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Exercice

Pour n ∈ N et x ∈ R \ Z, on pose Sn(x) =
n∑

k=−n

1

(k + x)2
.

Q1. En coupant la somme en deux selon le signe de k, il vient

Sn(x) =
n∑
k=0

1

(k + x)2
+

n∑
k=1

1

(x− k)2
.

Par comparaison avec la série définissant ζ(2), les deux séries convergent absolument pour tout x ∈ R \ Z. Ainsi
(Sn)n converge simplement sur R \ Z et l’on a

∀x ∈ R \ Z : S(x) =

∞∑
k=0

1

(k + x)2
+
∞∑
k=1

1

(x− k)2
.

Alors,

S(x+ 1) =
∞∑
k=0

1

(k + x+ 1)2
+

n∑
k=1

1

(x+ 1− k)2
=

n∑
k=1

1

(k + x)2
+

n∑
k=0

1

(x− k)2
= S(x),

la fonction u0 ayant été transféré de la première série à la deuxième. Alternativement, en passant par Sn :

Sn(x+ 1)− Sn(x) =
1

(x+ n+ 1)2
− 1

(x− n)2
−−−→
n→∞

0,

soit S(x+ 1) = S(x) en passant à la limite. Pour k ∈ Z, posons dans la suite uk(x) =
1

(x+ k)2
.

Q 2. Pour k 6∈ {−1, 0}, uk est bornée sur l’intervalle ]0, 1[ et ‖uk‖
]0,1[,∞

vaut
1

(k + 1)2
si k est négatif et

1

k2
si k

est positif. En écrivant

Sn = u−1 + u0 +
n∑
k=1

uk +
n∑
k=2

u−k,

cela entraîne la convergence normale des deux séries introduites à la question 1 sur une période de S, d’où la
continuité de S, la convergence normale entraînant la convergence uniforme.

On peut éviter la mise à l’écart de deux valeurs de k en raisonnant sur S − Sn pour montrer directement la
convergence uniforme

∀x ∈ ]0, 1[ : 0 6 S(x)− Sn−1(x) =
∞∑
k=n

1

(x+ k)2
+
∞∑
k=n

1

(x− k)2
6
∞∑
k=n

1

k2
+
∞∑
k=n

1

(k − 1)2
−−−→
n→∞

0.

Q3. Le plus simple est de travailler sur l’expression de S comme somme de deux séries

1

4

[
S(x) + S

(
x+

1

2

)]
=
∞∑
k=0

1

(2x+ 2k)2
+
∞∑
k=1

1

(2x− 2k)2
+
∞∑
k=0

1

(2x+ 2k + 1)2
+
∞∑
k=1

1

(2x− (2k − 1))2

=
∞∑
n=0

1

(2x+ n)2
+
∞∑
n=1

1

(2x− n)2
= S(2x)

en regroupant termes pairs et impairs.

Q4. En utilisant les formules cos
(
t+

π

2

)
= − sin(t), sin2(t) + cos2(t) = 1 et sin(2t) = 2 sin(t) cos(t), il vient

g(x) + g

(
x+

1

2

)
=

1

sin2(πx)
+

1

sin2
(
πx+ π

2

) =
1

sin2(πx)
+

1

cos2(πx)
=

1

sin2(πx) cos2(πx)
=

4

sin2(2πx)
= g(2x),

ce qui montre que la fonction g(x) =
1

sin2(πx)
est solution de l’équation fonctionnelle de la question 3.
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Q 5. La fonction δ(x) = π2g(x)− S(x) est définie sur R \ Z, où elle est 1-périodique et continue sur une période.
On décompose

δ(x) =
π2

sin2(πx)
− S(x) =

π2

sin2(πx)
− 1

x2
− T (x) avec T (x) =

∞∑
k=1

1

(k + x)2
+
∞∑
k=1

1

(x− k)2
.

Or,
π2

sin2(πx)
− 1

x2
=
π2x2 − sin2(πx)

x2 sin2(πx)
=

(
πx− sin(πx)

)(
πx+ sin(πx)

)
x2 sin2(πx)

∼
x→0

(π3x3/6)(2πx)

π2x4
=
π2

3
.

Par ailleurs, T est une somme de deux séries de fonctions normalement convergentes sur, disons, I =

[
−2

3
,
2

3

]
car∥∥x 7→ (k + x)−2

∥∥
I,∞

=
∥∥x 7→ (x− k)−2

∥∥
I,∞

=

(
k − 2

3

)−2
. Ainsi, T converge a fortiori uniformément sur I et y

est donc continue. Il s’ensuit que δ est prolongeable en une fonction continue sur I et, par 1-périodicité, sur R.

Q 6. D’après la question précédente, S est continue sur R et 1-périodique. On a donc sup
x∈R

S(x) = sup
x∈[0,1]

S(x) et

cette borne supérieure est un maximum. Si ce maximum est atteint en, disons, 2x0, alors la relation fonctionnelle
de la question 3 donne

‖S‖
∞

= S(2x0) =
1

4

[
S(x0) + S

(
x0 +

1

2

)]
6
‖S‖

∞

2
∴ ‖S‖

∞
= 0.

Ainsi, δ est la fonction nulle et l’on a donc S(x) =
π2

sin2 πx
pour tout x ∈ R \ Z. En substituant x = 0 dans l’ex-

pression de T de la question 5, il vient T (0) = 2ζ(2). Le calcul de limite fait à la question 5 donne alors ζ(2) =
π2

6
.

Problème I — Centrale 2016, PSI 1

I. Généralités

I.A. Propriétés élémentaires

Q 7. Il y a un nombre fini de valeurs possibles pour chaque coefficient et un nombre fini de coefficients, donc Xn
est fini. Plus précisément, il y a deux choix possibles par coefficient et n2 coefficients, donc #Xn = 2n

2
.

Q 8. Ceux qui la connaissent peuvent partir de la définition du déterminant à partir du groupe symétrique. Pour
M = (mi,j)16i,j6n ∈ Yn, l’inégalité triangulaire, le fait que la signature d’une permutation appartient à {−1, 1} et
l’encadrement 0 6 mi,j 6 1 donnent

| det(M)| =

∣∣∣∣∣ ∑
σ∈Sn

ε(σ)
n∏
i=1

mi,σ(i)

∣∣∣∣∣ 6 ∑
σ∈Sn

|ε(σ)|
n∏
i=1

mi,σ(i) 6
∑
σ∈Sn

1 = n!

Pour avoir égalité, il faudrait que tous les coefficients de M prissent la valeur 1, donc que ε(σ) = 1 pour toute
permutation σ, ce qui est faux pour la moitié d’entre elles. L’inégalité est donc stricte.

Les autres raisonnent par récurrence sur n. L’inégalité est claire pour n = 2 car∣∣∣∣det

(
a b
c d

)∣∣∣∣ = |ad− bc| 6 1 < 2!.

Supposons-la vraie pour toute matrice de Yn−1. Soit M ∈ Yn. Le développement du déterminant par rapport à la
première ligne donne alors

det(M) =
n∑
i=1

(−1)i+1a1,i det(M1,i) ∴ |det(M)| 6
n∑
i=1

a1,i| det(M1,i)| <
n∑
i=1

(n− 1)! = n!,

ce qui termine la récurrence.
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Q 9. — La convexité de l’intervalle [0, 1] passe à Yn : si (M,N) ∈ Y2
n et λ ∈ [0, 1], alors le coefficient d’indices

(i, j) de la matrice λM + (1− λN) vaut λmi,j + (1− λ)ni,j ∈ [0, 1].
— En munissant Mn(R) de la norme infinie, définie sur Mn(R) par ‖M‖

∞
= max

16i,j6n
|mi,j |, tout élément de Yn

est de norme au plus 1, donc Yn est borné.
— Enfin, le caractère fermé de l’intervalle [0, 1] passe aussi à Yn : par caractérisation séquentielle, ssi Mk =(
m

(k)
i,j

)
16i,j6n

est une suite de matrices de Yn de limiteM = (mi,j)16i,j6n ∈Mn(R), alors mi,j = lim
k→∞

m
(k)
i,j ∈ [0, 1],

donc M ∈ Yn.

Alternativement, on pouvait tenter : Yn = B∞(A, 1/2), boule fermée de centre A = Jn/2, matrice dont tous les
coefficients sont égaux à 1/2, et de rayon 1/2 relativement à la norme infinie. Or, les boules fermées sont fermées,
bornées et convexes, c.q.f.d.

Q10. Soient M ∈ Yn, λ une valeur propre complexe de M et X ∈ Cn un vecteur propre associé. On note ‖X‖∞ la
norme infinie de X et i0 un indice tel que |xi0 | = ‖X‖∞ . La ligne (coordonnée) d’indice i0 de l’égalité MX = λX
donne

|λ|‖X‖∞ = |λxi0 | =

∣∣∣∣∣∣
n∑
j=1

mi0,jxj

∣∣∣∣∣∣ 6
n∑
j=1

mi0,j‖X‖∞ 6 n‖X‖∞ ,

d’où |λ| 6 n en divisant par ‖X‖∞ > 0.

Alternativement, toujours en partant de AX = X,

|λ| ‖X‖
1

= ‖MX‖
1

=
n∑
i=1

∣∣∣∣∣∣
n∑
j=1

mi,jxj

∣∣∣∣∣∣ 6
n∑
i=1

n∑
j=1

|mi,jxj | 6
n∑
i=1

n∑
j=1

|xj | = n ‖X‖
1
,

d’où |λ| 6 n, puisque ‖X‖
1
6= 0.

Pour l’égalité, la matrice Jn ∈Mn(R) dont tous les coefficients valent 1 vérifie JnU = nU , où U est le vecteur de
Mn,1(R) dont toutes les coordonnées valent aussi 1, d’où n ∈ Sp(Jn). On reparlera de cette matrice à la question 18.

I.B. Étude de X ′n = Xn ∩GLn(R)

Q11. Il y a seize matrices dans Xn, présentées ici par rang croissant :(
0 0
0 0

)
,

(
1 0
0 0

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
,

(
0 0
0 1

)
,

(
1 1
0 0

)
,

(
1 0
1 0

)
,

(
0 0
1 1

)
,(

0 1
0 1

)
,

(
1 1
1 1

)
,

(
1 0
0 1

)
,

(
0 1
1 0

)
,

(
1 1
0 1

)
,

(
1 0
1 1

)
,

(
0 1
1 1

)
,

(
1 1
1 0

)
.

Celles appartenant à X ′2 sont les six dernières. Prenons-les une par une : I2 est diagonale, donc diagonalisable. La

suivante vérifie
(

0 1
1 0

)2

= I2, c’est une matrice de symétrie et elle est donc diagonalisable. Les deux suivantes

sont triangulaires, distinctes de I2 et ont 1 pour unique valeur propre, donc elles ne sont pas diagonalisables
(rg(A− I2) = 1 < 2). Les deux dernières sont symétriques réelles, donc diagonalisables.

Q12. En notant Ei,j les éléments de la base canonique deM2(R), on vérifie immédiatement que(
1 1
0 1

)
− I2 = E1,2,

(
1 0
1 1

)
− I2 = E2,1,

(
1 1
1 0

)
−
(

0 1
1 0

)
= E1,1,

(
0 1
1 1

)
−
(

0 1
1 0

)
= E2,2,

ce qui montre que Vect(X ′2) =M2(R). On peut alternativement vérifier que les quatre matrices de X ′2 avec trois 1
et un 0 forment une famille libre.

Si n > 3, la preuve du caractère générateur de X ′2 s’adapte assez facilement et l’on a encore Vect(X ′n) =Mn(R) :
— si i 6= j, alors Ei,j = (In + Ei,j)− In est la différence de deux éléments de X ′n ;
— pour 1 6 i 6 n, soit j 6= i. Alors, Ei,i =

(
In + Ei,j + Ej,i − Ej,j

)
−
(
In + Ei,j + Ej,i − Ej,j − Ei,i

)
; ces deux

matrices étant de déterminant −1, elles appartiennent à X ′n.
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II. Deux problèmes d’optimisation

II.A. Étude de la distance à Yn

Q13. Pour tout (M,N) ∈Mn(R)2, on note (M |N) = tr
(
M>N

)
. On note m̃i,j = mj,i le coefficient générique de

la matrice M>. Alors,

tr
(
M>N

)
=

n∑
j=1

n∑
i=1

m̃j,ini,j =
∑

16i,j6n

mi,jni,j

est le transport surMn(R) du produit scalaire canonique sur Rn
2
par l’isomorphisme canonique, donc c’est bien

un produit scalaire. Rappelons que cet isomorphisme envoie Rn
2 3 (ai)16i6n2 sur (mu,v)16u,v6n ∈ Mn(R) par

mu,v = a(u−1)n+v, d’inverse ai = m1+(i−1)//n, 1+(i−1)%n. On a ‖M‖ =
∑

16i,j6n

m2
i,j .

Il est bien sûr aussi possible de procéder à la vérification directement en jouant sur les deux expressions. La
linéarité de la trace montre que N 7−→ tr(M>N

)
est linéaire et

(M |N) = tr
(
M>N

)
= tr

((
M>N

)>)
= tr

(
N>M>>

)
= tr

(
N>M

)
= (N |M)

donne la symétrie, d’où la linéarité à gauche. Le caractère défini positif est immédiat à partir de l’expression en
coordonnées, (M |M) =

∑
16i,j6n

m2
i,j étant toujours positif et strictement positif sauf si tous les coefficients de M

sont nuls.

Q14. L’application N 7−→ ‖A−N‖ est continue. Elle est donc bornée et atteint ses bornes sur le fermé-borné Yn
(question 9) carMn(R) est de dimension finie. En notant M ∈ Yn un élément où elle atteint son minimum, on a
alors

∀N ∈ Yn : ‖A−M‖ 6 ‖A−N‖ .
Bien que cela ne soit demandé qu’à la question suivante, où la construction explicite de M la rend évidente, la
convexité de Yn donne l’unicité de M (c’est un théorème général hors programme de projection orthogonale sur
un convexe fermé) : rappelons l’identité du parallélogramme, qui affirme que la somme des carrés des côtés d’un
parallélogramme est égale à la somme du carré de ses diagonales, soit 2‖x‖2 + 2‖y‖2 = ‖x + y‖2 + ‖x − y‖2.
Supposons que deux matrices M et M ′ réalisent le minimum requis. On pose m = ‖A −M‖ = ‖A −M ′‖. Soit
M ′′ =

1

2
(M +M ′) le milieu du segment [M,M ′]. Alors, l’identité du parallélogramme appliquée à x = A−M et

y = A−M ′ donne
4‖A−M ′′‖2 + ‖M −M ′‖2 = 4m2 ∴ M = M ′

par minimalité de m, le fait que Yn soit convexe entraînant que M ′′ ∈ Yn.

Q15. Pour A = (ai,j)16i,j6n etM = (mi,j)16i,j6n, on a ‖A−M‖2 =
∑

16i,j6n

(ai,j−mi,j)
2. Minimiser cette quantité

revient à minimiser chacun des carrés intervenant dans la somme (ils sont indépendants), ce qui donne l’unicité de
M et sa construction : si ai,j ∈ [0, 1], alors mi,j = ai,j ; si ai,j < 0, alors mi,j = 0 et, si ai,j > 1, alors mi,j = 1.

II.B. Maximisation du déterminant sur Xn et Yn

Q 16. L’ensemble Xn est fini et toute partie finie de R admet un plus grand élément, d’où l’existence de xn =
max
M∈Xn

det(M). L’application déterminant définit par ailleurs une application continue sur le fermé-borné Yn et y

atteint donc son maximum, noté yn.

Q17. Soit M ∈ Yn−1. Alors la matrice M ′ =


0

M 0
0

0 0 0 1

 appartient à Yn et det(M ′) = det(M). Il s’ensuit

que Yn contient une matrice de déterminant yn−1, donc que (yn)n est croissante.
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Q18. La matrice Jn, comme on l’a vu à la question 10, vérifie

χ
Jn

= Xn−1(X − n) ∴ χ
M

= χ
Jn−In = (X + 1)n−1

(
X − (n− 1)

)
,

d’où det(Mn) = (−1)n−1(n− 1), d’où y2n+1 > 2n ; comme (yn)n est croissante et qu’elle admet une suite extraite
de limite +∞, on en déduit que lim yn = +∞.

Q 19. En développant par rapport à la i-ème ligne, on constate que la fonction t 7−→ det(N + tEi,j) est une
fonction polynomiale de degré au plus 1, donc monotone. Il s’ensuit qu’en rempla̧cant ni,j soit par 0, soit par 1,
on peut obtenir une matrice N ′ de Yn telle que det(N) 6 det(N ′).

En parcourant ainsi toute la matrice, on passe les coefficients de N à la valeur 0 ou à la valeur 1, de manière
à en augmenter (au sens large) le déterminant. Si l’on procède ainsi à partir d’une matrice de Yn de déterminant
yn, on va obtenir une matrice de Xn de déterminant au moins égal, soit xn > yn. L’autre inégalité étant évidente,
du fait que Xn ⊂ Yn, on a donc xn = yn.

Problème II

Q 20. Soient P0 = 0 et Pn+1 = Pn +
1

2

(
X2 − P 2

n

)
. On calcule P1 =

1

2
X2 et P2 = X2 − 1

8
X4. Il est immédiat par

récurrence sur n que Pn est un polynôme pair, comme somme de polynômes pairs.

Toujours par récurrence, on vérifie que deg(Pn) = 2n : c’est vrai si n = 1. Supposons que n > 1 et que
deg(Pn) = 2n. Alors, deg(P 2

n) = 2 deg(Pn) = 2n+1, qui est strictement supérieur à deg(X2) = 2 et à deg(Pn) qui
vaut 2n. Ainsi, deg(Pn+1) = 2n+1.

Q 21. On vérifie par récurrence que le terme de plus bas degré de Pn vaut
n

2
X2. C’est vrai si n = 1. Supposons

que cela soit vérifié pour Pn avec n > 1. Alors, le terme de plus bas degré de P 2
n est de degré 4, donc on a

Pn+1 =
n

2
X2 +

1

2
X2 +Qn, Qn ne comportant que des termes de degré au moins 4, soit Pn+1 =

n+ 1

2
X2 +Qn et

l’hypothèse au rang n+ 1.

Le coefficient dominant est plus délicat à trouver et il est pertinent d’en détailler le calcul pour être convaincant ;

notons-le an. La relation de récurrence sur les polynômes donne an+1 = −a
2
n

2
et a1 =

1

2
. En posant an = − 1

2rn
, il

vient rn+1 = 2rn + 1 et r1 = 1, d’où rn = 2n − 1. Finalement, an = − 1

22n−1
si n > 2 et a1 =

1

2
.

Q 22. On utilise la relation de récurrence et la factorisation X2 − P 2
n = (X − Pn)(X + Pn). Il vient, pour tout

n ∈ N et tout ∀x ∈ [0, 1] :

(1) x− Pn+1(x) = x− Pn(x)− 1

2
(x2 − P 2

n(x)) =
(
x− Pn(x)

)(
1− 1

2

(
x+ Pn(x)

))
.

Q23. Montrons la suite d’inégalités

HR(n) ∀n ∈ N, ∀x ∈ [0, 1] : 0 6 Pn(x) 6 Pn+1(x) 6 x 6 1

par récurrence sur n. Il est plus simple et, surtout plus rapide, de ne faire qu’une seule récurrence pour toute la

suite d’inégalités car celles-ci dépendent les unes des autres. Pour n = 0, elle se réduit à 0 6 0 6
x2

2
6 x 6 1, qui

est vraie car, pour x ∈ [0, 1], x2/2 6 x2 6 x.

Supposons que HR(n) soit vraie pour un certain n ∈ N. Alors,
— 0 6 Pn+1(x) est contenue dans HR(n).

— La relation de récurrence donne Pn+2(x)− Pn+1(x) =
1

2

(
x2 − P 2

n+1(x)
)
> 0 car Pn+1(x) 6 x par HR(n).

— Enfin, x+ Pn+1(x) 6 2x 6 2 par HR(n) et la relation (1) assure alors que

x− Pn+2(x) =
(
x− Pn+1(x)

)(
1− 1

2
(x+ Pn(x))

)
> 0
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comme produit de deux réels positifs.

Q 24. À x fixé, la suite (Pn(x))n est croissante et majorée, donc convergente. Soit f(x) sa limite. La majora-
tion Pn(x) 6 x donne en passant à la limite l’inégalité f(x) 6 x. En passant à la limite dans la relation (1)
(question Q22), il vient

x− f(x) = (x− f(x))

(
1− 1

2
(x+ f(x))

)
∴

1

2

(
x− f(x)

)(
x+ f(x)

)
= 0,

d’où f(x) = x par différence car tout le monde est positif d’après la question Q23.

Q25. La relation (1) et Pn(x) > 0 donnent, par une récurrence immédiate,

∀n ∈ N, ∀x ∈ [0, 1] : 0 6 x− Pn(x) 6
(

1− x

2

)
(x− Pn−1(x)) 6

(
x− P0(x)

) (
1− x

2

)n
= x

(
1− x

2

)n
.

Q26. Posons ∆(x) = x
(

1− x

2

)n
pour x ∈ [0, 1]. Un calcul simple montre que

∆′(x) =
(

1− x

2

)n−1(
1− n+ 1

2
x

)
∴ ‖∆‖

∞
= ∆

(
2

n+ 1

)
=

2

n+ 1

(
1− 1

n+ 1

)n
∼

n→∞

2

en
,

donc (Pn)n converge uniformément vers va sur [0, 1]. L’extension à [−1, 1] est immédiate car tant va que Pn sont
des fonctions paires (pour Pn, on l’a montré à la question Q20).

Q27. C’est manifestement une question de cours. Il n’est donc pas question de la bâcler.
— N+(P ) est bien définie par le théorème des bornescar P est une fonction polynomiale, donc continue sur le
segment [0, 1] ;
— Il est clair que N+(P ) > 0. Si N+(P ) = 0, alors P (x) = 0 pour tout x ∈ [0, 1], donc P admet une infinité de
racines, donc P est le polynôme nul ;
— Si λ ∈ R, N+(λP ) = sup

06x61
|λP (x)| = |λ| sup

06x61
|P (x)| = |λ|N+(P ) ;

— Si P et Q sont des polynômes, pour tout x ∈ [0, 1], |P (x) + Q(x)| 6 |P (x)| + |Q(x)| 6 N+(P ) + N+(Q), d’où
N+(P +Q) 6 N+(P ) +N+(Q) en passant à la borne supérieure.

On a montré que N+ définit bien une norme sur R[X].

Q 28. D’après la question 26, la suite (Pn)n converge vers X au sens de N+ et vers −X au sens de N−, donc les
normes N+ et N− ne sont pas équivalentes, puisqu’elles ne définissent pas la même notion de limite. Il est aussi
possible de construire un contrexemple ad hoc. Par exemple, N+

(
(X + 1)n

)
= 2n et N−

(
(X + 1)n

)
= 1, donc le

quotient N+/N− n’est pas borné, ce qui assure que les deux normes ne sont pas équivalentes.

II. Réductions

Q29. Soit [a, b] un segment de R de longueur non nulle. Alors, l’application ϕ définie sur [0, 1] par ϕ(t) = (1−t)a+tb

réalise une bijection strictement croissante de [0, 1] sur [a, b] de bijection réciproque ψ(u) =
u− a
b− a

(vérification

immédiate — noter que l’application ϕ est celle utilisée pour les questions de convexité).

Soit g : [a, b] → R une fonction continue. Posons f = g ◦ ϕ : [0, 1] → R. Par hypothèse, il existe une suite de
polynômes (Pn)n qui converge uniformément vers f sur [0, 1]. Alors, pour tout u ∈ [a, b] :

Qn(u) = Pn(ψ(u)) −−−→
n→∞

f(ψ(u)) = g(u)

et ‖Qn − g‖∞ = ‖Pn − f‖∞ , ce qui montre la convergence uniforme de (Qn)n vers g. Comme ψ est une fonction
affine, il est clair que Qn est un polynôme. On a ainsi étendu le théorème d’approximation de Weierstraß du seg-
ment [0, 1] à un segment [a, b] quelconque.

Q30. Pour f : [0, 1]→ R, soit l’application g(x) = f(x)−f(0)−x(f(1)−f(0)). Alors, g(0) = g(1) = 0. Supposons
que g soit la limite uniforme d’une suite (Qn)n de polynômes. Alors,

g(x)−Qn(x) = f(x)−
[
Qn(x) + f(0) + x(f(1)− f(0))

]
= f(x)− Pn(x).

Alors, Pn = Qn + f(0) + (f(1)− f(0))X ∈ R[X] et ‖Pn − f‖∞ = ‖Qn − g‖∞ .
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III. Approximation polynomiale uniforme des fonctions lipschitziennes

Soit f : [0, 1]→ R une fonction continue telle que f(0) = f(1) = 0. On prolonge f en une fonction continue sur
R par f(x) = 0 pour x ∈ R \ [0, 1]. On définit une suite de polynômes Qn et des fonctions Pn par

αn =

∫ 1

−1
(1− x2)n dx = 2

∫ 1

0
(1− x2)n dx, Qn(x) =

1

αn
(1− x2)n,

∀x ∈ [0, 1] : Pn(x) =

∫ 1

−1
f(x+ y)Qn(y) dy.

Q31. De 1− x2 > 1− x > 0 et de la croissance de t→ tn sur R+, on tire

αn = 2

∫ 1

0
(1− x2)n dx > 2

∫ 1

0
(1− x)n dx

(u=1−x)
= 2

∫ 1

0
un du =

2

n+ 1
ou, alternativement,

αn = 2

∫ 1

0
(1− x2)n dx >

∫ 1

0
2x(1− x2)n dx =

[
−(1− x2)n+1

n+ 1

]1
0

=
1

n+ 1
.

Q32. Si 0 < α < 1 et x ∈ [−1,−α] ∪ [α, 1], la majoration de la question 31 et les croissances comparées donnent

0 6 Qn(x) 6
(1− α2)n

αn
6 (n+ 1)(1− α2)n −−−→

n→∞
0.

Q 33. L’énoncé invite implicitement à effectuer le changement de variable t = x + y dans l’intégrale. On utilise
ensuite le fait que f est nulle en dehors de l’intervalle [0, 1] et les inégalités x− 1 6 0 < 1 6 x+ 1.

∀x ∈ [0, 1] : Pn(x) =

∫ 1

−1
f(x+ y)Qn(y) dy =

∫ x+1

x−1
f(t)Qn(t− x) dt =

∫ 1

0
f(t)Qn(t− x) dt.

En utilisant la définition de Qn et la formule du binôme de Newton, on peut écrire

Qn(t− x) =
1

αn

[
1− (t− x)2

]n
=

2n∑
k=0

Ak,n(t)xk avec Ak,n(t) ∈ R[t].

Il est inutile d’écrire la formule explicite en regroupant les puissances de x. En intégrant par rapport à t, il vient

Pn(x) =
2n∑
k=0

bkx
k avec bk =

∫ 1

0
f(t)Ak,n(t) dt ∈ R.

Q34. Par définition de αn, on a
∫ 1

−1
Qn(y) dy = 1. On calcule alors, en tenant compte de ce que Qn(y) > 0,

Pn(x)− f(x) =

∫ 1

−1
f(x+ y)Qn(y) dy − f(x)

∫ 1

−1
Qn(y) dy =

∫ 1

−1

(
f(x+ y)− f(x)

)
Qn(y) dy

∴
∣∣Pn(x)− f(x)

∣∣ 6 ∫ 1

−1
|f(x+ y)− f(x)|Qn(y) dy.

Q 35. On suppose que f est k-lipschitzienne. Soient ε > 0 et δ =
ε

2k
. Alors, en utilisant que Qn(y) > 0 pour

−1 6 y 6 1 et que
∫ 1

−1
Qn(y) dy = 1, il vient

∣∣Pn(x)− f(x)
∣∣ 6 ∫ −δ

−1
|f(x+ y)− f(x)|Qn(y) dy +

∫ δ

−δ
|f(x+ y)− f(x)|Qn(y) dy +

∫ 1

δ
|f(x+ y)− f(x)|Qn(y) dy

6 2 ‖f‖
∞

(∫ −δ
−1

Qn(y) dy +

∫ 1

δ
Qn(y) dy

)
+

∫ δ

−δ
k|y|Qn(y) dy

6 2 ‖f‖
∞

(∫ −δ
−1

Qn(y) dy +

∫ 1

δ
Qn(y) dy

)
+ kδ

∫ δ

−δ
Qn(y) dy

6 2 ‖f‖
∞

(∫ −δ
−1

Qn(y) dy +

∫ 1

δ
Qn(y) dy

)
+ kδ

∫ 1

−1
Qn(y) dy 6

ε

2
+
ε

2
= ε

si n est suffisamment grand d’après la question 32.
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Q 36. L’approximation uniforme s’étend par la question 35 aux fonctions lipschitziennes sur un segment. Pour
pouvoir appliquer la question précédente, il suffit de montrer que toute fonction de classe C1 sur un segment est
lipschitzienne, ce qui vient de l’inégalité des accroissements finis : si f est de classe C1 sur le segment [a, b], sa
dérivée est continue, donc bornée sur ce segment et f est

∥∥f ′∥∥
∞
−lipschitzienne.

IV. Étude sur R

Soit (Pn)n une suite de polynômes convergeant uniformément sur R vers une fonction f .

Q37. Par définition de la convergence uniforme, lim
n→∞

sup
x∈R

∣∣f(x)−Pn(x)
∣∣ = 0. En particulier, cette borne supérieure

est finie à partir d’un certain rang n0. Alors, pour n et m au moins égaux à n0, l’inégalité triangulaire donne∣∣Pn(x)− Pm(x)
∣∣ 6 ∣∣Pn(x)− f(x)

∣∣+
∣∣f(x)− Pm(x)

∣∣ < +∞.
Ainsi, Pn − Pm est une fonction polynomiale bornée

Q38. Soit P =

d∑
k=0

akX
k un polynôme de degré d > 1. Alors, P (x) ∼

x→+∞
adx

d −−−−→
x→+∞

sgn(ad)∞. En particulier,

la fonction polynomiale P n’est pas bornée. Par contraposée, Pn − Pm est constant pour tout (n,m) ∈ N2 tel que
min(n,m) > n0 et, en particulier, Pn − Pn0 l’est pour tout n > n0.

Ainsi, pour tout n > n0, il existe cn ∈ R tel que Pn − Pn0 = cn. En passant à la limite simple, il vient
f(x)−Pn0(x) = c = lim cn, l’existence de c venant de l’existence de la limite dans le terme de gauche. Ainsi, f est
une fonction polynomiale.

Q39. Soit une série entière S(x) =
∞∑
n=0

anx
n de rayon de convergence infini. Que cette série converge uniformément

sur R signifie que la suite de fonctions polynomiales (Pn)n définie par Pn =

n∑
k=0

akx
k converge uniformément. Elle

est donc constante à partir d’un certain rang n0, soit
∞∑

n=n0+1

anx
n = 0. Par unicité du DSE, cela entraîne an = 0

pour tout n > n0. Ainsi, S est polynomiale.

V. Un exercice d’application

Soit A ⊂ R. Pour P ∈ R[X], on pose NA(P ) = sup
a∈A
|P (a)|.

Q40. Montrons que NA définit une norme sur R[X] si, et seulement si, A est une partie bornée infinie de R.

Si A est finie, alors NA(P ) est bien définie. Si A est infinie, alors NA(P ) est définie comme la borne supérieure
d’un ensemble infini et n’est plus automatiquement finie. Or, un polynôme non constant a des limites infinies en
l’infini, donc NA(P ) ∈ R, si, et seulement si A est bornée.

Il est patent que NA est positive, vérifie l’inégalité triangulaire et la propriété NA(λP ) = |λ|NA(P ) quelle que
soit A (c’est la même démonstration qu’à la question 27 pour N+). Le seul point en suspens est donc la caractéri-
sation du polynôme nul. Or, sup

a∈A
|P (a)| = 0 équivaut à P (a) = 0 pour tout a ∈ A. Ce qui caractérise le polynôme

nul si, et seulement si, A est infinie.

Q41. On suppose que A est une partie infinie bornée de R et l’on note que, pour a ∈ R, l’application P 7−→ P (a)
est une forme linéaire sur R[X]. Elle est donc continue si, et seulement s’il existe une constante c telle que
|P (a)| 6 cNA(P ) pour tout P ∈ R[X].

— Si a ∈ A, alors |P (a)| 6 sup
b∈A
|P (b)| = NA(P ). L’application P 7−→ P (a) est donc continue.
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— Par ailleurs, A ⊂ A assure que sup
a∈A
|P (a)| 6 sup

a∈A
|P (a)|. Or, si A 3 a = lim an avec (an)n ∈ AN, alors, par

continuité de P , P (a) = limP (an), donc |P (a)| 6 NA(P ), soit NA = NA et P 7−→ P (a) est continue.

— Supposons maintenant que a 6∈ A. Alors, Ac est ouvert, donc il existe η > 0 tel que [a − η, a + η] ∩ A = ∅
et il existe une fonction lipschitzienne valant 1 en a et dont la restriction à A est nulle (affine par morceaux par
exemple). En vertu du théorème d’approximation de Weierstraß, elle est limite uniforme d’une suite de polynômes
Pn. On a ainsi Pn(a) = 1 pour tout n et limNA(Pn) = 0, donc P 7−→ P (a) n’est pas continue en a.

On a bien montré que l’application P 7−→ P (a) est continue si, et seulement si, a ∈ A.
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