
DMS 4 (secours) – Théorème de Müntz (CCMP - MP - 2009)

On désigne par C ([0,1]) l’espace vectoriel des fonctions réelles continues sur [0,1]. Pour tout λ ≥ 0, on note φλ l’élé-
ment de C ([0,1]) défini par φλ(x) = xλ. Par convention, on a posé 00 = 1 de sorte que φ0 est la fonction constante 1.

Soit (λk )k∈N une suite de réels ≥ 0 deux à deux distincts. On note W le sous- espace vectoriel de C ([0,1]) engendré par
la famille (φλk )k∈N. Le but du problème est d’établir des critères de densité de l’espace W dans C ([0,1]) pour l’une ou
l’autre des deux normes classiques N∞ ou N2 définies par :

N∞( f ) = sup
x∈[0,1]

| f (x)| et N2( f ) =
(∫ 1

0
| f (x)|2dx

) 1
2

La question préliminaire et les parties A, B, C et D
sont indépendantes les unes des autres.

Question préliminaire

1) Montrer que (φλ)λ≥0 est une famille libre de C ([0,1]).

A. Déterminants de Cauchy
On considère un entier n > 0 et deux suites réelles finies (ak )1≤k≤n et (bk )1≤k≤n telles que ak +bk 6= 0 pour tout k ∈{

1,2, . . . ,n
}
. Pour tout entier m tel que 0 < m ≤ n, le déterminant de Cauchy d’ordre m est défini par :

Dm =

∣∣∣∣∣∣∣∣∣∣

1
a1+b1

1
a1+b2

. . . 1
a1+bm

1
a2+b1

1
a2+b2

. . . 1
a2+bm

...
...

...
1

am+b1

1
am+b2

. . . 1
am+bm

∣∣∣∣∣∣∣∣∣∣
.

On définit la fraction rationnelle :

R(X ) =

n−1∏
k=1

(X −ak )

n∏
k=1

(X +bk )
.

2) Montrer que si (bk )1≤k≤n est injective, alors R(X ) est de la forme R(X ) =
n∑

k=1

Ak
X+bk

avec AnDn = R(an)Dn−1. On

pourra pour cela considérer le déterminant obtenu à partir de Dn en remplaçant la dernière colonne de la matrice

par
(
R(a1) R(a2) · · · R(an)

)>
.

3) En déduire que

Dn =

∏
1≤i< j<≤n

(a j −ai )(b j −bi )∏
1≤i≤n
1≤ j≤n

(ai +b j )
.

B. Distance d’un point à une partie d’un espace normé
Soit E un espace vectoriel normé par une norme ‖·‖. On rappelle que la distance d’un élément x ∈ E à une partie non

vide A de E est le réel noté d(x, A) défini par :
d(x, A) = inf

y∈A
‖x − y‖

4) Montrer que d(x, A) = 0 si et seulement si x est adhérent à A.

5) Montrer que si (An)n≥0 est une suite croissante de parties de E et si A =⋃
n≥0 An alors d(x, A) = limn→∞ d(x, An).

Pour x ∈ E , on note Bx = {
y ∈ E ; ‖y − x‖ ≤ ‖x‖}. On considère un sous-espace vectoriel V de dimension finie de E . Les

parties de V fermées et bornées sont dites compactes.

6) Montrer que Bx ∩V est compacte et que d(x,V ) = d(x,Bx ∩V ) pour tout x ∈ E .

7) En déduire que pour tout x ∈ E , il existe un élément y ∈V tel que d(x,V ) = ‖x − y‖.

C. Distance d’un point à un sous-espace de dimension finie
dans un espace euclidien

Dans cette partie, on suppose que la norme sur l’espace vectoriel E est définie à partir d’un produit scalaire (· | ·) sur
E : ‖x‖ =p

(x | x).
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8) Montrer que si V est un sous-espace vectoriel de dimension finie de E , alors pour tout x ∈ E , la projection ortho-
gonale de x sur V est l’unique élément y ∈V vérifiant d(x,V ) = ‖x − y‖.

Pour tout suite finie (x1, x2, . . . , xn) ∈ E n , on désigne par G(x1, x2, . . . , xn) le déterminant de la matrice de Gram d’ordre n
définie par :

M(x1, x2, . . . , xn) =


(x1 | x1) (x1 | x2) · · · (x1 | xn)
(x2 | x1) (x2 | x2) · · · (x2 | xn)

...
...

...
(xn | x1) (xn | x2) · · · (xn | xn)

 .

9) Montrer que G(x1, x2, . . . , xn) = 0 si et seulement si la famille (x1, x2, . . . , xn) est liée.

10) On suppose que la famille (x1, x2, . . . , xn) est libre et l’on désigne par V l’espace vectoriel qu’elle engendre. Montrer
que, pour tout x ∈ E ,

d(x,V )2 = G(x1, x2, . . . , xn , x)

G(x1, x2, . . . , xn)
.

D. Comparaison des normes N∞ et N2

Pour toute partie A de C ([0,1]), on note A
∞

et A
2

les adhérences de A pour les normes N∞ et N2 respectivement. Pour
f ∈ C ([0,1]), la notation d( f , A) désigne toujours la distance de f à A relativement à la norme N2 (on ne considérera
jamais, dans l’énoncé, la distance d’un élément à une partie relativement à la norme N∞).

On admet le théorème d’approximation de Weierstraß : l’espace vectoriel des fonctions polynomiales est dense
dans C ([0,1]) pour N∞.

11) Montrer que pour tout f ∈C ([0,1]), N2( f ) ≤ N∞( f ). En déduire que pour toute partie A de C ([0,1]), on a A
∞ ⊂ A

2
.

On considère l’ensemble V0 =
{

f ∈C ([0,1]); f (0) = 0
}
, et l’on rappelle que φ0 désigne la fonction constante 1.

12) Montrer que φ0 ∈V0
2

.

13) En déduire que V0 est dense dans C ([0,1]) pour la norme N2, mais n’est pas dense pour la norme N∞.

14) Montrer que si V est un s.e.v. d’un e.v.n, alors son adhérence V est également un espace vectoriel.

15) Montrer qu’un s.e.v. V de C ([0,1]) est dense pour la norme N∞ si, et seulement si,φm ∈V
∞

pour tout entier m ≥ 0.

16) En déduire qu’un s.e.v. V de C ([0,1]) est dense pour la norme N2 si, et seulement si,φm ∈V
2

pour tout entier m ≥ 0.

E. Un critère de densité de W pour la norme N2

Pour tout n ∈N, on note Wn l’espace vectoriel engendré par la famille finie (φλk )0≤k≤n .

17) Montrer que l’espace W est dense dans C ([0,1]) pour la norme N2 si et seulement si limn d(φµ,Wn) = 0 pour tout
entier µ≥ 0.

18) Montrer que

∀µ≥ 0: d(φµ,Wn) = 1√
2µ+1

n∏
k=0

|λk −µ|
λk +µ+1

.

19) Montrer que la suite

( |λk −µ|
λk +µ+1

)
k∈N

tend vers 1 pour tout µ≥ 0 si, et seulement si, la suite (λk )k∈N tend vers +∞.

On pourra pour cela étudier les variations de la fonction x ∈ [0,µ] 7→ µ−x

x +µ+1
.

20) En déduire que l’espace W est dense dans C ([0,1]) pour la norme N2 si et seulement si la série
∑
k

1

λk
est divergente

(s’il existe k tel que λk = 0, on l’exclue de la somme).

F. Un critère de densité de W pour la norme N∞

21) Montrer que si W est dense dans C ([0,1]) pour la norme N∞, alors la série
∑
k

1

λk
est divergente.

22) Soit ψ=∑n
k=0 akφλk ∈Wn . Montrer que si λk ≥ 1 pour tout k ∈ {0,1, . . . ,n}, alors pour tout µ≥ 1 :

N∞(φµ−ψ) ≤ N2

(
µφµ−1 −

n∑
k=0

akλkφλk−1

)
.



23) On suppose que la suite (λk )k∈N vérifie les deux conditions suivantes :{
(i ) λ0 = 0

(i i ) λk ≥ 1 pour tout k ≥ 1.

Montrer que, sous ces conditions, si la série
∑
k

1

λk
est divergente, alors W est dense dans C ([0,1]) pour N∞.

24) Montrer que la conclusion précédente est encore valable si l’on remplace la condition (i i ) par la condition plus
faible (i i ′) : infk≥1λk > 0.


