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On note E l'ensemble des fonctions continues f: [0, +o0o[ — C qui vérifient la propriété suivante :
(P): pour tout = > 0, la fonction ¢ — f(t)e " est intégrable sur [0, +oo].

Pour toute fonction f € E, la transformée de Laplace de f est la fonction L£(f) définie sur ]0, +oo[ par

+oo
Wz €10, o0 E(f)(a:):/ F(t) et dt.
0
A. Exemples

1. Version longue. 11 est clair que la fonction nulle appartient & E. Soient f,g € E et A\,u € C. Alors la fonction
Af 4 pg est continue sur [0,+oo[; de plus, pour tout z > 0, les fonctions t — f(t)e " et t — g(t)e ™" sont
intégrables sur [0, +oo], donc la fonction

t— (M) + pg(t)e™™ = Af()e™™ + ug(t)e™™

est intégrable sur [0, +00[ comme combinaison linéaire de fonctions intégrables. Ainsi, A\f + ug € E; donc E est bien
un C-espace vectoriel. Enfin, pour tout = > 0, on a

+o0 +oo +o0
LS + ng)(x) = / (Af(8) + pg(t))e™™" dt = A/ f(t)e™™" dt + M/ g(t)e™" dt = AL(f)(z) + pL(g)(x),
0 0 0
donc LIAf + ug) = AL(f) + pnL(g). Finalement, £ est bien une application linéaire.

Version courte. Pour x € C, soit m, 'opérateur défini sur I'espace vectoriel ‘5([0, +ool, C) des fonctions com-
plexes continues définies sur Ry par my(f) = t — f(t)e ™. Les applications m, sont trivialement linéaires et
E = ﬂ m;1 (EI(R+)) est un espace vectoriel comme intersection de sous-espaces vectoriels de %([O, +o0f, (C). L’ap-

x>0
plication £ est linéaire sur E par linéarité de l'intégrale.

2. Soient @ € C et f,: t — e . On sait que f, est intégrable si, et seulement si Re(a) > 0. Soit z € R. Comme
t — fo(t)e ™™ = fo_, et Re(a — x) = Re(a) — =, il s’ensuit que f, € E si, et seulement si, Re(a) > 0. Alors, pour
tout = > 0,

+o00 —(z+a)t t=4o0 1
. — —at ,—xt dt = € —
£lfa)(z) /0 ¢ ° —(z+a) . r+a’
done f, € E et £(f.)(x) = mia.

3. Soient f € E, n € N* et g,(t) = t"f(t). La fonction g, est bien continue sur R. Soit alors 2z > 0; posons
7' = /2. 1l vient

(e = O e = o(f(0),

donc g, € E par le théoréme de comparaison.

4. La fonction pg = fo = 1 appartient & E. D’aprés la question 3, c’est aussi le cas de p, pour tout n € N, donc de
toute fonction polynomiale par linéarité. Par ailleurs,

+o0 " . +1 et t—+o0 +oo et
L(pn+1)(x) :/ " ox e dt = [t” ] +/ (n+1)t" dt
n 0 \\u/ 7 —z |, 0 T

1 [T 1
:O+n+ / t”efxtdt:nl_ L) (),
0

T

la convergence du crochet justifiant la validité de I'intégration par parties. Par une récurrence immédiate, il vient

Y € N: £{pa)() = Llpa 1)) = T Llpo)(@) = oy
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5. Transformée de Laplace de la fonction sinus.
D’aprés la question 2, pour tout z > 0,

L(sin)(z) = £(Im(f ) () = Tm (£(f_i)(x) = Tm <1> ~Im (| i ) _ !

x—i x —1if? 1422

B. Régularité et limites
6. Si z > 0, la fonction t — f(t)e ™" est continue par morceaux sur Ry et z — f(t)e” " est continue sur R .
Pour a > 0 et = € [a, +00[, on a la domination |f(t)e™™"| < |f(t)|le”, intégrable par 'hypothése (P). Il s’ensuit :

— que l'on peut appliquer le théoréme de continuité des intégrales a parameétre sur [a, +o0o[ et que L(f) est ainsi
continue sur cet intervalle. Cela valant pour tout a > 0 et la continuité étant une propriété locale, L(f) est continue
sur R* .

+

— que le théoréme de convergence dominée & paramétre continu s’applique et donne

lim c(f)(:c):/0+oo lim f(t)e_””tdt:/0+000dt:0.

r—r+00 T—-+00

7. Le théoréme de dérivation des intégrales & paramétre s’applique. Pour f € F|
— la fonction o — f(t)e™"" est de classe > pour tout t > 0;
— les fonctions

b S (F0e ) = (1) f(f)e

sont continues (p.m.) et dominées par g,(t)e”* pour a > 0 et = € [a,+o0], fonctions intégrables en vertu de la
question 3. Il s’ensuit que L£(f) est bien de classe € et que

(n) e
Vi € N, Ve €]0, +ool : (£(f)™ (z) = (—1)”/0 17 F (1) e~ dt.

Autrement dit, £(f)™ = (=1)"L(t — t"f (t)). On peut utiliser cette formule pour retrouver 'expression de la
transformé de Laplace de la fonction p, :

£(pn) (&) = (~1)"— 4 (1

T (L)) = (1" <x) ~ mf—ll

8. Soit f € E. On suppose que f est bornée, de classe €' et que f' € E. Soit > 0. Une intégration par parties
donne

teo t—+o00 Feo
L@ = [ et ar= e = [ e ae ) = =10 +aL(f)(a).

De fait, I'intégrale de départ existe par I’hypothése f' € E et le fait que f soit bornée assure que, dans le crochet,

tligl f(t)e ™ = 0. On en déduit le théoréme de la valeur initiale en appliquant a f’ le résultat prouvé a la ques-
— 400

tion 6 : xgrfw zL(f)(xz) = f(0).

9. On suppose que f: [0, +oo[— R est continue et admet une limite finie £ = lir+n f(z).
T—+00

a. Il s’ensuit que f(t)e " = C’)(e_”) quand t tend vers I'infini pour tout £ (si £ = 0, on a méme f(t)e™* = o(e_“)7
mais ce n’est pas utile). Le théoréme de comparaison permet de conclure que f vérifie la propriété (P), done, f étant
supposée continue sur R4, que f € F.

b. Soit z €]0,400[. Le changement de variable u = xt réalise une bijection strictement croissante de Ry sur

lui—méme et donne
l’ﬁ X)) = ) 7{[; € du.

c. Comme f est continue et admet une limite finie en l'infini, elle est bornée sur R;. on peut alors dominer
U
g(u,z) = f (—) e " par [[f]| e, qui est intégrable. De plus, hH(l) g(u,z) = le™™. Le théoréme de convergence
x z—

>0
2



+o0
dominée & parameétre continu donne alors le théoréme de la valeur finale : lir% zL(f)(x) = / le™"du="/.
T— 0
>0

Notons que 'on peut aussi retrouver, a partir de la méme expression intégrale le théoréme de la valeur initiale
sans avoir besoin de supposer f de classe €' en faisant tendre 2 vers 400 (avec, donc, f continue bornée).

C. Transformée de Laplace du sinus cardinal

sin
On rappelle la définition du sinus cardinal sinc(z) = —— prolongé par continuité en 0 par la valeur 1. On note
x

x
S sa primitive s’annulant en 0, soit S(z) = / sinc(t) dt.
0

1 g2+l 0 p2n
10. Pour tout € R*, on a sincx = - ;(_1)n(2'fz+l)! = ;(_1)n(271—i-1)' Par continuité du sinus cardinal et

de la série entiére, la formule vaut aussi pour z = 0. Ainsi, sinc est développable en série entiére avec un rayon de
convergence infini, donc la fonction sinc est de classe > sur R.

Le sinus cardinal est continu et de limite nulle en I'infini, donc borné et admet donc une norme infinie. L’inégalité
|sinz| < [z] montre que ||sinc|| _ < 1, mais I'inégalité est en fait une égalité car sinc(0) = 1. Enfin, sinc € E par la
question 9.a. On note L = L(sinc) sa transformée de Laplace.

11. Comme sinc € FE, les questions 7 et 5 donnent

1

112 L(xz) = ¢ — arctanz,
x

+o0
Vo >0: L'(z) = —/ sin(t)e™** dt = —L(sin)(x) =
0
T—+00 2 x

1
ou ¢ € R. D’aprés la question 6, lim L(z) =0, d’ou c= T et L(x) = g — arctan x = arctan (>

400
12. On pose G(z) = L(sinc?)(z) = / sinc?(t) e~ " d¢. On sait que L et G sont bien définies sur RY.
0

Reéalisons une intégration par parties a partir de L(0).

v
P
+o00 1 1 F—+00 Foo 1 _
L(0) :/ sing x — dzr= [cos:r] +/ ﬂdx
0 f xr X 2—0 0 X
_ /+°° 1- czosx do — /+°° 2Sin2(2$/2) dr — /+°° SinZu dz = G(0).
0 xT 0 xT (z=2u) Jo U
Le crochet donne deux fois 0 car
1—cosx _ (’)<1> & 1 —cosz oz
x (x—+00) x x (x—0) 2

et un changement de variable bijectif conserve la nature de 'intégrale. Il s’ensuit que les deux intégrales sont de méme
nature, donc convergentes car l'intégrale définissant G(0) est faussement impropre en 0 (la fonction est prolongeable
par continuité en 0 par la valeur 1/2) et par comparaison avec 1/u* en l'infini.

13. Pour z > 0, on peut écrire :

g (u ® @ .o
/ 5 (7) e du 2 2L(S)(z) 2 £(S')(x) + S(0) = L(sinc)(x) + 0 = L(x).
0 x
(1) La fonction S est continue comme primitive d’une fonction continue et qu’elle admet une limite finie en +oo
d’apres la question 12 (convergence de L(0)). On peut donc lui appliquer la question 9.b;

(2) S" € E par la question 10; on peut donc lui appliquer la question 8.

On applique alors le théoréme de la valeur finale & S, qui vérifie bien les hypothéses de la question 9, pour passer
a la limite :

+oo
L(z) = 2£(S)(z) — lim S(y) = /0 sinc(t) dt = L(0).

rz—0 y—+oo
>0

3



oo 1 7'('

Ainsi, L(0) = / sinc(z) de = lim L(x) = lim arctan <> = —.
0 z—0 z—0 x 2

z>0 x>0

14.a. On applique le théoréme de continuité (dire que sinc? € F ne donne pas la continuité en 0).
(i) Pour tout z > 0, la fonction ¢ — sinc?(t)e™*! est continue (p.m.) sur ]0, +ocl.
(ii) Pour tout ¢ > 0, la fonction x — sinc(t)e™* est continue sur R .

< sinc?(t). Or, sinc? est continue sur R

(iii) Pour tout z > 0, on a la domination intégrable ‘sinc2(t)e_$t’

et sinc? ¢ I O(1/t?), donc sinc? est intégrable sur Ry (ce qui n’est pas le cas des fonctions de E, d’ou
—00
l'obligation de se placer sur [a, +00] & la question 6.

Le théoréme s’applique donc directement sur R et donne la continuité de G sur R.

14.b. La fonction sinc? est continue et bornée sur R, et appartient donc & E. La question 8 assure qu’elle est de
classe €°° (on ne pouvait pas utiliser cette question pour la continuité car on n’aurait obtenu que la continuité sur
R et non sur R. De plus,

2

+oo +o0 eit _ e—it 1 +oo ) )
G"(z) = / sinte ' dt = / (2> e " dt = 1 / (e —2 4 e e " dt
0 0 1 0

1 1 2+ 1 11 x
4 |lx—2 z x+2| 2\z 22+4)°

14.c. La question est assez pénible... Par intégration, il vient

.%'2

x2+4

1 1
G'(x)zilnx—zln(xQ—i—él)—i—Cl:fln + Ch.

Or, G'(z) = —£(t — tsincz(t)) —+> 0 par la question 6, d’ott C; = 0. Pour calculer G, on primitive In(z? + 4)
T—r+00

par une intégration par parties :

/ln(x2—|—4)d$:/ln(a:2+4)>< 1 dx:a:ln(x2+4)—/
—_——

,U/

212
x2 44

dx

u

272 +8 -8
x2 44

:xln(x2+4) —/

1
G(z) = 5(:(:111:(: —z) — zln(gzc2 +4)+ g — arctang + Cy

dz = z1n(z? + 4) —2x+4arctang +C

1 4 4
:2xlnx—;lnaz—iln<1+x2> —arctan;+00:—iln<1+x2> —arctan%%—C’o

1
= o(>g+cozcog+o(1).

T—+00 xX

A nouveau, 1ir+n G(z) =0, et I'on en déduit Cy = g Enfin, la continuité de G en 0, prouvée a la question 14.b.,
T—r+00

donne, en remontant & la premiére expression de G a la troisiéme ligne du calcul ci-dessus,

G(0) = lim G(z) = Cp = —.
0 2

D. Injectivité de la transformation de Laplace

On admet le théoréme de Stone-Weierstrals : toute fonction continue sur un segment y est limite uniforme d’une
suite de fonctions polynomiales.

Soit f € E. On note g la fonction définie sur [0, +oo[ par g(s / flu)e ™ du.

15. Soit = €]0, +oo[. La question 9 donne £(g')(z) = 2L(g)(x) — g(0), d’ott

+oo
L)) = (£ @) +90)) = 1 [ fe e du = LL(f)(a+ 1),

ZT T
4



16. Pour u €]0, 1], on pose ¢(u) = g(—Inw). En posant ¢ = —Inu (v = e ") dans l'intégrale, il vient, pour = > 0,

L(g)(x) = /;wg(t)e-“dt: /fg(—lnu) ( ) / Hw)u du

17. Par hypothése, L£(f) est la fonction nulle. Pour n € N, les questions 15 et 16 donnent

1
/0 o(uw)u"du = L(g)(n+1) =

— LD+ =0.

1
Par linéarité de I'intégrale, / ¢(u)P(u) du = 0 pour tout polynéme P € R[X].
0

18. La fonction ¢ est continue sur |0, 1] et
lim ¢(u) = lim g(—Inwu) = lim g(z) = L(f)(1).

Tr——+00

Ainsi, ¢ est prolongeable par continuité en 0. Notons 5 le prolongement. On peut appliquer a 5 le théoréme de
Stone-Weierstraf. Il existe ainsi une suite de polyndémes (Pn)n>0 convergeant uniformément sur [0, 1] vers ¢, donc
sur ]0, 1] vers ¢ par restriction.

19. Pour z €]0,1], on a
|6(2) Pulz) = *(z)| = [¢(x)] x |Pa(@) = é()| < 116ll, [1Pn = @ll,, ——— 0.

1 1
Ainsi, la suite (¢P,), converge uniformément vers ¢, d’oil / ¢*(u) du = lim / ¢(u)Pp(u) du = 0. Comme ¢ est
0 0

continue, c’est la fonction nulle. Corrélativement, g est aussi la fonction nulle, donc f(s)e™® = ¢'(s) = 0 et f est la
fonction nulle, ce qui montre 'injectivité de la transformée de Laplace.

E. Un développement asymptotique

20. La fonction 1/ V't n'est pas continue en 0, mais on peut toujours écrire la formule donnant sa transformée de
Laplace... Pour z > 0, effectuons le changement de variable xt = u?

1 o gt 00 gu? 2udu 2 [ e ™

L(t— Vi) (x / \/Z xg M dt = [\fem]t%oo—/om e dt:1£<t»—>1> ()= YT

-z |, —92x\/t 2 Vi 23/2°
w/2 )
21. On a W(z) = / G 4z ce qui conduit a faire le changement de variable v = — In(sint), ou encore
0
—t
e
t = arcsin(e™ "), changement de variable continu et strictement monotone. En posant f(t) = Wit on en
J— e_

déduit

/2 ) 0 AU
W(x) = /0 et nGint) qp — [koo e (-@) du = L(f)(z).

22. D’aprés la formule de Taylor-Young, on a, pour t tendant vers 0,

4¢*
21 _9p 4 -+ O(t3) =1 — 2t + 2t 4 o(t%/?),

1

ce qui se réécrit sous la forme 1 — e 2% = 2t(1 — ¢+ 0(t3/2)). En reportant dans (1 +u)"2 =1 — — 4 o(u) pour u

u
o 2
tendant vers 0, il vient

1

(1—e )75 = \/% (1-t+o(¥2) * = \/127 <1 + % +o(t32) + 0(,53/2)> _ 12t < i 0(t3/2)>

2
En multipliant par e " =1 — ¢ + ) +0(t?) = 1 — t + o(t*>/?), on obtient

f(t) = T ( + -+ (t3/2)> (1—t+0(t?) = \/127 (1 - % + o(t3/2)> = \/% - 2\\//2 +o(t).

5



On peut classiquement écrire le reste 0(¢) du développement précédent sous la forme te(t) avec € de limite nulle en
0.

23. La linéarité de la transformée de Laplace (question 1) et les calculs de la question 20 donnent, & partir de
I’expression de f de la question précédente,

W(x)zﬁ(f)(m)zjiﬁ <t~>\2> (x) — 2\[ L(t s VI) () + L(t > te(t)) (x)

T 7 1
%_varﬁ(t»—me(t))( )

Pour ¢ > 0, le développement asymptotique de f donne

—t 1 1
e(t) = ——

tV1—e2t /2t 2V2t

La fonction ¢ est donc de limite nulle en 0 et en I'infini. Etant continue, elle est bornée. Notons M = ||t — te(t)]l
Il vient

/ te(t)e™™ dtl / le(t)|te™™" dt < M/ te=* dt = ML(py)(z) = %
0 0 0

o5 Gareo(2)




