi)i∈N∗ telle que, pour tout k ∈ N
∗

kP(X = k) =

k
∑

j=1

jλjP(X = k − j)

2. Pour tout k ∈ N∗, montrer

|λk|P(X = 0) ≤ P(X = k) +

k−1
∑

j=1

|λj |P(X = k − j) ≤ (1− P(X = 0))



1 +

k−1
∑

j=1

|λj |





3. Pour tout k ∈ N
∗, montrer : 1 +

k
∑

j=1

|λj | ≤
1

P(X = 0)k
.

4. Montrer que la série entière
∑

λkt
k a un rayon de convergence ρ(X) supérieur ou égal à P(X = 0).

Pour tout réel t de ]− ρ(X), ρ(X)[, on pose

HX(t) = ln (P(X = 0)) +

∞
∑

k=1

λkt
k

À toute variable aléatoire X à valeurs dans N et telle que P(X = 0) > 0, on associe ainsi une série entière HX .
Dans la suite du problème, HX sera appelée série entière auxiliaire de X.

5. Pour t ∈]− ρ(X), ρ(X)[∩[−1, 1], montrer G′
X(t) = H ′

X(t)GX(t), puis GX(t) = exp (HX(t)).
6. Soit X et Y deux variables aléatoires indépendantes, définies sur l’espace Ω et à valeurs dans N, et soit HX et

HY leurs séries entières auxiliaires.
Montrer HX+Y (t) = HX(t) +HY (t) pour tout réel t vérifiant |t| < min(ρ(X), ρ(Y )).

III.B - Variables aléatoires entières λ-positives
Soit X une variable aléatoire à valeurs dans N telle que P(X = 0) > 0, et soit HX sa série entière auxiliaire :

HX(t) = ln (P(X = 0)) +

∞
∑

k=1

λkt
k

On dira que X est λ−positive si λk ≥ 0 pour tout k ≥ 1.
On suppose dans cette sous-partie que X est λ−positive.

1. Pour tout k ∈ N
∗, montrer que λk ≤

P(X = k)

P(X = 0)
. En déduire que la série

∑

λk converge.

2. Montrer que, pour tout t ∈ [−1, 1], GX(t) = exp (HX(t)) et que
∞
∑

k=1

λk = − ln (P(X = 0)).

3. Soit (Xi) la suite de variables aléatoires définie au II.C.3. Montrer que X ∼
∞
∑

i=1

iXi.

III.C - Caractérisation des variables entières infiniment divisibles
Soit X une variable aléatoire infiniment divisible à valeurs dans N et telle que P(X = 0) > 0.
Le but de cette sous-partie est de montrer que les trois assertions suivantes sont équivalentes.
(i) X est infiniment divisible ;
(ii) X est λ−positive ;

(iii) il existe une suite (Xi)i≥1 de variables de Poisson indépendantes, comme au II.C.3, telle que X ∼
∞
∑

i=1

iXi.
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Dans les questions III.C.1 à III.C.4, on suppose que X est une variable aléatoire infiniment divisible à valeurs dans
N et telle que P(X = 0) > 0. Pour tout n ∈ N

∗, il existe donc n variables aléatoires indépendantes Xn,1, . . . , Xn,n de
même loi telles que la variable aléatoire Xn,1 + · · ·+Xn,n suive la loi de X .

1. (a) Pour tout n ∈ N
∗, montrer que Xn,1 est presque sûrement positive ou nulle.

(b) Pour tout n ∈ N
∗, montrer que P(Xn,1 = 0) > 0.

(c) Montrer que les variables aléatoires Xn,i sont presque sûrement à valeurs dans N.

2. (a) Montrer lim
n→∞

P (Xn,1 = 0) = 1.

(b) En déduire que, pour tout i ∈ N
∗, lim

n→∞
P (Xn,1 = i) = 0.

3. Soit HX la série entière auxiliaire de X , comme elle est définie à la question III.A.4, et soit ρ(X) son rayon de
convergence.
Pour tout n ∈ N

∗, soit Hn la série entière auxiliaire de Xn,1.

(a) Pour tout n ∈ N
∗, montrer nHn = HX .

(b) En déduire, pour tous n et k dans N∗

knP (Xn,1 = k) =
k

∑

j=1

jλjP (Xn,1 = k − j)

4. Pour tout k ∈ N
∗, montrer que la suite (nP(Xn,1 = k))

n∈N∗ converge vers λk. En déduire que X est λ−positive.

5. Conclusion
(a) Montrer le résultat annoncé au début de cette sous-partie III.C.

(b) Comment adapter ce résultat aux variables aléatoires à valeurs dans N∗ ?

(c) Soit X une variable aléatoire suivant la loi géométrique G(p), où p ∈]0, 1[ :

∀k ∈ N
∗

P(X = k) = (1 − p)k−1p

La variable aléatoire X est-elle infiniment divisible ?
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