
DMS 4 (secours) — PSI* — 2025-2026 — Corrigé

Pour λ > 0, on pose φλ la fonction définie sur le segment [0, 1] par φλ(x) = xλ. Les fonctions φλ sont continues et
φ0 est la fonction constante égale à 1. On note E l’espace vectoriel des fonctions réelles définies et continues sur [0, 1].

1) Le plus rapide est de noter que φλ est vecteur propre de l’opérateur f 7−→
(
x 7→ xf ′(x)

)
, défini sur C 1([0, 1]),

pour la valeur propre λ. La famille (φλ)λ>0 est donc libre.

Plus directement, soient n > 1, 0 6 λ1 < λ2 < · · · < λn et (α1, α2, . . . , αn) ∈ Rn. On suppose que α1φλ1 +
α2φλ2 + · · ·+ αnφλn = 0E . Si les αi ne sont pas tous nuls, soit k = max{1 6 i 6 n ; αi 6= 0}. Alors,

0 =
n∑
i=1

αiφλi(x) =
k∑
i=1

αiφλi(x) ∼
x→+∞

αkx
λk −−−−→

x→+∞
sgn(αk)∞,

d’où une contradiction. Ainsi, les αi sont tous nuls et la famille
(
φλi
)
16i6n est libre. De là, la famille (φλ)λ>0 est libre.

A. Déterminant de Cauchy

Soient (ak)16k6n et (bk)16k6n deux suites réelles finies avec ak+bk 6= 0 pour tout k ∈ J1, nK. Pour 1 6 m 6 n, on

poseMm =

(
1

ai + bj

)
16i,j6m

et Dm = detMm. Soit enfin la fraction rationnelle R =

n−1∏
k=1

(X−ak)×
n∏
k=1

(X−bk)−1.

2) On suppose les bk distincts deux à deux. Le dénominateur de la fraction rationnelle R est par hypothèse scindé

à racines simples. Comme deg(R) < 0, ellle se décompose donc en éléments simples sous la forme R =
n∑
k=1

Ak
X + bk

.

Alors, (
R(a1) R(a2) · · · R(an)

)>
=

(
n∑
k=1

Ak
a1 + bk

n∑
k=1

Ak
a2 + bk

· · ·
n∑
k=1

Ak
an + bk

)>
=

n∑
k=1

AkCk(Mn).

Notons D̃n le déterminant de la matrice obtenue à partir de Mn en substituant
(
0 · · · 0 R(an)

)> à la dernière
colonne. La linéarité du déterminant par rapport à la dernière colonne donne

D̃n =
n∑
k=1

Ak det
(
C1(Mn), . . . , Ck(Mn), . . . , Cn−1(Mn), Ck(Mn)

)
=

n∑
k=1

Akδk,nDn = AnDn.

Par ailleurs, le calcul immédiat des R(ai) donne(
R(a1) R(a2) · · · R(an)

)>
=
(
0 · · · 0 R(an)

)>
∴ D̃n = R(an)Dn−1

en développant par rapport à la dernière colonne, soit AnDn = R(an)Dn−1 par identification.

3) La question précédente donne une formule de récurrence. Par ailleurs, on connaît une expression explicite de
la décomposition en éléments simples, dont les coefficients valent Ak = R(X)(X + bk)|X←−bk . On obtient ainsi la
formule de récurrence

Dn =
R(an)

An
Dn−1 =

n−1∏
k=1

(an − ak)

n∏
k=1

(an + bk)

×

n−1∏
k=1

(−bn + bk)

n−1∏
k=1

(−bn − ak)

Dn−1 =
Dn−1
an + bn

n−1∏
k=1

(an − ak)(bn − bk)
(an + bk)(bn + ak)

Avec D1 =
1

a1 + b1
, une récurrence immédiate sur n donne bien Dn =

∏
16i<j6n

(aj − ai)(bj − bi)∏
16i,j6n

(ai + bj)
. Notons que la

formule s’étend au cas où la suite (bk)16k6n n’est pas injective, le produit et le déterminant valant alors trivialement
0 (on peut aussi arguer de la continuité du déterminant).
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B. Distance d’un point à une partie d’un espace normé.

On rappelle que, si
(
E, ‖·‖

)
est un espace vectoriel normé, x ∈ E et A ⊂ E, alors la distance de x à A est par

définition d(x,A) = inf
a∈A
‖x− a‖.

4) On raisonne par équivalences en revenant à la définition. Soit x ∈ E. Alors,

d(x,A) = 0 ⇐⇒ ∀ε > 0, ∃a ∈ A : ‖x− a‖ < ε ⇐⇒ ∀ε > 0: B(x, ε) ∩A 6= ∅ ⇐⇒ x ∈ A.
5) Notons que, si A ⊂ B, alors d(x,A) > d(x,B). Soient alors (An)n une suite croissante de parties non vides de E
et A = ∪n>0An et x ∈ E. Comme An ⊂ A, on a d(x,A) 6 d(x,An). De même,

(
d(x,An)

)
n
est une suite positive

décroissante, donc convergente. Ainsi, d(x,A) 6 lim d(x,An). Si y ∈ A, alors y ∈ An0 pour un certain entier n0,
donc ‖x − y‖ > d(x,An0) > lim d(x,An). En considérant (yn)n suite de A telle que lim ‖x − yn‖ = d(x,A), il
vient d(x,A) > lim d(x,An), d’où l’égalité.

6) Pour x ∈ E, on note Bx =
{
y ∈ E ; ‖y − x‖ ≤ ‖x‖

}
= B(x, ‖x‖

)
. Cette partie de E est un boule fermée,

donc elle est fermée et bornée. De plus, tout sous-espace vectoriel de dimension finie est fermé, donc Bx ∩ V est
l’intersection de deux fermés, donc est fermé. Enfin, Bx ∩ V ⊂ Bx et toute partie incluse dans une partie bornée
est bornée. Finalement, Bx ∩ V est une partie compacte de E.

Par ailleurs, 0E ∈ Bx∩V , donc d(x, V ) 6 ‖x−0E‖ = ‖x‖ et tout vecteur y ∈ E tel que ‖x−y‖ 6 ‖x‖ appartient
à Bx, donc tout vecteur y ∈ V tel que ‖x− y‖ 6 ‖x‖ appartient à Bx ∩ V . Ainsi, d(x, V ) = d(x,Bx ∩ V ).

7) L’application y 7−→ ‖x − y‖ définie sur le compact Bx ∩ V est continue et admet donc un minimum (avec le
vocabulaire de PSI, une fonction définie sur une partie fermée et bornée d’un e.v.n. de dimension finie et à valeurs
réelles est bornée et atteint ses bornes). Autrement dit, il existe y ∈ V tel que d(x, V ) = ‖x− y‖.

C. Distance d’un point à un s.e.v. de dimension finie dans un espace euclidien.

Dans cette partie, on suppose que E est une espace euclidien, la norme dérivant donc d’un produit scalaire (· | ·).

8) C’est une question de cours. Notons pV (x) la projection orthogonale de x sur V . Comme V est de dimension
finie, on a E = V ⊕ V ⊥ et le vecteur x se décompose en x = pV (x) + (x− pV (x)) avec, donc x− pV (x) ∈ V ⊥. Soit
y ∈ V . Alors, x− y = x− pV (x) + pV (x)− y avec x− pV (x) ∈ V ⊥ et pV (x)− y ∈ V . Le théorème de Pythagore
s’applique et donne

‖x− y‖2 = ‖x− pV (x)‖2 + ‖pV (x)− y‖2 > ‖x− pV (x)‖2,
avec égalité si, et seulement si, y = pV (x).

9) Notons V = Vect(x1, x2, . . . , xn). Soit A =
(
α1 α2 · · · αn

)> ∈ Rn 'Mn,1(R). Soit x =

n∑
k=1

αixi ∈ V . Alors,

pour M =M(x1, x2, . . . , xn),

MA =
(
(x1 |x) (x2 |x) · · · (xn |x)

)>
∴ A ∈ KerM ⇐⇒ x ∈ Vect(x1, x2, . . . , xn)

⊥,

où il est entendu que l’orthogonal est l’orthogonal dans le sous-espace euclidien V muni du produit scalaire induit.
Ainsi,M est inversible si, et seulement si, KerM = {0} si, et seulement si, Vect(x1, x2, . . . , xn) = V si, et seulement
si, (x1, x2, . . . , xn) est libre. Par négation, G(x1, x2, . . . , xn) = 0 si, et seulement si, (x1, x2, . . . , xn) est liée.

10) On suppose que (x1, x2, . . . , xn) est libre. On note à nouveau V = Vect(x1, x2, . . . , xn). Soit x ∈ E.
— Si x ∈ V ⊥, alors
M(x1, x2, . . . , xn, x) = Diag

(
M(x1, x2, . . . , xn), ‖x‖2

)
∴ G(x1, x2, . . . , xn, x) = G(x1, x2, . . . , xn)‖x‖2.

— Pour (α, i) ∈ R × J1, nK, M(x1, x2, . . . , xn, x − αxi) est obtenue à partir de M(x1, x2, . . . , xn, x) par les deux
transvections Cn+1 ← Cn+1−αCi et Ln+1 ← Ln−αLi. C’est clair, sauf pour le coefficient d’indice (n+1, n+1), qui
subit ‖x‖2 ← ‖x‖2−α(x |xi)−α(xi |x−αxi) = ‖x−αxi‖2. Les transvections étant sans effet sur le déterminant,
on a donc G(x1, x2, . . . , xn, x− αxi) = G(x1, x2, . . . , xn, x).
— On peut conclure : pour pV (x) = α1x1 + α2x2 + · · ·+ αnxn,

G(x1, x2, . . . , xn, x) = G(x1, x2, . . . , xn, x− α1x1) = · · · = G(x1, x2, . . . , xn, x− pV (x)) =

= G(x1, x2, . . . , xn)‖x− pV (x)‖2 = d(x, V )2 ∴ d(x, V )2 =
G(x1, x2, . . . , xn, x)

G(x1, x2, . . . , xn)
.
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Autre rédaction. On rappelle que

∀y ∈ V : (x | y) =
(
pV (x) | y

)
+
(
x− pV (x)︸ ︷︷ ︸
∈V ⊥

| y
)
=
(
pV (x) | y

)
.

On peut alors décomposer

G(x1,x2, . . . , xn, x) =

∣∣∣∣∣∣∣∣∣∣∣
M(x1, x2, . . . , xn)

(x1 |x)
...

(xn |x)

(x |x1) · · · (x |xn) ‖x‖2

∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣
M(x1, x2, . . . , xn)

0
...

0

(pV (x) |x1) · · · (pV (x) |xn) ‖x− pV (x)‖2

∣∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣∣
M(x1, x2, . . . , xn)

(x1 | pV (x))
...

(xn | pV (x))

(pV (x) |x1) · · · (pV (x) |xn) ‖pV (x)‖2

∣∣∣∣∣∣∣∣∣∣∣
= G(x1, x2, . . . , xn) d(x, V )2 +G

(
x1, x2, . . . , xn, pV (x)

)
= G(x1, x2, . . . , xn) d(x, V )2

car
(
x1, x2, . . . , xn, pV (x)

)
est liée.

D. Comparaison des normes N∞ et N2.

11) Soit f ∈ C ([0, 1]). Alors,

N2(f) =

(∫ 1

0
f(t)2 dt

)1/2

6

(∫ 1

0
N∞(f)2 dt

)1/2

= N∞(f).

Toute suite d’éléments de C ([0, 1]) de limite f au sens de N∞ tend donc également vers la même fonction f au
sens de N2. Corrélativement, par caractérisation séquentielle de l’adhérence, A∞ ⊂ A2.

On note V0 le sous-espace vectoriel de C ([0, 1]) formé des fonctions de C ([0, 1]) s’annulant en 0.

12) Rappelons que φ0 est la fonction constante égale à 1. Posons fn la fonction dont les restrictions aux intervalles
[0, 2−n] et à [2−n, 1] sont affines, qui vaut 0 en 0 et 1 sur [2−n, 1]. Alors, fn ∈ V et

N2(fn − φ0) =

(∫ 2−n

0
(1− 2nt)2 dt

)1/2

=
1√
3.2n

−−−→
n→∞

0

Ainsi, lim fn = φ0 au sens de N2, donc φ0 ∈ V0
2.

Autre construction possible (EP — calcul plus simple) : pour gn(x) = 1 − (1 − x)n, (φ0 − gn)(x) = (1 − x)n,

d’où N2(φ0 − gn)2 =
∫ 1

0
(1− x)2n dx, soit N2(φ0 − gn) = (2n+ 1)−1/2 −−−→

n→∞
0.

13) Il est facile d’adapter la construction précédente en substituant à φ0 une fonction générique f de C ([0, 1]) en
considérant la suite (fn)n ∈ V

N
0 telle que f|[0,2−n] est affine et fn|[2−n,1] = f|[2−n,1], mais l’énoncé semble suggérer

d’utiliser la suite construite à la question précédente : notons pour commencer que E = Vect(φ0)⊕ V0. La somme
est évidemment directe et toute fonction f de E peut se décomposer en f = f(0)φ0+(f−f(0)φ0), où l’on constate
que f − f(0)φ0 ∈ V . En reprenant les notations de la question précédente, avec lim fn = φ0, soit f ∈ C ([0, 1]).
Alors, f se décompose en f = f(0)φ0+v0 avec v0 ∈ V0, d’où lim f(0)fn+v0 = f au sens de N2 avec f(0)fn+v0 ∈ V0
pour tout n ∈ N.

Si f ∈ V0, N∞(f−φ0) > |f(1)−φ0(1)| = 1, donc φ0 6∈ V0
2, ce qui montre que V0 n’est a fortiori pas dense dans E.

14) Soit V un sous-espace vectoriel d’un e.v.n.
(
E, ‖·‖

)
. Alors V ⊃ V est non vide. De plus, si (f, g) ∈ V × V

et f = lim fn, g = lim gn avec (fn, gn) ∈ V 2 pour tout n ∈ N, si (λ, µ) ∈ R2, alors l’inégalité triangulaire et
l’homogénéité de la norme donnent

‖(λf + µg)− (λfn + µgn)‖ 6 |λ|‖f − fn‖+ |µ|‖g − gn‖ −−−→
n→∞

0, ∴ λf + µg ∈ V .
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Cette question aurait pu être intervertie avec la précédente, qu’elle rend immédiate : en effet, V0 est un hyperplan
de C ([0, 1]) et V0 6= V0 d’après la question 12, donc V0 est dense dans C ([0, 1]).

15) Notons W = Vect{φm ; m ∈ N} l’ensemble des fonctions polynomiales définies sur [0, 1]. Le théorème d’ap-
proximation de Weierstraß donne W∞ = C ([0, 1]). Ainsi, si φm ∈ V

∞ pour tout m ∈ N, alors W ⊂ V∞, d’où

C ([0, 1]) =W
∞ ⊂ V∞

∞
= V

∞ ⊂ C ([0, 1]) ∴ V
∞

= C ([0, 1]).

La réciproque est triviale : si V∞ = C ([0, 1]), alors φm ∈ V
∞, puisque φm ∈ C ([0, 1]).

16) La réciproque est la même que pour N∞ : si V 2
= C ([0, 1]), alors φm ∈ V

2, puisque φm ∈ C ([0, 1]).

Supposons pour l’autre sens que φm ∈ V
2 pour tout m ∈ N. Soient f ∈ C ([0, 1]) et ε > 0. Alors, le théorème

d’approximation de Weierstraß montre l’existence d’une fonction polynomiale P telle que N∞(f − P ) 6 ε. Par
hypothèse sur φm et le fait que V 2 est un espace vectoriel en vertu de la question 14, P ∈ V 2, d’où, par l’inégalité
de la question 11,

N2(f − P ) 6 N∞(f − P ) 6 ε,

ce qui montre bien que V est dense dans C ([0, 1]) au sens de N2.

E. Un critère de densité de W pour la norme N2.

On rappelle que (λk)k∈N ∈ RN
+ est une suite de réels positifs deux à deux distincts. On note W le sous-espace

vectoriel de C([0, 1]) engendré par la famille (φλk)k∈N et, pour n ∈ N, Wn = Vect
(
φλk ; k ∈ J0, nK

)
.

17) Pour µ ∈ N,

lim
n→∞

d(φµ,Wn)
(Q.5)
= d(φµ,W ) & d(φµ,W ) = 0

(Q.4)⇐⇒ φµ ∈W
2
.

La condition exprime donc que toutes les fonctions φµ sont adhérentes à W , ce qui équivaut bien à W 2
= C ([0, 1])

par la question 16.

18) La question 10 donne d(φµ,Wn)
2 =

G
(
φλ0 , φλ1 , . . . φλn , φµ

)
G
(
φλ0 , φλ1 , . . . φλn

) . Or, G
(
φλ0 , φλ1 , . . . φλn

)
est le déterminant de

la matrice
(∫ 1

0
tλi × tλj dt

)
06i,j6n

=

(
1

λi + λj + 1

)
06i,j6n

, déterminant que l’on a calculé dans la partie A en

prenant ak = bk = λk +
1

2
. On reprend donc le calcul fait à la question 3 — ce qui nous intéresse est, avec un

décalage d’indice, le facteur
R(an)

An
plus que l’expression de Dn. Il vient bien

d(φµ,Wn)
2 =

1

2µ+ 1

n∏
k=0

(µ− λk)2

(µ+ λk + 1)2
∴ d(φµ,Wn) =

1√
2µ+ 1

n∏
k=0

|µ− λk|
µ+ λk + 1

.

19) Pour 0 6 x 6 µ, posons q(x) =
µ− x

x+ µ+ 1
. La fonction q est une fonction dite homographique et est monotone

sur tout intervalle où elle est définie, comme le montre dans ce cas particulier le calcul q′(x) = − 2µ+ 1

(x+ µ+ 1)2
< 0.

Ainsi,
∀x ∈ [0, µ] : q(x) 6 q(0) =

µ

µ+ 1
< 1.

Ainsi, s’il existe une infinité de valeurs de k telles que λk 6 µ, la suite
(
|λk − µ|
λk + µ+ 1

)
k

ne peut pas tendre vers 1.

Par contraposée, si cette suite tend vers 1 pour tout µ > 0, alors #{k ∈ N ; λk 6 µ} est fini, soit limλk = +∞.
La réciproque est évidente.

20) En préambule, notons que, si µ ∈ {λk ; k ∈ N}, alors φµ ∈W .

Posons pk =
|λk − µ|
λk + µ+ 1

. Comme 0 6 pk < 1, la suite
(
d(φµ,Wn)

)
n
est décroissante et positive, donc conver-

gente ; notons `(µ) sa limite.
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Cas 1. Si ¬(limλk = +∞), il existe une constante 0 < a < 1 et une suite d’entiers (nk)k telle que λnk
6 a,

d’où pnk
6

a

a+ 1
et d

(
φµ,Wnk

)
6
ad
(
φµ,Wnk+1

)
a+ 1

, soit `(µ) 6
a`(µ)

a+ 1
et, donc, `(µ) = 0, ce qui montre par la

question 16 que W est dense dans C ([0, 1]) au sens de N2. Par ailleurs, il est clair que la série
∑ 1

λk
diverge.

Cas 2. Supposons maintenant que limλk = +∞. Alors, pour tout µ > 0, λk > µ à partir d’un certain rang, d’où

ln(pk) = ln

(
1− µ

λk

)
− ln

(
1 +

µ+ 1

λk

)
∼

k→∞
−2µ+ 1

λk
.

Cas 2.1. Si
∑ 1

λk
diverge, il en va de même de la série de terme général ln(pk) par le théorème de comparaison.

Cas 2.1.1. Si µ 6∈ {λk ; k ∈ N}, on a

d(φµ,Wn) = −
ln(2µ+ 1)

2
+

n∑
k=0

ln

(
|λk − µ|
λk + µ+ 1

)
−−−→
n→∞

0.

Cas 2.1.2. Si µ ∈ {λk ; k ∈ N}, alors on a aussi d(φµ,Wn) = 0.

Ainsi, la divergence de
∑ 1

λk
entraîne que φmu ∈W

2 pour tout µ ∈ N.

Cas 2.2. Si
∑ 1

λk
converge, l’étude du cas 2.1. montre que la suite

(
d(φµ,Wn)

)
n
admet une limite finie non

nulle par continuité de l’exponentielle pour tout µ 6∈ {λk ; k ∈ N}.
Cas 2.2.1. Si N 6⊂ {λk ; k ∈ N}, il existe donc µ ∈ N tel que lim d(φµ,Wn) > 0.

Cas 2.2.2. Si N ⊂ {λk ; k ∈ N}, alors, pour tout n ∈ N∗, il existe N tel que
N∑
k=0

1

λk
>

N+1∑
p=1

1

p
, donc

∑ 1

λk

diverge, ce qui contredit l’hypothèse.

En appliquant pour conclure la question 17, on a bien prouvé l’équivalence entre la divergence de la série
∑ 1

λk
et le fait que W soit dense dans C ([0, 1]). Dans le cas λk = k, on retrouve bien le théorème d’approximation de
Weierstraß. Notons que s’il existe k tel que λk = 0, ce k est nécessairement unique et la divergence de la série est
à comprendre en excluant cet indice.

F. Un critère de densité de W pour la norme N∞.

21) Si W∞ = C ([0, 1]), alors W 2
= C ([0, 1]) d’après la question 11, donc

∑
λ−1k diverge d’après la question 20.

22) Soit ψ =

n∑
k=0

akφλk ∈Wn. Alors,

∀x ∈ [0, 1] : |φµ(x)− ψ(x)| =
∣∣∣∣∫ x

0
φ′µ(t)− ψ′(t)|dt

∣∣∣∣ 6 N1(φ
′
µ − ψ′) 6 N2(φ

′
µ − ψ′),

la majoration par N2 venant de l’inégalité de Cauchy-Schwarz. La relation φ′λ = λφλ−1 donne alors le résultat.

23) Posons λ′k = λk−1. Alors, la suite (λ′k)k>1 est positive et injective. Si (λk)k>0 ne tend pas vers l’infini, ce n’est

pas non plus le cas de (λ′k)k>1, donc
∑ 1

λ′k
diverge grossièrement. Si (λk)k>0 tend vers l’infini, alors

1

λ′k
∼ 1

λk
,

donc
∑ 1

λ′k
diverge. On peut donc appliquer la question 20 à (λ′k)k>1 :

∀ε > 0, ∀µ > 1, ∃p ∈ N∗, ∃(α1, . . . , αp) ∈ Rp : N2

(
φµ−1 −

p∑
k=1

αkφλ′k

)
6
ε

µ
∴ N∞

(
φµ −

p∑
k=1

µαk
λk

φλk

)
6 ε.

Ainsi, φµ ∈W
∞ pour tout µ ∈ N∗. Par hypothèse, c’est aussi vrai de φ0.

24) On ne suppose plus que λk > 1 pour tout k > 1, mais seulement que δ = inf
k>1

λk > 0. Posons cette fois

λ′k = λk/δ. Cette suite vérifie les hypothèses de la question 23. Soit alors f ∈ C ([0, 1]). Pour x ∈ [0, 1], posons
5



g(x) = f
(
x1/δ

)
. Alors, g ∈ C ([0, 1]), donc

∀ε > 0, ∃p ∈ N∗, ∃(α1, . . . , αp) ∈ Rp,∀x ∈ [0, 1] :

∣∣∣∣∣g(x)−
p∑

k=1

αkφλ′k(x)

∣∣∣∣∣ =
∣∣∣∣∣f(x1/δ)−

p∑
k=1

αkφλk
(
x1/δ

)∣∣∣∣∣ 6 ε.

Comme x 7→ x1/δ réalise une bijection de [0, 1] sur lui-même,

∥∥∥∥∥g −
p∑

k=1

αkφλ′k

∥∥∥∥∥
∞

=

∥∥∥∥∥f −
p∑

k=1

αkφλk

∥∥∥∥∥
∞

, ce qui

montre que W∞ = C ([0, 1]).
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