DMS 4 (secours) — PSI* — 2025-2026 — Corrigé

Pour A > 0, on pose ¢, la fonction définie sur le segment [0, 1] par ¢y (z) = 2. Les fonctions ¢ sont continues et
¢o est la fonction constante égale & 1. On note E I'espace vectoriel des fonctions réelles définies et continues sur [0, 1].

1) Le plus rapide est de noter que ¢, est vecteur propre de 'opérateur f +— (:17 — a:f’(x)), défini sur €1 ([0, 1]),
pour la valeur propre A. La famille (¢)),-, est donc libre.

Plus directement, soient n > 1, 0 < A; < A2 < -+ < Ay et (a1,a2,...,a,) € R". On suppose que a1y, +
agpr, + -+ andy, = 0g. Siles a; ne sont pas tous nuls, soit k£ = max{l <i < n; «a; # 0}. Alors,

0= Z a;dy, (z Z a;py, ()~ Rzt m sgn(ay) 0o

T—+00

d’ou une contradiction. Ainsi, les «; sont tous nuls et la famille ((b Ai) est libre. De 14, la famille (¢)) Aso est libre.

1<i<n

A. Déterminant de Cauchy

Soient (ax);<p<p €t (bk)i<pep deux suites réelles finies avec ag +by, # 0 pour tout k € [1,n]. Pour 1 < m < n, on

-1 n
1 n
pose My, = < > et D, = det M,,. Soit enfin la fraction rationnelle R = H (X —ayg) x H(X —by) !
a; + b] 1<i,j<m k=1 k=1
2) On suppose les by, distincts deux a deux. Le dénominateur de la fraction rationnelle R est par hypothése scindé

n
A
a racines simples. Comme deg(R) < 0, ellle se décompose donc en éléments simples sous la forme R = Z X +kb
k

Alors,

n

T Ay, "N A
(R(a1) R(a2) - Rlan)) = (Z ai + by ; az + by,

k=1

.
Ag n

= ALCL(M,

bk) ; kCr (Mp,)

Notons lf)vn le déterminant de la matrice obtenue & partir de M, en substituant (O o 0 R(an))T a la derniére
colonne. La linéarité du déterminant par rapport a la derniére colonne donne

k=1

Dyp =Y Apdet (CL(My), ..., Cr(My),...,Co1 (M), Co(Mp)) = > Apn Dy = AnDy.

k=1 k=1
Par ailleurs, le calcul immédiat des R(a;) donne
(R(a1) R(as) --- R(an))' =(0 --- 0 R(a,))' . Dp=R(an)Dn1

en développant par rapport a la derniére colonne, soit A, D,, = R(ay)D,,—1 par identification.

3) La question précédente donne une formule de récurrence. Par ailleurs, on connait une expression explicite de
la décomposition en éléments simples, dont les coefficients valent Ay = R(X)(X + bi)|x«—p,. On obtient ainsi la
formule de récurrence

— n—1

H —ap) [ (=bn+bx) -
n A, n n—1 "= an + by, Pt (an + bi) (b, + ag)

[T +b)  T[(b0—an) =

k=1 k=1

IT (a5 —a)(®; —b)
, . L1 . 1<i<j<n
Avec Dy = , une récurrence immédiate sur n donne bien D, = . Notons que la
a1 + by I (ai+by)
1<i,j<n

formule s’étend au cas ot la suite (by), <k<n 1est pas injective, le produit et le déterminant valant alors trivialement
0 (on peut aussi arguer de la continuité du déterminant).



B. Distance d’un point a une partie d’un espace normé.

On rappelle que, si (E, Il Il ) est un espace vectoriel normé, x € F et A C FE, alors la distance de x a A est par
définition d(x, A) = in{f4 |z — all.
ac

4) On raisonne par équivalences en revenant a la définition. Soit x € E. Alors,
d(z,A) =0 < Ve >0,Ja€ A: |z —a|| <e & Ve>0: B(z,e) NA# T < z€ A

5) Notons que, si A C B, alors d(z, A) > d(z, B). Soient alors (A,,),, une suite croissante de parties non vides de F
et A =Up>04, et x € E. Comme A, C A, on a d(z, A) < d(z, 4,). De méme, (d(x,A,)), est une suite positive
décroissante, donc convergente. Ainsi, d(z, A) < lim d(z, 4,). Siy € A, alors y € A,, pour un certain entier ng,
donc ||z —y|| > d(z, Ay,) = lim d(z, A,). En considérant (y,), suite de A telle que lim ||z — y,|| = d(z, A), il
vient d(x, A) > lim d(z, A,), d’ou 'égalité.

6) Pour z € F, on note B, = {y € E ; |ly — || < |lz[|} = B(x,||z||). Cette partie de E est un boule fermée,
donc elle est fermée et bornée. De plus, tout sous-espace vectoriel de dimension finie est fermé, donc B, NV est
I'intersection de deux fermés, donc est fermé. Enfin, B, NV C B, et toute partie incluse dans une partie bornée
est bornée. Finalement, B, NV est une partie compacte de E.

Par ailleurs, 0 € B,NV, donc d(z,V) < |[z—0g|| = ||z|| et tout vecteur y € E tel que ||z —y| < ||z|| appartient
a B, donc tout vecteur y € V tel que ||z — y|| < ||z| appartient a B, N'V. Ainsi, d(z,V) = d(z, B, NV).

7) L’application y — ||x — y|| définie sur le compact B, NV est continue et admet donc un minimum (avec le
vocabulaire de PSI, une fonction définie sur une partie fermée et bornée d’un e.v.n. de dimension finie et & valeurs
réelles est bornée et atteint ses bornes). Autrement dit, il existe y € V' tel que d(z, V) = ||z — y|.

C. Distance d’un point a un s.e.v. de dimension finie dans un espace euclidien.
Dans cette partie, on suppose que E est une espace euclidien, la norme dérivant donc d’un produit scalaire (- |-).

8) C’est une question de cours. Notons py (z) la projection orthogonale de x sur V. Comme V est de dimension
finie, on a F =V @V et le vecteur z se décompose en z = py (z) 4 (z — py(x)) avec, donc = — py (z) € V+. Soit
yeV. Alors, z —y = x — py(z) + pv(z) —y avec & — py(z) € VL et py(z) —y € V. Le théoréme de Pythagore
s’applique et donne

lz =yl = lz = pv (@)II* + llpv (@) — yl* = |z — pv(@)|,
avec égalité si, et seulement si, y = py (z).

9) Notons V' = Vect(z1, z2, ..., xy,). Soit A = (a1 O RREE an)T € R" ~ A, 1(R). Soit x = Zaiazi € V. Alors,
k=1
pour M = M(x1,xz2,...,%y),
MA= ((z1|z) (w2|x) - (xn\x))T AcKerM <= xz € Vect(zy,xa,...,2,)",

ou il est entendu que 'orthogonal est ’orthogonal dans le sous-espace euclidien V' muni du produit scalaire induit.
Ainsi, M est inversible si, et seulement si, Ker M = {0} si, et seulement si, Vect(x1, z2,...,2,) = V si, et seulement
si, (z1,22,...,2,) est libre. Par négation, G(x1, z2,...,x,) = 0 si, et seulement si, (x1,z2,...,x,) est lie.

10) On suppose que (z1,z2,...,Z,) est libre. On note a nouveau V = Vect(x1, z2,...,x,). Soit x € E.
— Siz e V*t, alors
M(x1,22,...,3n,7) = Diag (M(z1,22,...,2n), |2|?) G(x1,T2, ..., 0, 2) = G(x1, 29, ..., )|z

— Pour (a,7) € R x [1,n], M(z1,22,...,Zn,x — ax;) est obtenue a partir de M (x1,x2,...,2,,x) par les deux
transvections Cy41 < Cpy1—aCj et Ly < Ly, —al;. C'est clair, sauf pour le coefficient d’indice (n+1,n+1), qui
subit [|z|? < ||z||* — a(z | z;) — a(x; |2 — ax;) = ||z — ax;]|?. Les transvections étant sans effet sur le déterminant,
on a donc G(x1,xa,...,Tn,x — ax;) = G(z1,T2,. .., Ty, T).

— On peut conclure : pour py(z) = ayxy + @z + -+ - + aptnp,

G(x1,29,...,xp,x) = G(r1,22,...,Tp, ¢ —oqx1) = -+ = G(x1, 29, ..., Tpn,x — py(x)) =

2 _ G(x1,x9,...,2n, )

:G($1,$2,...,$n)||$—pv($)||2 = d(.CL’,V)Q d(l’,V) G(.%’l Toy ... T ) .
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Autre rédaction. On rappelle que

VyeV: (z|ly) = (pv(@)|y) + (2 —pv(z) ly) = (pv(2)]y).

eve
On peut alors décomposer
(z1])
M(z1,22,...,25)
G(x1,x2,...,Tp,x) =

o (2a |2)

(@|z) - (@]wa)| lol?
0 (1 |pv(2))

M(.TUl,xQ,...,J}n) M(xlax%---axn) :
= +

0 (zn | pv(2))
(pv(@)|z1) - (pv()|z) | Iz = pv(2)]? (pv(@)|z1) - (pv()|za) | lpv(@)?

= G(z1,x9,...,2,) d(z,V)? + G(ml,xz, el xn,pv(x)) = G(z1,x2,...,2,) d(z,V)?

car (:cl,:cQ,...,xn,pV(x)) est liée.

D. Comparaison des normes N, et Ns.

11) Soit f € €([0,1]). Alors,

1/2

Na(f) = ( /0 1f<t>2dt> " e ( /O 1 Noo<f>2dt) — Noolf):

Toute suite d’éléments de €([0,1]) de limite f au sens de No tend donc également vers la méme fonction f au
sens de No. Corrélativement, par caractérisation séquentielle de ’adhérence, A™ ¢ A

On note V} le sous-espace vectoriel de €'([0, 1]) formé des fonctions de ([0, 1]) s’annulant en 0.

12) Rappelons que ¢q est la fonction constante égale a 1. Posons f,, la fonction dont les restrictions aux intervalles
[0,27"] et a [27", 1] sont affines, qui vaut 0 en 0 et 1 sur [27",1]. Alors, f, € V et

g 1/2
N2(fn—¢o)=</0 <1—2"t>2dt> - L

Ainsi, lim f,, = ¢ au sens de Ny, donc ¢g € VOQ.

Autre construction possible (EP — calcul plus simple) : pour g,(z) = 1 — (1 —2)", (¢po — gn)(x) = (1 — x)",
1
d’ott No(¢g — gn)? = / (1 — z)?™ dz, soit Na(¢o — gn) = (2n+1)"/2 —— 0.
0

n—oo

13) 1l est facile d’adapter la construction précédente en substituant & ¢y une fonction générique f de €([0,1]) en
considérant la suite (fy), € VON telle que fjjp,2-n) est affine et fp|p-n 1) = fjj2-n, 1), mais I'énoncé semble suggérer
d’utiliser la suite construite & la question précédente : notons pour commencer que E = Vect(¢g) @ V. La somme
est évidemment directe et toute fonction f de E peut se décomposer en f = f(0)po+ (f — f(0)¢o), ot 'on constate
que f — f(0)¢p € V. En reprenant les notations de la question précédente, avec lim f,, = ¢, soit f € ([0, 1]).
Alors, f se décompose en f = f(0)pg+vg avec vy € Vp, d’ott lim f(0) f,+v9 = f au sens de Ny avec f(0) fr,+vo € V
pour tout n € N.

Sife Vo, No(f—00) = |f(1)—¢o(1)] = 1, donc ¢g & 702, ce qui montre que Vp n’est a fortiori pas dense dans E.

14) Soit V un sous-espace vectoriel d'un e.v.n. (E, ||| ). Alors V'O V est non vide. De plus, si (f,g) € V x V.

et f = limf,, g = limg, avec (fn,gn) € V? pour tout n € N, si (\,u) € R?, alors I'inégalité triangulaire et
I’homogénéité de la norme donnent

ICAf + 1g) = M+ pgn) | SIS = Full + 16lllg = gnll ~——— 0, . Af+pugeV.
3



Cette question aurait pu étre intervertie avec la précédente, qu’elle rend immédiate : en effet, V est un hyperplan
de €([0,1]) et Vp # Vi d’apres la question 12, donc Vj est dense dans €([0, 1]).

15) Notons W = Vect{¢y, ; m € N} I'ensemble des fonctions polynomiales définies sur [0, 1]. Le théoréme d’ap-

proximation de Weierstraf donne W™ = %([0, 1]). Ainsi, si ¢, € V. pour tout m € N, alors W c V", d’ott
C(0,1]) =W V> =Vce(o1) . V°=%(01).

La réciproque est triviale : si Vo = €([0, 1]), alors ¢, € V', puisque ¢, € €([0,1]).

16) La réciproque est la méme que pour Ny : si e % (]0,1]), alors ¢, € V2, puisque ¢, € €([0,1]).

Supposons pour 'autre sens que ¢, € v pour tout m € N. Soient f € €([0,1]) et € > 0. Alors, le théoréme
d’approximation de Weierstraf montre l’existence d’une fonction polynomiale P telle que Noo(f — P) < e. Par

hypotheése sur ¢y, et le fait que V2 est un espace vectoriel en vertu de la question 14, P € V", d’ot, par I'inégalité
de la question 11,

No(f = P) < Nuo(f —P)<e

ce qui montre bien que V est dense dans €(]0, 1]) au sens de No.

E. Un critére de densité de W pour la norme Nj.

On rappelle que (Ag)gen € Rli est une suite de réels positifs deux & deux distincts. On note W le sous-espace
vectoriel de C([0,1]) engendré par la famille (¢y, ) .o €t, pour n € N, W, = Vect ((b)\k i k€ [[O,n]]).

17) Pour p € N,

lim d(g, Wa) E o W) & (e, m) =0 &2 g, e T
La condition exprime donc que toutes les fonctions ¢, sont adhérentes a W, ce qui équivaut bien a W= % ([0,1))
par la question 16.

G(¢)\07 ¢)\17 s ¢)\n7 d)u) Or
G(Dro: Prrs- - Orn)

1

1

la matrice </ i ox ¢ dt> = <> , déterminant que 'on a calculé dans la partie A en
0 0<i,j<n )\74 + )\] + 1 0<i,j<n

18) La question 10 donne d((bﬂ,VVn)2 = G(qb)\o,(ml, ) ..(b)\n) est le déterminant de

prenant ap = by = A\ + 5 On reprend donc le calcul fait a la question 3 — ce qui nous intéresse est, avec un

R
décalage d’indice, le facteur 1(4&11) plus que I'expression de D,,. Il vient bien
n
n
,u )\k I )\k|
) d , W,
A0 W 2u+1kHO (1 + A +1)2 (@ Wn) = \/2u+ Hu+/\k+1
19) Pour 0 < = < p, posons ¢(x) = % La fonction ¢ est une fonction dite homographique et est monotone
T+ W
2 1
sur tout intervalle ot elle est définie, comme le montre dans ce cas particulier le calcul ¢'(z) = _(—l—lu—:—l)2 < 0.
T+ W
Ainsi,
1
Ve e |0,u: q(z) <q0)=—— < 1.
[0, 1]+ q(z) < q(0) 1

Ao —
Ainsi, s’ existe une infinité de valeurs de k telles que A\ < p, la suite <M> ne peut pas tendre vers 1.

[

Par contraposée, si cette suite tend vers 1 pour tout p > 0, alors #{k € N; )\ < u} est fini, soit lim A\, = +o0.
La réciproque est évidente.

20) En préambule, notons que, si € {\;; k € N}, alors ¢, € W.

| Ak — ul
Me+p+1
gente ; notons £(u) sa limite.

Posons pg = Comme 0 < pp < 1, la suite (d((b#, W”))n est décroissante et positive, donc conver-



Cas 1. Si —(lim A\, = +00), il existe une constante 0 < a < 1 et une suite d’entiers (ny), telle que \,, < a,
) < (Zd(QS#, nk—i-l)
S at 1

1
question 16 que W est dense dans %'([0, 1]) au sens de Na. Par ailleurs, il est clair que la série Z o diverge.
k

14
d’ot pp, < a;:—l et d(qu,Wnk , soit £(p) < Z—f—ul) et, donc, () = 0, ce qui montre par la

Cas 2. Supposons maintenant que lim A\, = +o00. Alors, pour tout u > 0, A\x > p a partir d’'un certain rang, d’ou
jz p+1 2pn+1
1 =In{l——)—In(1 ~ = .
Il(pk) . ( >\k> . ( + Ak > k—o0 Ak

Cas 2.1. Si Z — dlverge il en va de méme de la série de terme général In(py) par le théoréme de comparaison.

Cas 2.1.1. S1 u Z{\; k€ N}, ona

n

In(2p +1) Ak —
d W, =—= 1 0.
(6 W) : +§“<Ak+u+1 —

Cas 2.1.2. Si p € {\;; k € N}, alors on a aussi d(¢,, Wy,) =0.

1 .
Ainsi, la divergence de Z " entraine que @, € W pour tout u € N.
k

1
Cas 2.2. Si Z " converge, ’étude du cas 2.1. montre que la suite (d(qf)#, Wn))n admet une limite finie non
k

nulle par continuité de I'exponentielle pour tout u & {\g; k € N}.

Cas 2.2.1. Si N ¢ {\;; k € N}, il existe donc p € N tel que lim d(¢,, Wy,) > 0.

N N+1
1 1 1
Cas 2.2.2. Si N C {\;; k € N}, alors, pour tout n € N*, il existe N tel que kg_ )\— E e donc g N

p=1
diverge, ce qui contredit ’hypothése.

1
En appliquant pour conclure la question 17, on a bien prouvé I’équivalence entre la divergence de la série Z —
k
et le fait que W soit dense dans ¢([0,1]). Dans le cas A\ = k, on retrouve bien le théoréme d’approximation de

Weierstral. Notons que s’il existe k tel que A\ = 0, ce k est nécessairement unique et la divergence de la série est
4 comprendre en excluant cet indice.

F. Un critére de densité de W pour la norme N

21) Si W™ = %([0,1]), alors W= €([0,1]) d’aprés la question 11, donc Z )\,;1 diverge d’aprés la question 20.

22) Soit 1) = Y _ axgn, € Wi Alors,
k=0

o € 0.10: o) — 00 = | [ t0) — w0l at| < W16}, - ) < Nt~ ),
la majoration par Ny venant de I'inégalité de Cauchy-Schwarz. La relation ¢} = A\¢y_1 donne alors le résultat.

23) Posons \j, = A\, — 1. Alors, la suite ()\;C),@l est positive et injective. Si (Ag);5o ne tend pas vers I'infini, ce n’est
1 1 1
pas non plus le cas de (\}),;, donc g " diverge grossiérement. Si (A;);so tend vers I'infini, alors SV
1
donc E )\—;C diverge. On peut donc appliquer la question 20 & ()‘;c)I@l :

P P
. € o)
Ve >0,V > 1,3p € N*, J(aq,...,ap) € RP: Ny (d)“l - g oquzﬁ)\;c) < L o N (gbu — E 'u)\:@\k) <e
k=1 k=1

Ainsi, ¢, € W™ pour tout 1 € N*. Par hypothése, c¢’est aussi vrai de ¢y.

24) On ne suppose plus que Ay > 1 pour tout & > 1, mais seulement que § = inf A\, > 0. Posons cette fois

>

% = M\/0. Cette suite vérifie les hypothéses de la question 23. Soit alors f € €([0,1]). Pour z € [0,1], posons
5



g(z) = f(;vl/‘s). Alors, g € (|0, 1]), donc

P P
Ve >0,3p € N*,3(au, ..., 0p) € RV, Vz € [0,1]: [g(2) = Y ardy (2)| = ‘f(ml/é) =Y g, (z'0)| <.
k=1 k=1
P P
Comme z — z'/9 réalise une bijection de [0,1] sur lui-méme, |lg — Za;@,\k = ‘f — Zak@\k , ce qui
k=1 - k=1

oo

montre que W . = €([0,1]).



