Convergence dominée, applications aux intégrales a parameétre

1. CAS DE LA CONVERGENCE UNIFORME SUR UN SEGMENT

La convergence dominée n’est pas considérée comme un mode de convergence, mais comme une condition suffisante
trés efficace permettant de passer a la limite sous I'intégrale. Rappelons un résultat vu dans le chapitre sur les modes
de convergence d’une suite de fonctions avant d’énoncer le théoréme de convergence dominée proprement dit.

Théoréme 1. Soit (fy), une suite de fonctions continues convergent uniformément vers f sur I et un segment
[a,b] C I. Alors, f est continue et

/abf(a:) dz = nangO /ab fn(x)dz.

C’est ce théoréme qui sert a prouver que l'on peut intégrer une série entiére terme a terme sur tout segment [a, b]
avec —R < a < b< R, ou R estle RCV de la série entiére. Il s’applique aussi & une suite de fonctions continues par
morceaux a condition de vérifier que la limite I’est aussi, ce qui n’est plus systématique comme sous I’hypothése de
continuité.

2. THEOREME DE CONVERGENCE DOMINEE
2.1. Enoncé du théoréme de convergence dominée.

Théoréme 2. Soit (fy), une suite de fonctions continues par morceaux définies sur un intervalle I convergeant
simplement vers une fonction f continue par morceauzr. On suppose qu’il existe h: I — Ry une fonction intégrable

telle que, pour tout n € N et pour tout v € I, |fn(x)| < h(zx) (domination). Alors, f est intégrable sur I et

/If(:v) dz :nlbngo/lfn(x) dz.
— L’hypothése de domination est fondamentale. I suffit qu’elle soit vérifiée a.p.c.r. (c’est-a-dire pour tout couple (n,z) €
[no, +oo[x I pour un certain entier ng). Elle entraine U'intégrabilité des fonctions f,, sur I par comparaison, ce qui dispense de
vérifier la convergence des intégrales / fn(z)dz.
I

— 11 faut vérifier que f est continue par morceaux car cela n’est pas automatique par passage a la limite simple (ni méme
uniforme si 'intervalle n’est pas borné). En pratique, il suffira de le mentionner car ce sera évident sur les fonctions explicites
que 'on étudiera.

— Le théoréme 1 peut étre vu comme un corollaire du théoréme 2. Ce n’est pas une raison pour 'oublier. En effet, exhiber une
fonction de domination h n’est pas toujours facile, alors que, selon le contexte, ’application du théoréme 1 peut étre immeédiate.

Corollaire 1. Sous les hypothéses du théoréeme de convergence dominée, on a convergence dans El(I), i.e.

lim /[‘fn(x) - f(a:)‘ dz = 0.

n—oo

Noter que 'on peut déduire le théoréme 2 du corollaire en utilisant 'inégalité classique

/If(w) dw—/lfn(w) dx </[‘fn(x)—f(x)‘dx.

On obtient ainsi aussi la conclusion du théoréme de convergence dominée avec une domination |f, — f| < h valable
pour tout n = ng.

2.2. Exemples de calculs de limites de suites d’intégrales.
w/4
Exemple 1. Déterminer lim I,,, avec I,, = / (tanx)" dz. Pour z € [0,7/4[, on a 0 < tanz < 1. Donc la suite (tan” z),
converge simplement vers la fonction nulle. Par ailleurs, 0 < tan™ z < 1 pour tout n et pour tout z, et 1 est intégrable sur
I'intervalle borné [0, 7/4[. Le théoréme de convergence dominée s’applique et lim I,, = 0.
T 1+ nx 1+ nz

Exemple 2. Soit a calculer lim I,, avec I,, = / dr = ——— dxz. L’intégrale est bien définie pour
p n n 0 (1 + .T})n 10,400 (1 + ac)” g p

n > 3 et la suite de fonctions sous 'intégrale converge simplement vers 0 sur RY par croissance comparées. Pour dominer, il y
a plusieurs solutions. La premiére consiste & majorer en traitant séparément les soucis de convergence aux voisinages respectifs
1
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de 0 et de 400, ce qui constitue une technique classique de domination (& ’ceuvre dans ’étude de la fonction I' (exercice
incontournable), par exemple) :

1 1
tne _ n+ na <1 (majoration pertinente sur [0, 1])
(I+z)"  1+nz+ (H)a2+---+an
1 n n < 1 n ny < 1 +1< (majorati i ¢ (1, +00])
= X n < — X majoration pertinente sur |1, +0o0
At+a)"  (ta)r S A+22 ()2 poy Q+2)? 22 22 ) P

2
< 1]0,11 (aj) + ﬁ]l]lmm[(x) = h(m)

1 e
e / . dz en dominant par 1
1

1
On peut alternativement utiliser la relation de Chasles et écrire I,, = / ——dx +

o (I+a)" (1+a2)
pour la premiére intégrale et par 2/ 22 pour la deuxiéme. C’est en fait exactement la méme preuve, juste rédigée différemment.
La deuxiéme solution consiste a vérifier que 0 < fr41(z) < fo(z), ot 0 < fi(z) < f5(z) pour tout n > 3. Dans les deux cas,

on a trouvé une fonction de domination intégrable et le théoréme de CVD donne lim I,, = 0.

. . n T n
Exemple 3. Soit a calculer lim I,, avec I, = / (1 — —) cosxdx. A priori, on ne peut pas appliquer le théoréme
0 n
x n
car l'intervalle d’intégration change avec n. Pour y remédier, on pose f,(z) = (1 - 7) (cosx)1,, ,(x). On peut alors écrire
n :

+oo
I, = / fn(z)dz. En passant a exponentielle, on obtient f(x) = lim f,(z) = e™* cosz. De plus,
0

(1 — %)n = exp {nln (1 — %)] <exp(—z) parIn(l+u) < w;

*. qui est bien intégrable sur R, .

on peut ainsi prendre comme fonction de domination h(z) = e~
2.3. Exemples de recherche d’équivalents de suites d’intégrales. Le théoréme de convergence dominée peut

également s’appliquer a la recherche d’équivalents. Ainsi, pour montrer que I,, = / fn vérifie I, ~ cA(n) avec \ une
I

.

A(n)

fonction usuelle et ¢ une constante, on applique le théoréme de CVD a J,, = / gn et gn = pour obtenir lim J,, = c.
I

+o00
Exemple 4. Soient f: Ry — R une fonction continue et bornée et I,, = / f(t)e”™ dt. Déterminer lim I,, puis un

0
équivalent de I, dans le cas ot f(0) # 0. Le théoréme de CVD s’applique avec h(t) = || f|| _ e~ et donne lim I,, = 0. Pour

“+o0
T 1
déterminer un équivalent de I,,, on effectue le changement de variable z = nt, ce qui donne I, = — / f (7> e fdr = —J,.
n Jo n n

On peut appliquer le théoréme de CVD & J,, avec la méme fonction h, et I'on obtient

0~ — f der = —.
1 /0 (0)e T

n n
ion : si (1) (») FP0)
Extension : si f(0) =---= fP7(0) =0 et f(0) # 0, la formule de Taylor-Young donne f(t) Koot ol t?, d’ou (aprés calcul)

— .
f(p)(o)
n~ T

/2
Exemple 5 (Intégrales de Wallis). Soit I, = / cos" x dx. Déterminer lim I,,, puis un équivalent de I,, (faire le
0

changement de variable t = x/n).
Le théoréme de CVD s’applique immeédiatement pour montrer que lim I, = 0 en dominant par 1 et en mentionnant que
lim cos™ z = 0 pour tout x €]0,7/2]. Trouver un équivalent est plus délicat. Le changement de variable suggéré donne

1oV 1 [t Lt 1
In:% . COS ﬁ dt:% o I].[OnT\/ﬁ/z](t)COS % dt:ﬁj’n

En passant a I’exponentielle, il vient

cos" <\/tﬁ) = exp {nln (1 — % +o0 (%))} = exp(ft2/2+o(1)),

42 . . , .
/2 Pour la domination, on écrit

1) t (2) 2, 2
< exp {—Qnsin2 (M)} < e 2/ = (),

d’ou la convergence simple de la fonction intégrée par J,, vers e

cos” (=) = exp [nn (cos (I=) )| = exp [t (1= 25n2 (57
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2
en utilisant les inégalités de convexité (1) In(1+u) < u, valable pour tout u > —1 et (2) —u < sin u, valable pour tout 0 < u < T
T

[
Comme h est intégrable sur R, le théoréme de convergence dominée s’applique et I’'on obtient finalement 1’équivalent I, ~ o
n

en utilisant la valeur de l'intégrale de Gaufs. C’est une alternative au calcul classique de I'intégrale par i.p.p. suivie de 'application
de la formule de Stirling.

2

Une facon différente de dominer la fonction est de chercher une domination sous la forme e~

¢ > 0 a déterminer, étant suggérée par le calcul de la limite simple. On pose donc ¢(u) = cu® + In(cosu), et I'on cherche c telle

, cette forme, avec une constante

que (u) < 0 pour tout 0 < z Or, ¢(0) = 0 et ¢’'(u) = 2cu — tanu. L'inégalité p(u) < 0 est vérifiée si ¢ est décroissante,
ce qui est le cas pour ¢ < 1 / 2. La mellleure valeur de ¢ p0551ble est donc ¢ = 1/2, qui donne une domination meilleure que celle
obtenue & 'aide des formules de trigonométrie, soit h(t) = e™* i,
2.4. Applications aux séries de fonctions.

[e.9]
2.4.1. Enoncé. Le théoréme de convergence dominée s’adapte & une série de fonctions Z Un(t) :

n 0
Siup: I — R (ou C) est continue par morceauz, alors les sommes partielles Sy, ( Z ug(t) le sont également. Si la

série Zun converge simplement et s’il existe une domination intégrable h, c est-a—dzre une fonction h: I — Ry telle
que, pour tout t € I et pour tout n € N, |Sy,(t)| < h(t), alors la série des intégrales converge et l'on a

/1 (gma) dt = i </1 ur(t) dt) .

k=0
De maniére plus générale, la linéarité de I'intégrale donne, sous la double hypothése de convergence simple de la série

de fonctions Z ug(t) et de convergence de la série numérique Z / ug(t) dt,
I

Vn € N: /Zuk dt—Z/uk t)dt = /Z u(t) dt — Z /uk

k n+1 k=n+1

ce qui donne la proposition évidente (au sens ou elle n’utilise que la linéarité de 'intégrale, mais utile dans le cas des
séries alternées) suivante :

Proposition 1. Pour une série de fonctions simplement convergente Zuk(t), si la série Z/uk(t) dt conwverge,
I

oo

alors, pour Ry (t) = Z uk(t), on a

k=n+1
/E ug(t)dt = E /uk t)dt <— le/Rn(t)dt:
n (e, I

2.4.2. Cas des fonctions positives. La plus petite fonction de domination possible est h(t) = sup |Sy,(1)].

neN
Si ug(t) = 0 pour tout ¢t € I et tout k € N, alors h(t) = hm Sn( Z ug(t). 11 suffit donc de vérifier que la
somme de la série est intégrable. Si elle ne I’est pas, le théoréme de convergence dominée ne s’applique pas.
g R > 2 2

Exemple 6. Soit & montrer I'identité / —dx = —— = —. On développe l'intégrande en série positive a

P o shax Zl (2n+1)2 4 PP & P

1 > -
partir du DSE 1 = Z u™ avec u = e 2% < 1; on calcule les intégrales obtenues, puis la somme de la série.
—u
n=0
x 2z 2xe™" =
R — -9 —(2n+1)z
shz e*—e @ 1—e 2 Z e ’
k=0
e 2n+1)z £ (2n+1)x roee 1 oo 2n+1)x 1
- n d — _ — — C d —
/U e v Ml . +2n+1/ ¢ YT Gy

72 G R | = 1 2 & 1 = 1 3¢(2) 72

— = 2 - - = = . = = —

g — @ ;nz ;(2n2+;(2n+1)2 4 +nz::0(2n+1)2 ;(2n+1)2 18
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On obtient donc bien le résultat a condition de démontrer la convergence de l'intégrale de départ (i.e. 'intégrabilité de la

T
domination). Or, z — oy est continue sur |0, +o00[, prolongeable par continuité en 0 (par la valeur 1) et
shz

L~ 2ze7® = 2ze /22 = 0(671/2).

shx z—+o00
(0.9]
2.4.3. Cas des séries absolument convergentes. Pour une série de fonctions Zuk ) absolument convergente, une
k=0
domination évidente des sommes partielles est h(t Z |ug(t)]. La situation est moins confortable que pour une

série de fonctions positives car h n’est pas la meilleure domlnatlon possible; si elle est intégrable, le théoréme de CVD
s’applique, mais si elle ne l’est pas, rien ne dit qu'une domination mieux choisie ne ferait pas I'affaire.

L (ina)? = (-1

Exemple 7. Soit & montrer I'identité /

de =2 —_— .
o 1+a2 nz::() (2n +1)3
1 - nz)? &
On substitue v = —z? < 1 dans le DSE = nz:%u”, ce qui donne (11_1’_22 = nz:%(— )"(Inx)?z?" = Zun . Deux i.p.p.
1
2
sucessives permettent de se débarrasser de (Inx)? par dérivation et donnent / up(x)de = (—1)"m. Pour pouvoir
O n

appliquer le théoréme de convergence dominée, on montre que

3 S nz)?
= )] = 3 (mayere = 0
n=0 n—0

est intégrable sur 0, 1[. Elle est continue sur cet intervalle. Son intégrabilité est donnée par une étude aux bornes :
2

2 _ 2 1 1 I (1-(1—x)) 1—x
) Sy (e = e X\/E_"(\/E) D i T s A

d’ou la convergence en 0 par comparaison et en 1 par prolongement par continuité (par la valeur 0).

2.4.4. Cas des séries alternées semi-convergentes. Rappelons que 'on appelle semi-convergente une série convergente,
mais pas absolument convergente. Dans ce cas, la série E |ug(t)| diverge et ne constitue donc pas une domination

(N)

crédible. Le critére spécial des séries alternéeb propose une alternative. En effet, pour V € N, si I'on pose v;. " = uy,

sik <N et v,g )= 0sik> N, la série Z vk ) vérifie aussi, & t et N fixés, les hypothéses du C.S.S.A. et I'on a en

particulier
N

N
k k(N
> (DFu )| = Y (=DF o @] < [os™ (1) = luo(®)]
k=0 k=0
On peut donc prendre ug comme fonction de domination — & condition de vérifier son intégrabilité. Si la suite de
fonctions (]uk]) . n’est décroissante qu’a partir d’un rang ng, on isole la somme partielle des ng premiers termes et l’'on
domine les sommes partielles de Y w par |un,|-
k>ngo

a—1 o0

1

x
Exemple 8. Soit & montrer, pour tout réel o > 0, I'identité /
0

k=

1
Le DSE de T et un calcul d’intégrale immédiat assurent que, pour tout x € [0, 1[
x

ra—1 0 1 1
— o 1 k, k+a—1 . k+a—1 _
= —1)*x & Vk € N: x de = ,
Y SIS ! /
r hypothése a > 0 justifiant la convergence des intégrales. Il suffit donc de justifier la permutation de I'intégrale et de la somme.
x a—1
T 1
La série Z Vegk+ta=l est absolument convergente, mais Zxk+a_1 =— ~ n’est pas intégrable (divergence en
l—2 z—11—

k=0
1). On ne peut donc pas appliquer la domination prévue au paragraphe 2.4.3. Mais on peut quand méme appliquer le théoréme

de convergence dominée grace au C.S.S.A.; ou bien en utilisant la proposition 1 et en majorant le reste de la série :

s} 1
1
R, (x)| = —1)kghtoe—1| L gnta /Rnx dr| < ——,
Rl =] 3 [ Ru@s| <
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N

Z(*l)kmk+a71
k=0
Notons que l'on peut aussi utiliser la convergence uniforme. Il n’y a pas convergence uniforme sur [0, 1], mais, si0 < a < 1, on a

ou bien, plus directement, comme expliqué au début de ce paragraphe, par la domination intégrable <zt

H(fl)kka”"*lH = a""*~1 d’otl convergence normale, donc uniforme sur [0, a]. On a donc, en intégrant terme & terme en
[0,a], 00

vertu du théoréme 1,

xafl

Va € [0,1[: f(a) = /Oa

a—1 1
dx, la fonction f est continue en 1. La majoration par
T n—+ o

o 1\k
dx:Z( ) a® = g(a).
k=0

1+x k+a

du reste de la série alternée

1

x

Par convergence de 'intégrale / 1
0

dont g(a) est la somme, qui est indépendante de a, montre la convergence uniforme de la série sur [0, 1], d’ou la continuité de g

en 1. On peut alors prendre a = 1 dans la formule en vertu du théoréme de la double limite.

3. THEOREME D’INTERVERSION SERIE-INTEGRALE DANS LE CAS ABSOLUMENT CONVERGENT

Si Z u est absolument convergente, on dispose d’un théoréme supplémentaire.
Théoréme 3. Soit (uy), une suite de fonctions continues par morceauz définies sur un intervalle I telle que Z U
k>0
converge simplement vers une fonction S, continue par morceaux sur I. Si Z/ luk(t)| dt est une série convergente,
I

alors S est intégrable sur I et l'on a
/Zuk(t) dt = Z/uk(t) dt.
I'p=0 k=0"1

Bien que cela ne fasse pas partie du théoréme tel qu’énoncé par le programme, les hypothéses entrainent que

la série Z lug| converge et que sa somme (si elle est continue par morceaux), est intégrable. En fait, ’hypothése
k>0

de convergence de la série de fonctions est inutile car elle est impliquée (ce n’est pas évident, mais c’est vrai) par

I’hypothése de convergence de la série numérique. En revanche, rien ne garantit en général la continuité par morceaux

de la somme.

o0
3.1. Cas des fonctions positives. Soit S(t) = Z ug(t) une série de fonctions convergeant simplement vers une
k=0

fonction continue par morceaux sur I avec uy(t) ; 0 pour tout ¢t € I et tout k¥ € N. Pour pouvoir appliquer le
théoréme 3, il faut que Z / lug(t)| dt = Z / ug(t) dt converge. Autrement dit, il suffit de prouver la convergence de
I I

la série du terme de droite. Ainsi, dans I’exemple 6, on mentionne simplement la convergence de la série de Riemann
Z n~2. On peut faire la synthése du cas des séries de fonctions positives : sous 'hypothése de convergence simple de

(o) o
la série vers une fonction continue par morceaux, il suffit, pour justifier 'interversion / E ug(t)dt = E / ug(t) dt,
I I
k=0 k=0

de montrer que I'un des deux membres converge, 'intégrale (convergence dominée) ou la série (théoréme d’interversion).

3.2. Cas des séries absolument convergentes. L’emploi du théoréme 3 peut nécessiter de nouveaux calculs.

400 - [eS) . 00
sint 1 sint
Soit & montrer 1’égalité dt = Z ———. On développe la fonction intégrée en série par = (sint)e™™ . 11
o et—1 —n?+1 et—1 =
+oo 1
faut alors montrer la convergence de la série de terme général | sin t|e~™" dt. La majoration du sinus par 1 donne —, terme
m

0
général de la série harmonique, qui diverge. Mais la majoration

—+oo +oo 1
/ |sintle”™ dt < / te”™dt = —
0 0

m

permet d’appliquer le théoréme 3. Noter qu'il y a essentiellement deux majorations classiques de |sint| : par || et par 1. La
premiére est utile pour des valeurs de ¢ proches de 0 et la deuxiéme pour de grands intervalles. Il se passe ici quelque chose
de particulier : on est sur un grand intervalle, avec des valeurs de ¢ arbitrairement grandes pour lesquelles la majoration par
t est a priori inepte... sauf que l'exponentielle au dénominateur concentre la masse autour des petites valeurs de ¢ et que la
majoration par 1 fait diverger I'intégrale en 0, d’ou le choix de la majoration par ¢. En cas de besoin, on pourrait aussi pu écrire
|sint| <t1, (t)+1, . (¢), majoration valable sur Ry et qui ménage la chévre et le chou.

Mathématiques 5/ 8 Lyc. Janson de Sailly



Convergence dominée PST*

1
Ce théoréme peut aussi étre plus facile & appliquer que le théoréme de CVD. Ainsi, dans I’exemple 7, on a / |n ()| da =
1 . 0
/ un(z) dz| il est plus rapide de montrer la convergence de Z
0

n=0

1
m que de justifier la convergence de l'intégrale.

4. INTEGRALES A PARAMETRE

4.1. Quand les bornes varient. Ce cas n’est pas l'objectif du paragraphe. Rappelons toutefois le résultat.

xr
Proposition 2. 1. Si f est continue par morceauz sur I et xg € I, posons F(x) = / f()dt. Alors, F est continue sur I. De
Zo

plus, F' est dérivable en x € I si, et seulement si, tlim f(t) existe et est finie. En ce cas, on a F'(z) = tlim (t). En particulier,
— T —x

t#x t#x
si f est continue en x, alors F est dérivable en x et F'(z) = f(z).
v(z)
2. Par dérivation des fonctions composées, si u et v sont dérivables et si f est continue, alors la fonction H(x) = / flt)de
u(x)

est dérivable et H'(z) = v'(x) f(v(z)) — o (z) f (u(z)).
4.2. Continuité des intégrales & paramétre.

Définition 1. Soient I et J deux intervalles de R. Sotent f: I x J — R et F: z —> /f(w,t) dt. On dit qu’une
J

fonction h: J — Ry domine f sur I' C I sih est continue par morceaux et si |f(z,t)| < h(t) pour tout (z,t) € I' x J.
Théoréme 4. Théoréme de convergence dominée a parameétre continu. Soient (z,t) — f(x,t) une fonction définie
surIx J, g: I — K et a une borne de I. Si :

i) pour tout t € J, %gré flz,t) =g(t);

ii) pour tout x € I, les fonctions t — f(x,t) et g sont continues par morceauz sur J ;

iit) il existe une fonction intégrable h: I — Ry telle que |f(x,t)| < h(t) pour tout (z,t) € I x J,
alors, g est intégrable sur I et [’on a lim / flz,t)dt = /g(t) dt.

T—a I I

Théoréme 5. Théoréme de continuité. Si : .

i) pour tout x € I, la fonction t — f(x,t) est continue par morceauz sur J ;

i) pour tout t € fT, la fonction x — f(x,t) est continue sur I ;

iii) il existe une fonction intégrable h: I — Ry telle que |f(x,t)| < h(t) pour tout (z,t) € I x 3,
alors, la fonction F' est bien définie et continue sur I.

; /2 dt
Exemple 9. Etude de F: 0 — / -
o 14 cosOcost

dénominateur peut s’annuler, ce que arrive uniquement pour (0,t) = ((2k + 1)7,0). Par ailleurs, pour cosf = —1, on a

. L’intégrale définissant F'(f) est impropre si, et seulement si le

——————— ~ — ce qui donne une intégrale divergente. Par périodicité, on peut donc considérer la fonction F sur | — m, 7.

1+ cosfcost t—0 t2

Sur | — m, w[x[0,7/2], les fonctions t — ——————— et § —» ———————— sont respectivement continue p.m. et continue.
1+ cosfcost 1+ cosfcost

On ne peut pas dominer la fonction sur tout l'intervalle, mais, si 0 < § < 7, on a

1 1
_ _ 9 — 0 < < .
(0,1) € [=m +0,m = 8] x [0, 7/2] 0 14 cosfcost ~ 1—cosd

Toute fonction constante étant intégrable sur un segment, on a bien une domination. Le théroréme 5 assure que F' est continue
sur [—m + §,m — §]. Cela valant pour tout § €]0, 7| (en fait, pour § arbitrairement petit), F est continue sur | — 7, 7[.

Remarque 1. L’exemple 9 illustre plusieurs idées utiles :

— Sur un intervalle d’intégration borné, dominer par une constante est suffisant. Ce n’est pas toujours possible.

— Le théoréme ne donne pas que la continuité de F', mais aussi le fait que, pour tout x € I, l'intégrale définissant F'
est absolument convergente, donc convergente.

— 11 est souvent impossible de dominer la fonction sur I, mais la continuité (comme le caractére Cl) étant des pro-
priétés locales, il suffit d’appliquer le théoréme sur un segment arbitraire inclus dans 1.
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4.3. Dérivation des intégrales & parameétre.
Théoréme 6. Si : i
i) pour tout x € I, la fonction t — f(x,t) est intégrable sur J ;
i) pour tout t € J, la fonction x — f(x,t) est de classe C* sur I ;

o

iii) pour tout x € I, la fonction t — a—(sc, t) est continue par morceaur sur J ;
T

o 8 o
iv) il existe une fonction intégrable h: J — Ry dominant lf)f(a;,t) sur I x J;
x

alors, la fonction F est bien définie et de classe C* sur I et, pour tout = € I, l'on a

0
Fl'(z) = : a—i(az, t)dt.

+o0 gin t
Exemple 10. Soit F(x) = / %e_” dt. Montrer que F' est bien définie et de classe C! sur R ; calculer F.
0

i) Pour z > 0, la fonction ¢ — sinc(t)e™ " est continue sur ]0, +oco, prolongeable par continuité en 0 (par la valeur 1) et O(e™*")
quand ¢ tend vers +oo. Elle est donc intégrable sur Ry, & x > 0 fixé.

ii) Pour tout ¢ > 0, la fonction o — sinc(t)e ™" est de classe C' sur R.

iii) Pour tout z > 0, la fonction

0
t — ——sinc(t)e”*" = —(sint)e "
o sinc() (sin)
est continue (p.m.) sur ]0, +ocol.
“+oo
iv) Pour 0 < a < 2 < +00, on a | — (sint)e” " | <e ™ et / e~ converge. On peut donc appliquer le théoréme 6, qui assure
0

que F est de classe C! et que, pour tout = > 0,

/ > . —at > it —axt > —(z—1i)t 1 1
F'(z) =— (sint)e™ dt = —Im ee™™ dt = —Im e dt = —Im =
0 0 0

T —1 1422

xr
On en déduit que F(z) = F(0) —i—/ F'(t)dt = F(0) — arctan(z). Il est clair que sinc(t)e™** est dominée par la fonction
0
intégrable e~ pour tout z > 1 et que ha[_l sinc(t)e™** = 0 pour tout t € R’ . On peut alors appliquer le théoréme 4, qui donne
Tr—r+00
0
2

lim F(z)=0,douC =

r—r+00

, d’ot F(z) = arctan(1/x).

)t

La—¢
Exemple 11 (Mines). Montrer que la fonction F': z — / (lt dt est de classe C! sur son domaine de définition.
0 n

En donner une expression non intégrale.
L’étude de la nature de l'intégrale est a la fois standard (cas particulier des intégrales de Bertrand) et un peu délicate. La

1—t)t* L—t)t*

fonction t — % est continue (p.m.) sur ]0, 1[. Quand ¢ tend vers 1, on alnt = In (1—(1—t)) ~ 1—t,d’ou }m} % =1,

n — n
donc l'intégrale est faussement impropre en 1, et ce, pour toute valeur de z. Quand ¢ tend vers 0, on a T it La valeur

n n
seuil de x est x = —1. En utilisant qu’a ¢ €]0, 1] fixé, © — t* = exp(x Int) est décroissante, on écrit :
z 1 1 dt
—siz<—-l,ona|—|>——=———.0r, | — =In|lnt|+ C, qui admet une limite infinie quand ¢ tend vers 0, d’ot
Int t|Int| tint tint

la divergence de I'intégrale.

T
—six > —1, il o(t”) quand t tend vers 0, donc lintégrale converge. Finalement, le domaine de définition de F' est

n
]— 1,400
On applique maintenant le théoréme 6. Le i) vient d’étre traité et le ii) et le iii) sont évidents. Enfin, pour z > a > —1 :
0 1—1)t*
92 (%) = (1 —t)t* < t* < t% d’ou le caractére C* de F sur [a, +oo[ pour tout a > —1, donc sur | — 1, +o0o|. De plus,

x n
1
1 1 1 r+1
Flz)= [ (#*—t"Thdt = — = F(z) =1 ( )+C.
(z) /0( ) z+1 z4+2 (z+1)(z+2) (z) =1n x+2

Pour trouver la valeur de la constante C, on peut appliquer le théoréme de convergence dominée et la caractérisation séquentielle
de la limite et faire tendre x vers U'infini (la domination a déja été faite). Il vient liT F(x)=0,dou C =0.
Tr—r+00

Remarque 2. — Il n’est pas rare que la dérivation donne une intégrale plus simple et permette de calculer F' en
passant par le calcul de F”.
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— Quand on a déja appliqué le théoréme de continuité, 'intégrabilité exigée au i) est donnée par la domination de
f(z,t) effectuée alors. En revanche, comme c’est une dérivée partielle que I'on domine dans le théoréme de dérivation,
il faut bien traiter le i) si 'on applique directement le théoréme 6.

— Le remarque relative au passage par un segment quelconque inclus dans I pour la domination est tout aussi utile
pour le théoréme 6 que pour le théoréme 5.

4.4. Dérivations successives. Il est évident, en raisonnant par récurrence et en appliquant le théoréme 6, que ’on
obtient une fonction de classe CP en vérifiant I'intégrabilité de ¢ — f(z,t) et les hypothéses de régularité et dominant
toutes les dérivées partielles. Le théoréme fondamental du calcul intégral et I'essence locale du caractére CP permettent
de réduire ces hypothéses.

Théoréme 7. Si :

i) pour tout t € J, la fonction x — f(x,t) est de classe C" sur I ;

ak
ii) pour tout k € [0,n] et tout x € I, la fonction t — 8—{(:6, t) est continue par morceaux sur J ;
x
oF o
iii) pour tout k € [0,n — 1] et tout x € 1, la fonction t — 8—‘1}:(:3, t) est intégrable sur J ;

o] an o
iv) il existe une fonction intégrable hy: J — R4 dominant ‘J(m,t) sur I x J;
z

alors, la fonction F est bien définie et de classe C" sur I et, pour tout x € I et pour tout k € [1,n], l'on a

ok f
F®R (z) = [ Z—=(z,t)dt.
@ = [ Zx@
Remarque 3. On peut utiliser la dérivation pour étudier la convexité, mais ¢’est maladroit : la croissance et la linéarité de
I'intégrale suffisent pour vérifier que si, pour tout ¢ € J, la fonction x — f(x,t) est convexe (resp. concave), il en va de méme

pour la fonction F' qu’elle définit. Les variations de F' peuvent elles aussi, & ['occasion, s’étudier sans dériver sous l'intégrale.
Pour dériver une infinité de fois, on raisonne comme dans le cas des suites de fonctions.
Théoréme 8. On suppose que :

o

i) pour tout t € J, la fonction v — f(x,t) est de classe C* sur I ;

2
ii) pour tout k € N et tout x € I, la fonction t — 6—{(1‘, t) est continue par morceaux sur J ;
x
ii1) il existe un entier ng tel que
oF ‘ 0
a) pour tout k € [0,ng — 1] et tout x € I, la fonction t — W(w, t) est intégrable sur J ;
x
0 ok o
B) pour tout k € [ng, +oo[, il existe une fonction intégrable hy: J — Ry dominant ‘a{(w,t) sur I x J.
x
Alors, la fonction F' est bien définie et de classe C™° sur I et, pour tout x € I et pour tout k € N, on a
ok f
F®R (z) = [ Z—=(x,t)dt.

_ ™ cos(at s(xt
Exemple 12. La fonction F(x) = / — (—i- t) dt est de classe C* sur R. On note que la fonction (z,t) — CZb_(:Ct)
0o €

de classe C* sur R x [0, 7], donc sur tout fermé-borné du type [a,b] x [0, 7]. Ainsi, toutes les dérivées partielles sont bornées et
oF (cos(xt))
Oxk \ e* +t

'on peut prendre hy [, 5 (t) = , fonction constante, donc intégrable sur [0, 7r]. Toutes les hypothéses sont

00, [a,b]

ainsi vérifiées d’un seul coup.

o0 1 —cost
Exemple 13. La fonction F(z) = / = emVEqt est de classe C° sur R% . On calcule

0 t2
oF (1 — cost
t) = — 7e*“/z) = (—1)¥(1 — cost)th/2 2=V,
Al = o (P (=141~ cost)
Pour k£ > 3, on peut, pour = € [a,400[, dominer la dérivée ci-dessus par Ztk/Q_Ze_’“/z, fonction intégrable. Pour k € {0,1,2}, il
suffit de mentionner que fi(t) e o(e_””‘/zm) et que fi(t) o 15’“/2/27 donc que l'intégrale, & x fixé, est faussement impropre
— 400 —

en 0. Cela assure 'intégrabilité pour ces trois valeurs de k.

Il est également possible de dominer f; pour k < 2, mais il faut travailler un peu plus pour cela et utiliser (donc prouver)

I'inégalité globale 0 < 1 — cosu < %, ce qui permet de prendre hg(t) = e~ Ve,
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