
Convergence dominée, applications aux intégrales à paramètre

1. Cas de la convergence uniforme sur un segment

La convergence dominée n’est pas considérée comme un mode de convergence, mais comme une condition suffisante
très efficace permettant de passer à la limite sous l’intégrale. Rappelons un résultat vu dans le chapitre sur les modes
de convergence d’une suite de fonctions avant d’énoncer le théorème de convergence dominée proprement dit.

Théorème 1. Soit (fn)n une suite de fonctions continues convergent uniformément vers f sur I et un segment
[a, b] ⊂ I. Alors, f est continue et ∫ b

a
f(x) dx = lim

n→∞

∫ b

a
fn(x) dx.

C’est ce théorème qui sert à prouver que l’on peut intégrer une série entière terme à terme sur tout segment [a, b]
avec −R < a < b < R, où R est le RCV de la série entière. Il s’applique aussi à une suite de fonctions continues par
morceaux à condition de vérifier que la limite l’est aussi, ce qui n’est plus systématique comme sous l’hypothèse de
continuité.

2. Théorème de convergence dominée

2.1. Énoncé du théorème de convergence dominée.

Théorème 2. Soit (fn)n une suite de fonctions continues par morceaux définies sur un intervalle I convergeant
simplement vers une fonction f continue par morceaux. On suppose qu’il existe h : I → R+ une fonction intégrable
telle que, pour tout n ∈ N et pour tout x ∈

◦
I, |fn(x)| 6 h(x) (domination). Alors, f est intégrable sur I et∫
I
f(x) dx = lim

n→∞

∫
I
fn(x) dx.

— L’hypothèse de domination est fondamentale. Il suffit qu’elle soit vérifiée à.p.c.r. (c’est-à-dire pour tout couple (n, x) ∈
[[n0,+∞[[×I pour un certain entier n0). Elle entraîne l’intégrabilité des fonctions fn sur I par comparaison, ce qui dispense de

vérifier la convergence des intégrales
∫
I

fn(x) dx.

— Il faut vérifier que f est continue par morceaux car cela n’est pas automatique par passage à la limite simple (ni même
uniforme si l’intervalle n’est pas borné). En pratique, il suffira de le mentionner car ce sera évident sur les fonctions explicites
que l’on étudiera.
— Le théorème 1 peut être vu comme un corollaire du théorème 2. Ce n’est pas une raison pour l’oublier. En effet, exhiber une
fonction de domination h n’est pas toujours facile, alors que, selon le contexte, l’application du théorème 1 peut être immédiate.

Corollaire 1. Sous les hypothèses du théorème de convergence dominée, on a convergence dans L1(I), i.e.

lim
n→∞

∫
I

∣∣∣fn(x)− f(x)
∣∣∣ dx = 0.

Noter que l’on peut déduire le théorème 2 du corollaire en utilisant l’inégalité classique∣∣∣∣∫
I
f(x) dx−

∫
I
fn(x) dx

∣∣∣∣ 6 ∫
I

∣∣∣fn(x)− f(x)
∣∣∣ dx.

On obtient ainsi aussi la conclusion du théorème de convergence dominée avec une domination |fn − f | 6 h valable
pour tout n > n0.

2.2. Exemples de calculs de limites de suites d’intégrales.

Exemple 1. Déterminer lim In, avec In =

∫ π/4

0
(tanx)n dx. Pour x ∈ [0, π/4[, on a 0 6 tanx < 1. Donc la suite (tann x)n

converge simplement vers la fonction nulle. Par ailleurs, 0 6 tann x 6 1 pour tout n et pour tout x, et 1 est intégrable sur
l’intervalle borné [0, π/4[. Le théorème de convergence dominée s’applique et lim In = 0.

Exemple 2. Soit à calculer lim In avec In =

∫ +∞

0

1 + nx

(1 + x)n
dx =

∫
]0,+∞[

1 + nx

(1 + x)n
dx. L’intégrale est bien définie pour

n > 3 et la suite de fonctions sous l’intégrale converge simplement vers 0 sur R∗+ par croissance comparées. Pour dominer, il y
a plusieurs solutions. La première consiste à majorer en traitant séparément les soucis de convergence aux voisinages respectifs
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de 0 et de +∞, ce qui constitue une technique classique de domination (à l’œuvre dans l’étude de la fonction Γ (exercice
incontournable), par exemple) :

1 + nx

(1 + x)n
=

1 + nx

1 + nx+
(
n
2

)
x2 + · · ·+ xn

6 1 (majoration pertinente sur [0, 1])

=
1

(1 + x)n
+

nx

(1 + x)n
6

1

(1 + x)2
+

nx(
n
3

)
x3

6
(n>4)

1

(1 + x)2
+

1

x2
6

2

x2
(majoration pertinente sur [1,+∞[)

6 1
]0,1]

(x) +
2

x2
1

]1,+∞[
(x) = h(x).

On peut alternativement utiliser la relation de Chasles et écrire In =

∫ 1

0

1 + nx

(1 + x)n
dx +

∫ +∞

1

1 + nx

(1 + x)n
dx en dominant par 1

pour la première intégrale et par 2/x2 pour la deuxième. C’est en fait exactement la même preuve, juste rédigée différemment.
La deuxième solution consiste à vérifier que 0 6 fn+1(x) 6 fn(x), d’où 0 6 fn(x) 6 f3(x) pour tout n > 3. Dans les deux cas,
on a trouvé une fonction de domination intégrable et le théorème de CVD donne lim In = 0.

Exemple 3. Soit à calculer lim In avec In =

∫ n

0

Å
1− x

n

ãn
cosx dx. A priori, on ne peut pas appliquer le théorème

car l’intervalle d’intégration change avec n. Pour y remédier, on pose fn(x) =
(

1− x

n

)n
(cosx)1

[0,n]
(x). On peut alors écrire

In =

∫ +∞

0

fn(x) dx. En passant à l’exponentielle, on obtient f(x) = lim fn(x) = e−x cosx. De plus,(
1− x

n

)n
= exp

[
n ln

(
1− x

n

)]
6 exp(−x) par ln(1 + u) 6 u;

on peut ainsi prendre comme fonction de domination h(x) = e−x, qui est bien intégrable sur R+.

2.3. Exemples de recherche d’équivalents de suites d’intégrales. Le théorème de convergence dominée peut
également s’appliquer à la recherche d’équivalents. Ainsi, pour montrer que In =

∫
I
fn vérifie In ∼ cλ(n) avec λ une

fonction usuelle et c une constante, on applique le théorème de CVD à Jn =

∫
I
gn et gn =

fn
λ(n)

pour obtenir lim Jn = c.

Exemple 4. Soient f : R+ → R une fonction continue et bornée et In =

∫ +∞

0
f(t)e−nt dt. Déterminer lim In, puis un

équivalent de In dans le cas où f(0) 6= 0. Le théorème de CVD s’applique avec h(t) = ‖f‖
∞

e−t et donne lim In = 0. Pour

déterminer un équivalent de In, on effectue le changement de variable x = nt, ce qui donne In =
1

n

∫ +∞

0

f
(x
n

)
e−x dx =

1

n
Jn.

On peut appliquer le théorème de CVD à Jn avec la même fonction h, et l’on obtient

In ∼
1

n

∫ +∞

0

f(0)e−x dx =
f(0)

n
.

Extension : si f(0) = · · · = f (p−1)(0) = 0 et f (p)(0) 6= 0, la formule de Taylor-Young donne f(t) ∼
t→0

f (p)(0)

p!
tp, d’où (après calcul)

In ∼
f (p)(0)

np+1
.

Exemple 5 (Intégrales de Wallis). Soit In =

∫ π/2

0
cosn x dx. Déterminer lim In, puis un équivalent de In (faire le

changement de variable t = x
√
n).

Le théorème de CVD s’applique immédiatement pour montrer que lim In = 0 en dominant par 1 et en mentionnant que
lim cosn x = 0 pour tout x ∈]0, π/2]. Trouver un équivalent est plus délicat. Le changement de variable suggéré donne

In =
1√
n

∫ π
√
n/2

0

cosn
Å

t√
n

ã
dt =

1√
n

∫ +∞

0

1[0,π
√
n/2](t) cosn

Å
t√
n

ã
dt =

1√
n
Jn.

En passant à l’exponentielle, il vient

cosn
Å

t√
n

ã
= exp

ï
n ln

Å
1− t2

2n
+ o

Å
1

n

ããò
= exp

(
− t2/2 + o(1)

)
,

d’où la convergence simple de la fonction intégrée par Jn vers e−t
2/2. Pour la domination, on écrit

cosn
Å

t√
n

ã
= exp

ï
n ln

Å
cos

Å
t√
n

ããò
= exp

ï
n ln

Å
1− 2 sin2

Å
t

2
√
n

ããò
(1)

6 exp

ï
−2n sin2

Å
t

2
√
n

ãò
(2)

6 e−2t
2/π2

= h(t),
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en utilisant les inégalités de convexité (1) ln(1+u) 6 u, valable pour tout u > −1 et (2)
2

π
u 6 sinu, valable pour tout 0 6 u 6

π

2
.

Comme h est intégrable sur R+, le théorème de convergence dominée s’applique et l’on obtient finalement l’équivalent In ∼
…

π

2n
en utilisant la valeur de l’intégrale de Gauß. C’est une alternative au calcul classique de l’intégrale par i.p.p. suivie de l’application
de la formule de Stirling.

Une façon différente de dominer la fonction est de chercher une domination sous la forme e−ct
2

, cette forme, avec une constante
c > 0 à déterminer, étant suggérée par le calcul de la limite simple. On pose donc ϕ(u) = cu2 + ln(cosu), et l’on cherche c telle
que ϕ(u) 6 0 pour tout 0 6 u 6

π

2
. Or, ϕ(0) = 0 et ϕ′(u) = 2cu − tanu. L’inégalité ϕ(u) 6 0 est vérifiée si ϕ est décroissante,

ce qui est le cas pour c 6 1/2. La meilleure valeur de c possible est donc c = 1/2, qui donne une domination meilleure que celle
obtenue à l’aide des formules de trigonométrie, soit h(t) = e−t

2/2.

2.4. Applications aux séries de fonctions.

2.4.1. Énoncé. Le théorème de convergence dominée s’adapte à une série de fonctions
∞∑
n=0

un(t) :

Si un : I → R (ou C) est continue par morceaux, alors les sommes partielles Sn(t) =
n∑
k=0

uk(t) le sont également. Si la

série
∑

un converge simplement et s’il existe une domination intégrable h, c’est-à-dire une fonction h : I → R+ telle
que, pour tout t ∈ I et pour tout n ∈ N, |Sn(t)| 6 h(t), alors la série des intégrales converge et l’on a∫

I

( ∞∑
k=0

uk(t)

)
dt =

∞∑
k=0

Å∫
I
uk(t) dt

ã
.

De manière plus générale, la linéarité de l’intégrale donne, sous la double hypothèse de convergence simple de la série
de fonctions

∑
uk(t) et de convergence de la série numérique

∑∫
I
uk(t) dt,

∀n ∈ N :

∫
I

∞∑
k=0

uk(t) dt−
∞∑
k=0

∫
I
uk(t) dt =

∫
I

∞∑
k=n+1

uk(t) dt−
∞∑

k=n+1

∫
I
uk(t) dt,

ce qui donne la proposition évidente (au sens où elle n’utilise que la linéarité de l’intégrale, mais utile dans le cas des
séries alternées) suivante :

Proposition 1. Pour une série de fonctions simplement convergente
∑

uk(t), si la série
∑∫

I
uk(t) dt converge,

alors, pour Rn(t) =
∞∑

k=n+1

uk(t), on a∫
I

∞∑
k=0

uk(t) dt =
∞∑
k=0

∫
I
uk(t) dt⇐⇒ lim

n→∞

∫
I
Rn(t) dt = 0.

2.4.2. Cas des fonctions positives. La plus petite fonction de domination possible est h(t) = sup
n∈N
|Sn(t)|.

Si uk(t) > 0 pour tout t ∈ I et tout k ∈ N, alors h(t) = lim
n→∞

Sn(t) =
∞∑
k=0

uk(t). Il suffit donc de vérifier que la

somme de la série est intégrable. Si elle ne l’est pas, le théorème de convergence dominée ne s’applique pas.

Exemple 6. Soit à montrer l’identité
∫ +∞

0

x

shx
dx =

∞∑
n=1

2

(2n+ 1)2
=
π2

4
. On développe l’intégrande en série positive à

partir du DSE
1

1− u
=
∞∑
n=0

un avec u = e−2x < 1 ; on calcule les intégrales obtenues, puis la somme de la série.

x

shx
=

2x

ex − e−x
=

2xe−x

1− e−2x
= 2

∞∑
k=0

xe−(2n+1)x,

∫ +∞

0

xe−(2n+1)x dx =

ï
− x

2n+ 1
e−(2n+1)x

òx→+∞

0

+
1

2n+ 1

∫ +∞

0

e−(2n+1)x dx =
1

(2n+ 1)2

π2

6
= ζ(2) =

∞∑
n=1

1

n2
=
∞∑
n=1

1

(2n)2
+
∞∑
n=0

1

(2n+ 1)2
=
ζ(2)

4
+
∞∑
n=0

1

(2n+ 1)2
∴

∞∑
n=0

1

(2n+ 1)2
=

3ζ(2)

4
=
π2

8
.
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On obtient donc bien le résultat à condition de démontrer la convergence de l’intégrale de départ (i.e. l’intégrabilité de la
domination). Or, x 7−→ x

shx
est continue sur ]0,+∞[, prolongeable par continuité en 0 (par la valeur 1) et

x

shx
∼

x→+∞
2xe−x = 2xe−x/2e−x/2 = o

(
e−x/2

)
.

2.4.3. Cas des séries absolument convergentes. Pour une série de fonctions
∞∑
k=0

uk(t) absolument convergente, une

domination évidente des sommes partielles est h(t) =
∞∑
k=0

|uk(t)|. La situation est moins confortable que pour une

série de fonctions positives car h n’est pas la meilleure domination possible ; si elle est intégrable, le théorème de CVD
s’applique, mais si elle ne l’est pas, rien ne dit qu’une domination mieux choisie ne ferait pas l’affaire.

Exemple 7. Soit à montrer l’identité
∫ 1

0

(lnx)2

1 + x2
dx = 2

∞∑
n=0

(−1)n

(2n+ 1)3
.

On substitue u = −x2 < 1 dans le DSE
1

1− u
=
∞∑
n=0

un, ce qui donne
(lnx)2

1 + x2
=
∞∑
n=0

(−1)n(lnx)2x2n =
∞∑
n=0

un(x). Deux i.p.p.

sucessives permettent de se débarrasser de (lnx)2 par dérivation et donnent
∫ 1

0

un(x) dx = (−1)n
2

(2n+ 1)3
. Pour pouvoir

appliquer le théorème de convergence dominée, on montre que

h(x) =
∞∑
n=0

|un(x)| =
∞∑
n=0

(lnx)2x2n =
(lnx)2

1− x2

est intégrable sur ]0, 1[. Elle est continue sur cet intervalle. Son intégrabilité est donnée par une étude aux bornes :

h(x) ∼
x→0
x>0

(lnx)2 =
√
x(lnx)2 × 1√

x
= o

Å
1√
x

ã
& h(x) =

ln
(
1− (1− x)

)2
(1− x)(1 + x)

∼
x→1

1− x
2

,

d’où la convergence en 0 par comparaison et en 1 par prolongement par continuité (par la valeur 0).

2.4.4. Cas des séries alternées semi-convergentes. Rappelons que l’on appelle semi-convergente une série convergente,
mais pas absolument convergente. Dans ce cas, la série

∑
|uk(t)| diverge et ne constitue donc pas une domination

crédible. Le critère spécial des séries alternées propose une alternative. En effet, pour N ∈ N, si l’on pose v(N)
k = uk

si k 6 N et v(N)
k = 0 si k > N , la série

∑
v
(N)
k (t) vérifie aussi, à t et N fixés, les hypothèses du C.S.S.A. et l’on a en

particulier ∣∣∣∣∣∣
N∑
k=0

(−1)kuk(t)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
N∑
k=0

(−1)kv
(N)
k (t)

∣∣∣∣∣∣ 6
∣∣∣v(N)

0 (t)
∣∣∣ = |u0(t)|.

On peut donc prendre u0 comme fonction de domination — à condition de vérifier son intégrabilité. Si la suite de
fonctions

Ä
|uk|
ä
k
n’est décroissante qu’à partir d’un rang n0, on isole la somme partielle des n0 premiers termes et l’on

domine les sommes partielles de
∑
k>n0

uk par |un0 |.

Exemple 8. Soit à montrer, pour tout réel α > 0, l’identité
∫ 1

0

xα−1

1 + x
dx =

∞∑
k=0

(−1)k

k + α
.

Le DSE de
1

1 + x
et un calcul d’intégrale immédiat assurent que, pour tout x ∈ [0, 1[,

xα−1

1 + x
= xα−1

∞∑
k=0

(−1)kxk =
∞∑
k=0

(−1)kxk+α−1 & ∀k ∈ N :

∫ 1

0

xk+α−1 dx =
1

k + α
,

l’hypothèse α > 0 justifiant la convergence des intégrales. Il suffit donc de justifier la permutation de l’intégrale et de la somme.

La série
∞∑
k=0

(−1)kxk+α−1 est absolument convergente, mais
∞∑
k=0

xk+α−1 =
xα−1

1− x
∼
x→1

1

1− x
n’est pas intégrable (divergence en

1). On ne peut donc pas appliquer la domination prévue au paragraphe 2.4.3. Mais on peut quand même appliquer le théorème
de convergence dominée grâce au C.S.S.A., ou bien en utilisant la proposition 1 et en majorant le reste de la série :

|Rn(x)| =

∣∣∣∣∣∣
∞∑

k=n+1

(−1)kxk+α−1

∣∣∣∣∣∣ 6 xn+α ∴

∣∣∣∣∣
∫ 1

0

Rn(x) dx

∣∣∣∣∣ 6 1

n+ α+ 1
,
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ou bien, plus directement, comme expliqué au début de ce paragraphe, par la domination intégrable

∣∣∣∣∣ N∑
k=0

(−1)kxk+α−1

∣∣∣∣∣ 6 xα−1.

Notons que l’on peut aussi utiliser la convergence uniforme. Il n’y a pas convergence uniforme sur [0, 1], mais, si 0 < a < 1, on a∥∥∥(−1)kxk+α−1
∥∥∥
[0,a],∞

= ak+α−1, d’où convergence normale, donc uniforme sur [0, a]. On a donc, en intégrant terme à terme en

vertu du théorème 1,

∀a ∈ [0, 1[ : f(a) =

∫ a

0

xα−1

1 + x
dx =

∞∑
k=0

(−1)k

k + α
ak = g(a).

Par convergence de l’intégrale
∫ 1

0

xα−1

1 + x
dx, la fonction f est continue en 1. La majoration par

1

n+ α
du reste de la série alternée

dont g(a) est la somme, qui est indépendante de a, montre la convergence uniforme de la série sur [0, 1], d’où la continuité de g
en 1. On peut alors prendre a = 1 dans la formule en vertu du théorème de la double limite.

3. Théorème d’interversion série-intégrale dans le cas absolument convergent

Si
∑

uk est absolument convergente, on dispose d’un théorème supplémentaire.

Théorème 3. Soit (uk)k une suite de fonctions continues par morceaux définies sur un intervalle I telle que
∑
k>0

uk

converge simplement vers une fonction S, continue par morceaux sur I. Si
∑∫

I
|uk(t)| dt est une série convergente,

alors S est intégrable sur I et l’on a ∫
I

∞∑
k=0

uk(t) dt =
∞∑
k=0

∫
I
uk(t) dt.

Bien que cela ne fasse pas partie du théorème tel qu’énoncé par le programme, les hypothèses entraînent que
la série

∑
k>0

|uk| converge et que sa somme (si elle est continue par morceaux), est intégrable. En fait, l’hypothèse

de convergence de la série de fonctions est inutile car elle est impliquée (ce n’est pas évident, mais c’est vrai) par
l’hypothèse de convergence de la série numérique. En revanche, rien ne garantit en général la continuité par morceaux
de la somme.

3.1. Cas des fonctions positives. Soit S(t) =
∞∑
k=0

uk(t) une série de fonctions convergeant simplement vers une

fonction continue par morceaux sur I avec uk(t) > 0 pour tout t ∈ I et tout k ∈ N. Pour pouvoir appliquer le

théorème 3, il faut que
∑∫

I
|uk(t)| dt =

∑∫
I
uk(t) dt converge. Autrement dit, il suffit de prouver la convergence de

la série du terme de droite. Ainsi, dans l’exemple 6, on mentionne simplement la convergence de la série de Riemann∑
n−2. On peut faire la synthèse du cas des séries de fonctions positives : sous l’hypothèse de convergence simple de

la série vers une fonction continue par morceaux, il suffit, pour justifier l’interversion
∫
I

∞∑
k=0

uk(t) dt =
∞∑
k=0

∫
I
uk(t) dt,

de montrer que l’un des deux membres converge, l’intégrale (convergence dominée) ou la série (théorème d’interversion).

3.2. Cas des séries absolument convergentes. L’emploi du théorème 3 peut nécessiter de nouveaux calculs.

Soit à montrer l’égalité
∫ +∞

0

sin t

et − 1
dt =

∞∑
n=1

1

n2 + 1
. On développe la fonction intégrée en série par

sin t

et − 1
=
∞∑
m=1

(sin t)e−mt. Il

faut alors montrer la convergence de la série de terme général
∫ +∞

0

| sin t|e−mt dt. La majoration du sinus par 1 donne
1

m
, terme

général de la série harmonique, qui diverge. Mais la majoration∫ +∞

0

| sin t|e−mt dt 6

∫ +∞

0

te−mt dt =
1

m2

permet d’appliquer le théorème 3. Noter qu’il y a essentiellement deux majorations classiques de | sin t| : par |t| et par 1. La
première est utile pour des valeurs de t proches de 0 et la deuxième pour de grands intervalles. Il se passe ici quelque chose
de particulier : on est sur un grand intervalle, avec des valeurs de t arbitrairement grandes pour lesquelles la majoration par
t est a priori inepte... sauf que l’exponentielle au dénominateur concentre la masse autour des petites valeurs de t et que la
majoration par 1 fait diverger l’intégrale en 0, d’où le choix de la majoration par t. En cas de besoin, on pourrait aussi pu écrire
| sin t| 6 t1

[0,π]
(t) + 1

]π,+∞[
(t), majoration valable sur R+ et qui ménage la chèvre et le chou.
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Ce théorème peut aussi être plus facile à appliquer que le théorème de CVD. Ainsi, dans l’exemple 7, on a
∫ 1

0

|un(x)|dx =∣∣∣∣∣
∫ 1

0

un(x) dx

∣∣∣∣∣ il est plus rapide de montrer la convergence de
∞∑
n=0

1

(2n+ 1)3
que de justifier la convergence de l’intégrale.

4. Intégrales à paramètre

4.1. Quand les bornes varient. Ce cas n’est pas l’objectif du paragraphe. Rappelons toutefois le résultat.

Proposition 2. 1. Si f est continue par morceaux sur I et x0 ∈ I, posons F (x) =

∫ x

x0

f(t) dt. Alors, F est continue sur I. De

plus, F est dérivable en x ∈ I si, et seulement si, lim
t→x
t 6=x

f(t) existe et est finie. En ce cas, on a F ′(x) = lim
t→x
t6=x

f(t). En particulier,

si f est continue en x, alors F est dérivable en x et F ′(x) = f(x).

2. Par dérivation des fonctions composées, si u et v sont dérivables et si f est continue, alors la fonction H(x) =

∫ v(x)

u(x)

f(t) dt

est dérivable et H ′(x) = v′(x)f(v(x))− u′(x)f(u(x)).

4.2. Continuité des intégrales à paramètre.

Définition 1. Soient I et J deux intervalles de R. Soient f : I × J → R et F : x 7−→
∫
J
f(x, t) dt. On dit qu’une

fonction h :
◦
J → R+ domine f sur I ′ ⊂ I si h est continue par morceaux et si |f(x, t)| 6 h(t) pour tout (x, t) ∈ I ′×

◦
J .

Théorème 4. Théorème de convergence dominée à paramètre continu. Soient (x, t) 7−→ f(x, t) une fonction définie
sur I × J , g : I −→ K et a une borne de I. Si :

i) pour tout t ∈
◦
J , lim

x→a
f(x, t) = g(t) ;

ii) pour tout x ∈ I, les fonctions t 7−→ f(x, t) et g sont continues par morceaux sur
◦
J ;

iii) il existe une fonction intégrable h : I → R+ telle que |f(x, t)| 6 h(t) pour tout (x, t) ∈ I ×
◦
J ,

alors, g est intégrable sur I et l’on a lim
x→a

∫
I
f(x, t) dt =

∫
I
g(t) dt.

Théorème 5. Théorème de continuité. Si :
i) pour tout x ∈ I, la fonction t 7−→ f(x, t) est continue par morceaux sur

◦
J ;

ii) pour tout t ∈
◦
J , la fonction x 7−→ f(x, t) est continue sur I ;

iii) il existe une fonction intégrable h : I → R+ telle que |f(x, t)| 6 h(t) pour tout (x, t) ∈ I ×
◦
J ,

alors, la fonction F est bien définie et continue sur I.

Exemple 9. Étude de F : θ 7−→
∫ π/2

0

dt

1 + cos θ cos t
. L’intégrale définissant F (θ) est impropre si, et seulement si le

dénominateur peut s’annuler, ce que arrive uniquement pour (θ, t) = ((2k + 1)π, 0). Par ailleurs, pour cos θ = −1, on a
1

1 + cos θ cos t
∼
t→0

2

t2
, ce qui donne une intégrale divergente. Par périodicité, on peut donc considérer la fonction F sur ]− π, π[.

Sur ] − π, π[×[0, π/2], les fonctions t 7−→ 1

1 + cos θ cos t
et θ 7−→ 1

1 + cos θ cos t
sont respectivement continue p.m. et continue.

On ne peut pas dominer la fonction sur tout l’intervalle, mais, si 0 < δ < π, on a

(θ, t) ∈ [−π + δ, π − δ]× [0, π/2] =⇒ 0 6
1

1 + cos θ cos t
6

1

1− cos δ
.

Toute fonction constante étant intégrable sur un segment, on a bien une domination. Le thérorème 5 assure que F est continue
sur [−π + δ, π − δ]. Cela valant pour tout δ ∈]0, π[ (en fait, pour δ arbitrairement petit), F est continue sur ]− π, π[.

Remarque 1. L’exemple 9 illustre plusieurs idées utiles :
— Sur un intervalle d’intégration borné, dominer par une constante est suffisant. Ce n’est pas toujours possible.
— Le théorème ne donne pas que la continuité de F , mais aussi le fait que, pour tout x ∈ I, l’intégrale définissant F
est absolument convergente, donc convergente.
— Il est souvent impossible de dominer la fonction sur I, mais la continuité (comme le caractère C1) étant des pro-
priétés locales, il suffit d’appliquer le théorème sur un segment arbitraire inclus dans I.
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4.3. Dérivation des intégrales à paramètre.

Théorème 6. Si :
i) pour tout x ∈ I, la fonction t 7−→ f(x, t) est intégrable sur

◦
J ;

ii) pour tout t ∈
◦
J , la fonction x 7−→ f(x, t) est de classe C1 sur I ;

iii) pour tout x ∈ I, la fonction t 7−→ ∂f

∂x
(x, t) est continue par morceaux sur

◦
J ;

iv) il existe une fonction intégrable h :
◦
J → R+ dominant

∣∣∣∣∂f∂x (x, t)

∣∣∣∣ sur I × ◦
J ;

alors, la fonction F est bien définie et de classe C1 sur I et, pour tout x ∈ I, l’on a

F ′(x) =

∫
J

∂f

∂x
(x, t) dt.

Exemple 10. Soit F (x) =

∫ +∞

0

sin t

t
e−xt dt. Montrer que F est bien définie et de classe C1 sur R∗+ ; calculer F .

i) Pour x > 0, la fonction t 7−→ sinc(t)e−xt est continue sur ]0,+∞[, prolongeable par continuité en 0 (par la valeur 1) et O(e−xt)
quand t tend vers +∞. Elle est donc intégrable sur R+, à x > 0 fixé.
ii) Pour tout t > 0, la fonction x 7−→ sinc(t)e−xt est de classe C1 sur R∗+.
iii) Pour tout x > 0, la fonction

t 7−→ ∂

∂x
sinc(t)e−xt = −(sin t)e−xt

est continue (p.m.) sur ]0,+∞[.

iv) Pour 0 < a 6 x < +∞, on a | − (sin t)e−xt| 6 e−at et
∫ +∞

0

e−at converge. On peut donc appliquer le théorème 6, qui assure

que F est de classe C1 et que, pour tout x > 0,

F ′(x) = −
∫ ∞
0

(sin t)e−xt dt = − Im

∫ ∞
0

eite−xt dt = − Im

∫ ∞
0

e−(x−i)t dt = − Im

Å
1

x− i

ã
= − 1

1 + x2
.

On en déduit que F (x) = F (0) +

∫ x

0

F ′(t) dt = F (0) − arctan(x). Il est clair que sinc(t)e−xt est dominée par la fonction

intégrable e−t pour tout x > 1 et que lim
x→+∞

sinc(t)e−xt = 0 pour tout t ∈ R∗+. On peut alors appliquer le théorème 4, qui donne

lim
x→+∞

F (x) = 0, d’où C =
π

2
, d’où F (x) = arctan(1/x).

Exemple 11 (Mines). Montrer que la fonction F : x 7−→
∫ 1

0

(1− t)tx

ln t
dt est de classe C1 sur son domaine de définition.

En donner une expression non intégrale.
L’étude de la nature de l’intégrale est à la fois standard (cas particulier des intégrales de Bertrand) et un peu délicate. La

fonction t 7−→ (1− t)tx

ln t
est continue (p.m.) sur ]0, 1[. Quand t tend vers 1, on a ln t = ln

(
1−(1−t)

)
∼ 1−t, d’où lim

t→1
t<1

(1− t)tx

ln t
= 1,

donc l’intégrale est faussement impropre en 1, et ce, pour toute valeur de x. Quand t tend vers 0, on a
(1− t)tx

ln t
∼ tx

ln t
. La valeur

seuil de x est x = −1. En utilisant qu’à t ∈]0, 1[ fixé, x 7−→ tx = exp(x ln t) est décroissante, on écrit :

— si x 6 −1, on a
∣∣∣∣ txln t

∣∣∣∣ > 1

t| ln t|
= − 1

t ln t
. Or,

∫
dt

t ln t
= ln | ln t| + C, qui admet une limite infinie quand t tend vers 0, d’où

la divergence de l’intégrale.

— si x > −1,
tx

ln t
= o(tx) quand t tend vers 0, donc l’intégrale converge. Finalement, le domaine de définition de F est

]− 1,+∞[.
On applique maintenant le théorème 6. Le i) vient d’être traité et le ii) et le iii) sont évidents. Enfin, pour x > a > −1 :
∂

∂x

Å
(1− t)tx

ln t

ã
= (1− t)tx 6 tx 6 ta, d’où le caractère C1 de F sur [a,+∞[ pour tout a > −1, donc sur ]− 1,+∞[. De plus,

F ′(x) =

∫ 1

0

(tx − tx+1) dt =
1

x+ 1
− 1

x+ 2
=

1

(x+ 1)(x+ 2)
∴ F (x) = ln

Å
x+ 1

x+ 2

ã
+ C.

Pour trouver la valeur de la constante C, on peut appliquer le théorème de convergence dominée et la caractérisation séquentielle
de la limite et faire tendre x vers l’infini (la domination a déjà été faite). Il vient lim

x→+∞
F (x) = 0, d’où C = 0.

Remarque 2. — Il n’est pas rare que la dérivation donne une intégrale plus simple et permette de calculer F en
passant par le calcul de F ′.
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— Quand on a déjà appliqué le théorème de continuité, l’intégrabilité exigée au i) est donnée par la domination de
f(x, t) effectuée alors. En revanche, comme c’est une dérivée partielle que l’on domine dans le théorème de dérivation,
il faut bien traiter le i) si l’on applique directement le théorème 6.
— Le remarque relative au passage par un segment quelconque inclus dans I pour la domination est tout aussi utile
pour le théorème 6 que pour le théorème 5.
4.4. Dérivations successives. Il est évident, en raisonnant par récurrence et en appliquant le théorème 6, que l’on
obtient une fonction de classe Cp en vérifiant l’intégrabilité de t 7→ f(x, t) et les hypothèses de régularité et dominant
toutes les dérivées partielles. Le théorème fondamental du calcul intégral et l’essence locale du caractère Cp permettent
de réduire ces hypothèses.
Théorème 7. Si :

i) pour tout t ∈
◦
J , la fonction x 7−→ f(x, t) est de classe Cn sur I ;

ii) pour tout k ∈ [[0, n]] et tout x ∈ I, la fonction t 7−→ ∂kf

∂xk
(x, t) est continue par morceaux sur J ;

iii) pour tout k ∈ [[0, n− 1]] et tout x ∈ I, la fonction t 7−→ ∂kf

∂xk
(x, t) est intégrable sur

◦
J ;

iv) il existe une fonction intégrable hn :
◦
J → R+ dominant

∣∣∣∣∂nf∂xn
(x, t)

∣∣∣∣ sur I × ◦
J ;

alors, la fonction F est bien définie et de classe Cn sur I et, pour tout x ∈ I et pour tout k ∈ [[1, n]], l’on a

F (k)(x) =

∫
J

∂kf

∂xk
(x, t) dt.

Remarque 3. On peut utiliser la dérivation pour étudier la convexité, mais c’est maladroit : la croissance et la linéarité de
l’intégrale suffisent pour vérifier que si, pour tout t ∈ J , la fonction x 7−→ f(x, t) est convexe (resp. concave), il en va de même
pour la fonction F qu’elle définit. Les variations de F peuvent elles aussi, à l’occasion, s’étudier sans dériver sous l’intégrale.

Pour dériver une infinité de fois, on raisonne comme dans le cas des suites de fonctions.
Théorème 8. On suppose que :

i) pour tout t ∈
◦
J , la fonction x 7−→ f(x, t) est de classe C∞ sur I ;

ii) pour tout k ∈ N et tout x ∈ I, la fonction t 7−→ ∂kf

∂xk
(x, t) est continue par morceaux sur J ;

iii) il existe un entier n0 tel que

α) pour tout k ∈ [[0, n0 − 1]] et tout x ∈ I, la fonction t 7−→ ∂kf

∂xk
(x, t) est intégrable sur

◦
J ;

β) pour tout k ∈ [[n0,+∞[[, il existe une fonction intégrable hk :
◦
J → R+ dominant

∣∣∣∣∣∂kf∂xk
(x, t)

∣∣∣∣∣ sur I × ◦
J .

Alors, la fonction F est bien définie et de classe C∞ sur I et, pour tout x ∈ I et pour tout k ∈ N, on a

F (k)(x) =

∫
J

∂kf

∂xk
(x, t) dt.

Exemple 12. La fonction F (x) =

∫ π

0

cos(xt)

ex + t
dt est de classe C∞ sur R. On note que la fonction (x, t) 7−→ cos(xt)

x+ t
est

de classe C∞ sur R× [0, π], donc sur tout fermé-borné du type [a, b]× [0, π]. Ainsi, toutes les dérivées partielles sont bornées et

l’on peut prendre hk,[a,b](t) =

∥∥∥∥ ∂k∂xk
Å

cos(xt)

ex + t

ã∥∥∥∥
∞,[a,b]

, fonction constante, donc intégrable sur [0, π]. Toutes les hypothèses sont

ainsi vérifiées d’un seul coup.

Exemple 13. La fonction F (x) =

∫ +∞

0

1− cos t

t2
e−x
√
t dt est de classe C∞ sur R∗+. On calcule

fk(t) =
∂k

∂xk

Å
1− cos t

t2
e−x
√
t

ã
= (−1)k(1− cos t)tk/2−2e−x

√
t.

Pour k > 3, on peut, pour x ∈ [a,+∞[, dominer la dérivée ci-dessus par 2tk/2−2e−a
√
t, fonction intégrable. Pour k ∈ {0, 1, 2}, il

suffit de mentionner que fk(t) =
t→+∞

o(e−x
√
t/2) et que fk(t) ∼

t→0
tk/2/2, donc que l’intégrale, à x fixé, est faussement impropre

en 0. Cela assure l’intégrabilité pour ces trois valeurs de k.

Il est également possible de dominer fk pour k 6 2, mais il faut travailler un peu plus pour cela et utiliser (donc prouver)

l’inégalité globale 0 6 1− cosu 6
u2

2
, ce qui permet de prendre hk(t) = e−a

√
t.
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