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Exercice

n

1
Pour n € Net x € R\ Z, on pose Sy (z) = —_—.
kz—:n (k + x)?

Q1. En coupant la somme en deux selon le signe de k, il vient
= 1 = 1
5.0 =3 Gt
— (k+ ) — (x — k)
Par comparaison avec la série définissant ((2), les deux séries convergent absolument pour tout x € R \ Z. Ainsi
(Sn),, converge simplement sur R\ Z et I'on a

> 1 > 1
Vo e R\ Z: S(z) = Zm+zm.

Alors,

(o] n n
1 1 1 1
S(zx+1) = = + = S(x),
(@+1) kZ_O(k+x+1)2+;(x+1—k)2 ;(lﬂ—i—:n)? kZ_O(x—W (@)
la fonction ug ayant été transféré de la premiére série & la deuxiéme. Alternativement, en passant par S,

1 1
Sl@ +1) = Sal@) = Co T T @) o

1
soit S(z + 1) = S(x) en passant a la limite. Pour k € Z, posons dans la suite ug(z) = CETE
x

1 1
Q2. Pour k & {—1,0}, ug est bornée sur I'intervalle |0, 1] et ||u;€||]0’1[7oo vaut 12 si k est négatif et = si k

est positif. En écrivant

n n
Sp = u_1+up +Zuk +Zu—k,
k=1 k=2

cela entraine la convergence normale des deux séries introduites & la question 1 sur une période de S, d’ou la
continuité de S, la convergence normale entrainant la convergence uniforme.

On peut éviter la mise a ’écart de deux valeurs de k en raisonnant sur S — S, pour montrer directement la
convergence uniforme

— 1 =1 N
k=n k=n k=n k=n

Q 3. Le plus simple est de travailler sur I'expression de S comme somme de deux séries

o0 o0

1 1 1 1 3
s (o)) —ZM+§2<-WZMW+Z =y

1
o0
= =5(2
Z 2;1:—1—7”L2+ng1 2r —n)? (22)

en regroupant termes pairs et impairs.

Q4. En utilisant les formules cos (t + g) = —sin(t), sin?(t) + cos?(t) = 1 et sin(2t) = 2sin(t) cos(t), il vient

1 1 1 1 4
9(x) +9 ( 2> sin?(rz)  sin® (mz+ %)  sin®(mz)  cos’(mx)  sin®(ww)cos?(mz)  sin®(2mx) 9(22)

ce qui montre que la fonction g(x) = T est solution de I’équation fonctionnelle de la question 3.
sin®(mx
1



Q5. La fonction 6(x) = n2g(z) — S(z) est définie sur R\ Z, ou elle est 1-périodique et continue sur une période.
On décompose

7T2 7T2 1 0 00
o) = sin?(mx) —S@) = sin?(7x) a2 T(@) avee  T(x) = Zl k+ x)? * ; (z —
Or w2 1 n22? — sin?(nx) _ (mx — sin(mz)) (72 + sin(7z)) N (m323/6)(27x) _ 2

2

sin?(rz) a2

22 sin?(7x) 22 sin?(7x) z—0 2zt 37
. - . . 2 2
Par ailleurs, T' est une somme de deux séries de fonctions normalement convergentes sur, disons, I = ~3'3 car
9\ 2
_2H =|k—< . Ainsi, T converge a fortiori uniformément sur I et y

3

est donc continue. Il s’ensuit que § est prolongeable en une fonction continue sur I et, par 1-périodicité, sur R.

Hx — (k:+x)_2||1’oo = Hx+—> (x —k

Q 6. D’aprés la question précédente, S est continue sur R et 1-périodique. On a donc sup S(xz) = sup S(z) et
z€eR z€[0,1]

cette borne supérieure est un maximum. Si ce maximum est atteint en, disons, 2z, alors la relation fonctionnelle

de la question 3 donne

1 I8l
S]] = S(2z0) = = | S(x0) + S a:o—i- ISl =
o 4 2 2 o
2
Ainsi, ¢ est la fonction nulle et I'on a donc S(z) = — pour tout € R\ Z. En substituant = 0 dans I'ex-
sin®

2

pression de T" de la question 5, il vient T'(0) = 2¢(2). Le calcul de limite fait & la question 5 donne alors ((2) = %

Probléme I — Centrale 2016, PSI 1
I. Généralités

I.A. Propriétés élémentaires

Q7. Il y a un nombre fini de valeurs possibles pour chaque coefficient et un nombre fini de coefficients, donc &),
2
est fini. Plus précisément, il y a deux choix possibles par coefficient et n? coefficients, donc #X,, = 2™ .

Q 8. Ceux qui la connaissent peuvent partir de la définition du déterminant a partir du groupe symétrique. Pour
M = (mi,j)1<ij<n € Vn, linégalité triangulaire, le fait que la signature d’une permutation appartient a {—1,1} et
I'encadrement 0 < m; ; < 1 donnent

S o ]
1=1

0'6671

| det(M)] =

Z|€ H (i)<21:n!

ceGy, =1 ceG,

Pour avoir égalité, il faudrait que tous les coefficients de M prissent la valeur 1, donc que (o) = 1 pour toute
permutation o, ce qui est faux pour la moitié d’entre elles. L’inégalité est donc stricte.

Les autres raisonnent par récurrence sur n. L’inégalité est claire pour n = 2 car

dt(a 2)’:|ad—bc|<1<2!.

Supposons-la vraie pour toute matrice de )V,,—1. Soit M € ),,. Le développement du déterminant par rapport a la
premiére ligne donne alors

n n

det(M) = (1) ay;det(My,) . |det(M Zal il det(My;)] <> (n—1)! =nl,

i=1 =1 =1

ce qui termine la récurrence.



Q9. — La convexité de lintervalle [0, 1] passe & YV, : si (M,N) € V2 et X € [0, 1], alors le coefficient d’indices
(4,7) de la matrice AM + (1 — AN) vaut Am; ; + (1 — A\)n, ; € [0,1].

— En munissant M,,(R) de la norme infinie, définie sur M, (R) par ||[M]|_ = | Lmax |m; ;|, tout élément de ),
\/L?]\n

est de norme au plus 1, donc ), est borné.
— Enfin, le caractére fermé de lintervalle [0, 1] passe aussi & ), : par caractérisation séquentielle, ssi My =

(mz(,j))1<i,j<n est une suite de matrices de Y, de limite M = (mi;),; ;<,, € Mn(R), alors m; ; = klirgo m;j) € [0,1],
donc M € Y.

Alternativement, on pouvait tenter : Y, = Boo (A, 1/2), boule fermée de centre A = J,,/2, matrice dont tous les
coefficients sont égaux a 1/2, et de rayon 1/2 relativement a la norme infinie. Or, les boules fermées sont fermées,
bornées et convexes, c.q.f.d.

Q10. Soient M € Y, A une valeur propre complexe de M et X € C"™ un vecteur propre associé. On note || X || la
norme infinie de X et i un indice tel que |z;,| = || X . La ligne (coordonnée) d’indice iy de I'égalité MX = A X
donne

n n
MIX oo = o] = D mig | < Y mig il X Lo < ll X,
j=1 j=1
d’ott |A| < n en divisant par || X > 0.

Alternativement, toujours en partant de AX = X,

n n n n n n
NIXI, = IMX0, =D D miges| <Y Imigasl <Y eyl =n )X,

i=1 [j=1 i=1 j=1 i=1 j=1
d’ott [A[ < n, puisque || X||, # 0.

Pour I'égalité, la matrice J, € M, (R) dont tous les coefficients valent 1 vérifie J,,U = nU, ou U est le vecteur de
M.,,.1(R) dont toutes les coordonnées valent aussi 1, d’out n € Sp(J,,). On reparlera de cette matrice a la question 18.

I.B. Ftude de X, = X, N GL,(R)

Q11. Il y a seize matrices dans X, présentées ici par rang croissant :
0 0 10 01 0 0 0 0 11 10 0 0
0 0/7\0 0)”\0 0/ \1 0/7\0 1/ \0 0/ \1 0/”\1 1)°
0 1 11 1 0 0 1 1 1 1 0 01 11
O 1/)>\1 1)>\0 1) \1 0/>\0 1/)7\1 1/>\1 1) \1 0)°

Celles appartenant a Xy sont les six derniéres. Prenons-les une par une : 5 est diagonale, donc diagonalisable. La

2
suivante vérifie 10) = Iy, c’est une matrice de symétrie et elle est donc diagonalisable. Les deux suivantes

sont triangulaires, distinctes de Iy et ont 1 pour unique valeur propre, donc elles ne sont pas diagonalisables
(rg(A — I3) = 1 < 2). Les deux derniéres sont symétriques réelles, donc diagonalisables.

Q 12. En notant E; ; les éléments de la base canonique de M3(R), on vérifie immédiatement que

11 10 11 01 01 01

ce qui montre que Vect(Xs) = Ms(R). On peut alternativement vérifier que les quatre matrices de X5 avec trois 1
et un 0 forment une famille libre.

Si n > 3, la preuve du caractére générateur de Xj s’adapte assez facilement et I'on a encore Vect(X)) = M, (R) :
—sii # j, alors E; j = (I,, + E; ;) — I, est la différence de deux éléments de X, ;
— pour 1 <7 < n, soit j # 4. Alors, F;; = (In +Lj+E;;— EM) — (In +L i+ Ej;—Ej;— Ei,i) ; ces deux
matrices étant de déterminant —1, elles appartiennent a X, .



II. Deux problémes d’optimisation

IL.A. Etude de la distance a Y

Q13. Pour tout (M, N) € M, (R)?, on note (M |N) = tr (MTN). On note m; ; = m;; le coefficient générique de
la matrice M . Alors,

n n
T ~
r(MIN) =) > ijanig= Y mignig
j=11i=1 1<i,j<n
est le transport sur M,,(R) du produit scalaire canonique sur R"™ par l'isomorphisme canonique, donc c’est bien
. . : . . 2
un produit scalaire. Rappelons que cet isomorphisme envoie R™ 3 (a;);cicp2 SUT (Muw)icyven € Ma(R) par
— " — _ 2
Muyp = Ayu—1)n4v; AINVEISE @; = ML (1) //n, 14(i—1)%n- OD a [[M|| = E ms ;.
1<i,5<n

Il est bien stir aussi possible de procéder a la vérification directement en jouant sur les deux expressions. La
linéarité de la trace montre que N — tr(M N ) est linéaire et

(M|N)=tr (MTN) =tr (MTN)") =te (NTMTT) = tr (NTM) = (N | M)
donne la symétrie, d’ou la linéarité & gauche. Le caractére défini positif est immédiat & partir de ’expression en
coordonnées, (M| M) = Z mfj étant toujours positif et strictement positif sauf si tous les coefficients de M

1<i,j<n
sont nuls.

Q14. L’application N — ||A — N|| est continue. Elle est donc bornée et atteint ses bornes sur le fermé-borné ),
(question 9) car My, (R) est de dimension finie. En notant M € ), un élément ou elle atteint son minimum, on a
alors

YN € Vy: ||A— M|| < ||A—NJ .

Bien que cela ne soit demandé qu’a la question suivante, ou la construction explicite de M la rend évidente, la
convexité de ), donne l'unicité de M (c’est un théoréme général hors programme de projection orthogonale sur
un conveze fermé) : rappelons identité du parallélogramme, qui affirme que la somme des carrés des cotés d'un
parallélogramme est égale a la somme du carré de ses diagonales, soit 2||z|® + 2||y||> = ||z + y||> + ||z — y||>.
Supposons que deux matrices M et M’ réalisent le minimum requis. On pose m = ||[A — M|| = ||[A — M’||. Soit

M" = i(M + M’) le milieu du segment [M, M']. Alors, 'identité du parallélogramme appliquée & + = A — M et
y=A— M’ donne
4|A = M" | + || M — M'||? = 4m? S M=M

par minimalité de m, le fait que ), soit convexe entrainant que M" € Y,.

Q15. Pour A = (a;;) et M = (m; ;) onallA— M|*= E (a;j —mij)*. Minimiser cette quantité
1<i,j<n
revient & minimiser chacun des carrés intervenant dans la somme (ils sont indépendants), ce qui donne l'unicité de

M et sa construction : si a; ; € [0,1], alors m; ; = a; ;; si a; ; <0, alors m; ; =0 et, si a; j > 1, alors m; ; = 1.

1<i j<n 1<i,j<n

I1.B. Mazimisation du déterminant sur X, et Y,

Q 16. L’ensemble X, est fini et toute partie finie de R admet un plus grand élément, d’ou l'existence de z, =

max det(M). L’application déterminant définit par ailleurs une application continue sur le fermé-borné ), et y
EXp

atteint donc son maximum, noté y,,.

Q17. Soit M € Y,,_1. Alors la matrice M’ =

0
M 0 . R ' ) ;
o | appartient a Y et det(M") = det(M). Il s’ensuit

0 0 0]1

que ), contient une matrice de déterminant y,,—1, donc que (yy),, est croissante.
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Q 18. La matrice J,, comme on ’a vu a la question 10, vérifie
XJn :Xnil(X—n) X :XJnffn :(X—i—l)”*l(X—(n—l)),

d’ott det(M,) = (=1)" "1 (n — 1), d’ot yau11 = 2n; comme (y,),, est croissante et qu'elle admet une suite extraite
de limite +o0, on en déduit que limy,, = +oc.

Q 19. En développant par rapport a la i-éme ligne, on constate que la fonction ¢t —— det(IN + tE; ;) est une
fonction polynomiale de degré au plus 1, donc monotone. Il s’ensuit qu’en remplacant n; ; soit par 0, soit par 1,
on peut obtenir une matrice N’ de Y, telle que det(N) < det(N’).

En parcourant ainsi toute la matrice, on passe les coeflicients de N a la valeur 0 ou a la valeur 1, de maniére
a en augmenter (au sens large) le déterminant. Si 'on procéde ainsi & partir d’'une matrice de ), de déterminant
Yn, ON va obtenir une matrice de &), de déterminant au moins égal, soit x, > y,. L’autre inégalité étant évidente,
du fait que X, C YV, on a donc x,, = Y.

Probléme II

1 1
Q 20. Soient Pp =0et P,y =P, + = (X2 P,%) On calcule P, = §X2 et Py = X?— §X4. Il est immédiat par

récurrence sur n que P, est un polynome pair, comme somme de polynoémes pairs.

Toujours par récurrence, on vérifie que deg(P,) = 2" : c’est vrai si n = 1. Supposons que n > 1 et que
deg(P,) = 2". Alors, deg(P?) = 2deg(P,) = 2", qui est strictement supérieur & deg(X?) = 2 et a deg(P,) qui
vaut 2. Ainsi, deg(Py 1) = 2"

Q 21. On vérifie par récurrence que le terme de plus bas degré de P, vaut gX 2 (est vrai si n = 1. Supposons

que cela soit vérifié pour P, avec n > 1. Alors, le terme de plus bas degré de P,% est de degré 4, donc on a
1

REX24Q, et

1
P = EX 24 §X 24 Qn, @y ne comportant que des termes de degré au moins 4, soit P,11 =
I’hypothése au rang n + 1.

Le coefficient dominant est plus délicat & trouver et il est pertinent d’en détailler le calcul pour étre convaincant ;

2
: ) ) a 1 .
notons-le a,. La relation de récurrence sur les polynémes donne a,4+1 = —?" et a1 = 3 En posant a, = o il
n

vient rp41 = 2r, + 1 et r; =1, dou r, = 2" — 1. Finalement, a,, = — sin>2eta =

22”—1

Q 22. On utilise la relation de récurrence et la factorisation X2 — P2 = (X — P,)(X + P,). Il vient, pour tout
n € N et tout Vo € [0,1] :

(1) x— Py1(x) =2 — Py(x) — %(ﬁ — PX(z)) = (z — Py(2)) (1 - %(1: + Pn(x))) :

Q 23. Montrons la suite d’inégalités

HR(n) VneN, Vz €[0,1]: 0 < Py(z) < Poyi(z) <z <1
par récurrence sur n. Il est plus simple et, surtout plus rapide, de ne faire qu'une seule récurrence pour toute la
suite d’inégalités car celles-ci dépendent les unes des autres. Pour n = 0, elle se réduit 4 0 < 0 < % <z <1, qui
est vraie car, pour z € [0, 1], 2%/2 < 2% < z.

Supposons que HR(n) soit vraie pour un certain n € N. Alors,
— 0 < Pyy1(z) est contenue dans HR(n).

1
— La relation de récurrence donne P, o(x) — Pyy1(x) = §(x2 — P2, (z)) =0 car P,i1(7) < 2 par HR(n).
— Enfin, z + P,41(x) < 2z < 2 par HR(n) et la relation (1) assure alors que
1
T — Poyo(z) = (3 — Poyai(w)) < - 2($+Pn($))> >0



comme produit de deux réels positifs.

Q 24. A z fix¢, la suite (P,(7)), est croissante et majorée, donc convergente. Soit f(z) sa limite. La majora-
tion P,(x) < z donne en passant & la limite l'inégalité f(z) < x. En passant a la limite dans la relation (1)

(question Q22), il vient
o= 1@ == @) (1= 56+ 1)) o G- f@) e f@) =0,

d’ou f(x) = z par différence car tout le monde est positif d’apres la question Q23.

Q 25. La relation (1) et P,(z) > 0 donnent, par une récurrence immédiate,

x T\ T\
0<x— <(1-2)(z— < (z— -2) = -
VneN, Vo € [0,1]: 0 <z — Py(z) < (1 2) (@ = Posa(z) < (v — Po(x)) (1 2) 2 (1 2) .
Q 26. Posons A(x) == (1 - g)n pour z € [0,1]. Un calcul simple montre que
n—1 n+1 2 2 1 \" 2
Alz) ( 2) ( 2 x) o Al A(n—i—l) n+1 ( n+1> n—oo en’

donc (P,),, converge uniformément vers va sur [0, 1]. L’extension a [—1,1] est immédiate car tant va que P, sont
des fonctions paires (pour P,, on I’a montré a la question Q20).

Q 27. C’est manifestement une question de cours. Il n’est donc pas question de la bacler.
— N4 (P) est bien définie par le théoréme des bornescar P est une fonction polynomiale, donc continue sur le
segment [0,1];
— Il est clair que N4 (P) > 0. Si Ny(P) = 0, alors P(z) = 0 pour tout = € [0, 1], donc P admet une infinité de
racines, donc P est le polynéme nul;
—SiA€R, Ny(\P) = sup [AP(x)| = Al sup |P(x)] = [AINL(P):
0<x<1 0<x<1

— Si P et @ sont des polyndomes, pour tout = € [0,1], |P(x) + Q(x)| < |P(z)| + |Q(x)] < N4 (P) + N.+(Q), d’ou
Ni(P+ Q) < Ny (P) + N4(Q) en passant & la borne supérieure.

On a montré que Ny définit bien une norme sur R[X].

Q 28. D’aprés la question 26, la suite (P,),, converge vers X au sens de N et vers —X au sens de N_, donc les
normes N4 et N_ ne sont pas équivalentes, puisqu’elles ne définissent pas la méme notion de limite. Il est aussi
possible de construire un contrexemple ad hoc. Par exemple, N+((X + 1)") =2" et N,((X + 1)") =1, donc le
quotient N4 /N_ n’est pas borné, ce qui assure que les deux normes ne sont pas équivalentes.

II. Réductions

Q29. Soit [a, b] un segment de R de longueur non nulle. Alors, 'application ¢ définie sur [0, 1] par ¢(t) = (1—t)a+tb
réalise une bijection strictement croissante de [0, 1] sur [a,b] de bijection réciproque (u) = i (vérification

b—a

immédiate — noter que I'application ¢ est celle utilisée pour les questions de convexité).

Soit g: [a,b] — R une fonction continue. Posons f = g o ¢: [0,1] — R. Par hypothése, il existe une suite de
polynoémes (P,), qui converge uniformément vers f sur [0,1]. Alors, pour tout u € [a,b] :

Qu() = Pu(th(w)) —— F((w)) = g(u)

et [|Qn —gll. = [P — fl_, ce qui montre la convergence uniforme de (Qy),, vers g. Comme 1) est une fonction
affine, il est clair que @, est un polynéme. On a ainsi étendu le théoréme d’approximation de Weierstrall du seg-
ment [0, 1] & un segment [a, b] quelconque.

Q30. Pour f: [0,1] — R, soit Papplication g(z) = f(z)— f(0) —z(f(1) — £(0)). Alors, g(0) = g(1) = 0. Supposons
que g soit la limite uniforme d’une suite (Qy),, de polynémes. Alors,

9(x) = @Qn(@) = f(z) — [Qn(z) + £(0) + 2(f(1) = f(0))] = f(z) — Pu(2).
Alors, Py = Qn + f(0) + (f(1) = F(0))X € R[X] et [P, — fll , = [[@n —gll -

6



III. Approxzimation polynomiale uniforme des fonctions lipschitziennes

Soit f: [0,1] — R une fonction continue telle que f(0) = f(1) = 0. On prolonge f en une fonction continue sur
R par f(z) =0 pour z € R\ [0, 1]. On définit une suite de polynémes @,, et des fonctions P, par

ay = ' — 2\ dx = ' —x 1 — 2"
[ a >d—2/0<1 204z, Qulz) = —(1—2?)",

-1 79
Ve e [0,1]: P, / f(@+y)Qn(y) dy

31. De1—22>1—2 >0 et de la croissance de ¢ — t" sur R, on tire
Q +>5

1 1 1
2
ap, = 2/ (1—a2®)"dz > 2/ (1—2)"dx (w=l) 2/ u"du = —— ou, alternativement,
0 0 0 n+1

1 1 2\yn+171
1- 1
an:2/ (1—:p2)"dx2/ 2z(1 — 23" dzx = [—( ) } = .
0 0 n—l—l 0 n—l—l

Q32. Si0<a<letze|[-1—a]U]la,l], la majoration de la question 31 et les croissances comparées donnent

0<Qu) < = < i —a?r ——0

(a5 n—o0

Q 33. L’énoncé invite implicitement & effectuer le changement de variable t = x + y dans l'intégrale. On utilise
ensuite le fait que f est nulle en dehors de I'intervalle [0, 1] et les inégalités z —1 <0< 1 <z + 1.

r+1 1
w01 B = [ fern@ar= [ 06 - aa= [ 106 -
En utilisant la définition de @, et la formule du bindme de Newton, on peut écrire
1
nt—xz)=—|1—(t— A n(t) A n(t) € Rt].
Qult—2) = —[1~ (t-2) Zk avee Apn(t) € RI1

Il est inutile d’écrire la formule explicite en regroupant les puissances de x. En intégrant par rapport a ¢, il vient

2n 1
= Z bpa®  avec by = / f(t) A, (t)dt € R.
k=0 0

Q 34. Par définition de ay,, on a /1 Qn(y) dy = 1. On calcule alors, en tenant compte de ce que @y (y) = 0,
-1
1 1 1
Pa@) = @) = [ @+ 0)Qu)dy— @) [ Qudy= [ (1la+ )~ F@)@ulo) dy
~1 ~1 ~1
1
[Pal) = £(@)| < [ 17+ 9) = 1@)IQu(o) dy

€
Q 35. On suppose que f est k-lipschitzienne. Soient € > 0 et § = % Alors, en utilisant que @, (y) = 0 pour

1
—1<y<1etque / Qn(y)dy =1, il vient
~1

8

-4 1
|Pu(z) — f(z)] < / @ +ty) — F(@)|Quly)dy + / @ +9) — F(@)|Quly)dy + / e+ y) — F(@)Quly) dy
)

1
<20If] (/ Quly dy+/ Quly dy> /_ikm@n(y)dy
<2/ (/ Qn<y>dy+/6 Quly dy>+k5/6 Quly) dy
<2|rf|roo(/jczn<y>dy+/;@n dy>+k5/ Quly) dy <

si n est suffisamment grand d’aprés la question 32.

w\m
[\D\(T)



Q 36. L’approximation uniforme s’étend par la question 35 aux fonctions lipschitziennes sur un segment. Pour
pouvoir appliquer la question précédente, il suffit de montrer que toute fonction de classe C! sur un segment est
lipschitzienne, ce qui vient de I'inégalité des accroissements finis : si f est de classe C' sur le segment [a, b], sa
dérivée est continue, donc bornée sur ce segment et f est H f’HOO —lipschitzienne.

IV. Etude sur R

Soit (P,),, une suite de polynoémes convergeant uniformément sur R vers une fonction f.

Q37. Par définition de la convergence uniforme, lim sup ’ f(x) —Pn(m)‘ = 0. En particulier, cette borne supérieure
n—o0 z€R

est finie a partir d’un certain rang ng. Alors, pour n et m au moins égaux a ng, 'inégalité triangulaire donne
‘Pn(ac) — Pm(:v)‘ < |Pn(x) - f(x)‘ + }f(:n) — Pm(x)} < +4o00.

Ainsi, P, — P, est une fonction polynomiale bornée

d
Q 38. Soit P = Z arpX* un polynome de degré d > 1. Alors, P(z) ~ agz? —— sgn(aq)co. En particulier,
PR r—r+00 T—r+00
la fonction polynomiale P n’est pas bornée. Par contraposée, P, — P, est constant pour tout (n,m) € N2 tel que
min(n,m) > ng et, en particulier, P,, — P,, l'est pour tout n > ng.

Ainsi, pour tout n > ng, il existe ¢, € R tel que P, — P,, = ¢,. En passant a la limite simple, il vient
f(z) = Py, (x) = ¢ = lim ¢y, existence de ¢ venant de 'existence de la limite dans le terme de gauche. Ainsi, f est
une fonction polynomiale.

oo
Q39. Soit une série entiére S(x) = E anx™ de rayon de convergence infini. Que cette série converge uniformément

n=0
n

sur R signifie que la suite de fonctions polynomiales (P,),, définie par P, = Z aiz® converge uniformément. Elle

k=0
oo
est donc constante & partir d'un certain rang ng, soit E anpx"™ = 0. Par unicité du DSE, cela entraine a,, = 0
n=ng+1

pour tout n > ng. Ainsi, S est polynomiale.

V. Un exercice d’application

Soit A C R. Pour P € R[X], on pose N4(P) = sup|P(a)|.
acA

Q 40. Montrons que N4 définit une norme sur R[X] si, et seulement si, A est une partie bornée infinie de R.

Si A est finie, alors N(P) est bien définie. Si A est infinie, alors N4(P) est définie comme la borne supérieure
d’un ensemble infini et n’est plus automatiquement finie. Or, un polynéme non constant a des limites infinies en
I'infini, donc N4 (P) € R, si, et seulement si A est bornée.

Il est patent que N4 est positive, vérifie I'inégalité triangulaire et la propriété N4(AP) = |A|Na(P) quelle que
soit A (c’est la méme démonstration qu’a la question 27 pour N, ). Le seul point en suspens est donc la caractéri-

sation du polynéme nul. Or, sup |P(a)| = 0 équivaut & P(a) = 0 pour tout a € A. Ce qui caractérise le polyndéme
acA
nul si, et seulement si, A est infinie.

Q41. On suppose que A est une partie infinie bornée de R et ’on note que, pour a € R, 'application P — P(a)
est une forme linéaire sur R[X]. Elle est donc continue si, et seulement s’il existe une constante c¢ telle que
|P(a)] < ¢Na(P) pour tout P € R[X].
— Sia € A, alors |P(a)| < sup|P(b)| = Na(P). L’application P — P(a) est donc continue.

beA

8



— Par ailleurs, A C A assure que sup |P(a)| < sup|P(a)|. Or, si A 3 a = lima, avec (a,), € A", alors, par
a€A aGZ
continuité de P, P(a) = lim P(a,), donc |P(a)| < Na(P), soit Ng = N4 et P —— P(a) est continue.

— Supposons maintenant que a ¢ A. Alors, A° est ouvert, donc il existe n > 0 tel que [a—na+nNA=0
et il existe une fonction lipschitzienne valant 1 en a et dont la restriction a4 A est nulle (affine par morceaux par
exemple). En vertu du théoréme d’approximation de Weierstraf, elle est limite uniforme d’une suite de polynomes
P,. On a ainsi P,(a) = 1 pour tout n et lim N4 (P,) = 0, donc P — P(a) n’est pas continue en a.

On a bien montré que I’application P — P(a) est continue si, et seulement si, a € A.



