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On note E l’ensemble des fonctions continues f : [0,+∞[→ C qui vérifient la propriété suivante :

(P ) : pour tout x > 0, la fonction t 7−→ f(t) e−xt est intégrable sur [0,+∞[.

Pour toute fonction f ∈ E, la transformée de Laplace de f est la fonction L(f) définie sur ]0,+∞[ par

∀x ∈ ]0,+∞[ : L(f)(x) =
∫ +∞

0
f(t) e−xt dt.

A. Exemples

1. Version longue. Il est clair que la fonction nulle appartient à E. Soient f, g ∈ E et λ, µ ∈ C. Alors la fonction
λf + µg est continue sur [0,+∞[ ; de plus, pour tout x > 0, les fonctions t 7−→ f(t)e−xt et t 7→ g(t)e−xt sont
intégrables sur [0,+∞[, donc la fonction

t 7−→ (λf(t) + µg(t))e−xt = λf(t)e−xt + µg(t)e−xt

est intégrable sur [0,+∞[ comme combinaison linéaire de fonctions intégrables. Ainsi, λf +µg ∈ E ; donc E est bien
un C-espace vectoriel. Enfin, pour tout x > 0, on a

L(λf + µg)(x) =

∫ +∞

0
(λf(t) + µg(t))e−xt dt = λ

∫ +∞

0
f(t)e−xt dt+ µ

∫ +∞

0
g(t)e−xt dt = λL(f)(x) + µL(g)(x),

donc L(λf + µg) = λL(f) + µL(g). Finalement, L est bien une application linéaire.

Version courte. Pour x ∈ C, soit mx l’opérateur défini sur l’espace vectoriel C
(
[0,+∞[,C

)
des fonctions com-

plexes continues définies sur R+ par mx(f) = t 7−→ f(t)e−xt. Les applications mx sont trivialement linéaires et
E =

⋂
x>0

m−1x
(
L1(R+)

)
est un espace vectoriel comme intersection de sous-espaces vectoriels de C

(
[0,+∞[,C

)
. L’ap-

plication L est linéaire sur E par linéarité de l’intégrale.

2. Soient a ∈ C et fa : t 7−→ e−at. On sait que fa est intégrable si, et seulement si Re(a) > 0. Soit x ∈ R. Comme
t 7−→ fa(t)e

−xt = fa−x et Re(a − x) = Re(a) − x, il s’ensuit que fa ∈ E si, et seulement si, Re(a) > 0. Alors, pour
tout x > 0,

L(fa)(x) =
∫ +∞

0
e−ate−xt dt =

[
e−(x+a)t

−(x+ a)

]t→+∞

0

=
1

x+ a
,

donc fa ∈ E et L(fa)(x) =
1

x+ a
.

3. Soient f ∈ E, n ∈ N∗ et gn(t) = tnf(t). La fonction gn est bien continue sur R+. Soit alors x > 0 ; posons
x′ = x/2. Il vient

gn(t)e
−xt = f(t)e−x

′t × tne−x′t =
(t→+∞)

o
(
f(t)e−x

′t
)
,

donc gn ∈ E par le théorème de comparaison.

4. La fonction p0 = f0 = 1 appartient à E. D’après la question 3, c’est aussi le cas de pn pour tout n ∈ N, donc de
toute fonction polynomiale par linéarité. Par ailleurs,

L(pn+1)(x) =

∫ +∞

0
tn+1︸︷︷︸
u

× e−xt︸︷︷︸
v′

dt =

[
tn+1 e

−xt

−x

]t→+∞

0

+

∫ +∞

0
(n+ 1)tn

e−xt

x
dt

= 0 +
n+ 1

x

∫ +∞

0
tne−xt dt =

n+ 1

x
L(pn)(x),

la convergence du crochet justifiant la validité de l’intégration par parties. Par une récurrence immédiate, il vient

∀n ∈ N : L(pn)(x) =
n

x
L(pn−1)(x) =

n!

xn
L(p0)(x) =

n!

xn+1
.
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5. Transformée de Laplace de la fonction sinus.
D’après la question 2, pour tout x > 0,

L(sin)(x) = L(Im(f−i))(x) = Im
(
L(f−i)(x) = Im

(
1

x− i

)
= Im

(
x+ i

|x− i|2

)
=

1

1 + x2
.

B. Régularité et limites

6. Si x > 0, la fonction t 7−→ f(t)e−xt est continue par morceaux sur R+ et x 7−→ f(t)e−xt est continue sur R∗+.
Pour a > 0 et x ∈ [a,+∞[, on a la domination |f(t)e−xt| 6 |f(t)|e−at, intégrable par l’hypothèse (P ). Il s’ensuit :

— que l’on peut appliquer le théorème de continuité des intégrales à paramètre sur [a,+∞[ et que L(f) est ainsi
continue sur cet intervalle. Cela valant pour tout a > 0 et la continuité étant une propriété locale, L(f) est continue
sur R∗+.

— que le théorème de convergence dominée à paramètre continu s’applique et donne

lim
x→+∞

L(f)(x) =
∫ +∞

0
lim

x→+∞
f(t)e−xt dt =

∫ +∞

0
0 dt = 0.

7. Le théorème de dérivation des intégrales à paramètre s’applique. Pour f ∈ E,
— la fonction x 7−→ f(t)e−xt est de classe C∞ pour tout t > 0 ;
— les fonctions

t 7−→ ∂n

∂xn
(
f(t)e−xt) = (−1)ntnf(t)e−xt

sont continues (p.m.) et dominées par gn(t)e−at pour a > 0 et x ∈ [a,+∞[, fonctions intégrables en vertu de la
question 3. Il s’ensuit que L(f) est bien de classe C∞ et que

∀n ∈ N, ∀x ∈]0,+∞[ :
(
L(f)

)(n)
(x) = (−1)n

∫ +∞

0
tnf(t) e−xt dt.

Autrement dit, L(f)(n) = (−1)nL(t → tnf(t)
)
. On peut utiliser cette formule pour retrouver l’expression de la

transformé de Laplace de la fonction pn :

L(pn)(x) = (−1)n d

dxn
(
L(p0)

)
= (−1)n d

dxn

(
1

x

)
=

n!

xn+1
.

8. Soit f ∈ E. On suppose que f est bornée, de classe C 1 et que f ′ ∈ E. Soit x > 0. Une intégration par parties
donne

L(f ′)(x) =
∫ +∞

0
f ′(t)︸︷︷︸
u′

× e−xt︸︷︷︸
v

dt =
[
f(t)e−xt

]t→+∞
0

−
∫ +∞

0
f(t)(−xe−xt) dt = −f(0) + xL(f)(x).

De fait, l’intégrale de départ existe par l’hypothèse f ′ ∈ E et le fait que f soit bornée assure que, dans le crochet,
lim

t→+∞
f(t)e−xt = 0. On en déduit le théorème de la valeur initiale en appliquant à f ′ le résultat prouvé à la ques-

tion 6 : lim
x→+∞

xL(f)(x) = f(0).

9. On suppose que f : [0,+∞[→ R est continue et admet une limite finie ` = lim
x→+∞

f(x).

a. Il s’ensuit que f(t)e−xt = O
(
e−xt

)
quand t tend vers l’infini pour tout ` (si ` = 0, on a même f(t)e−xt = o

(
e−xt

)
,

mais ce n’est pas utile). Le théorème de comparaison permet de conclure que f vérifie la propriété (P ), donc, f étant
supposée continue sur R+, que f ∈ E.

b. Soit x ∈ ]0,+∞[. Le changement de variable u = xt réalise une bijection strictement croissante de R+ sur
lui-même et donne

xL(f)(x) =
∫ +∞

0
f
(u
x

)
e−u du.

c. Comme f est continue et admet une limite finie en l’infini, elle est bornée sur R+. on peut alors dominer
g(u, x) = f

(u
x

)
e−u par ‖f‖∞ e−u, qui est intégrable. De plus, lim

x→0
x>0

g(u, x) = `e−u. Le théorème de convergence
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dominée à paramètre continu donne alors le théorème de la valeur finale : lim
x→0
x>0

xL(f)(x) =
∫ +∞

0
`e−u du = `.

Notons que l’on peut aussi retrouver, à partir de la même expression intégrale le théorème de la valeur initiale
sans avoir besoin de supposer f de classe C 1 en faisant tendre x vers +∞ (avec, donc, f continue bornée).

C. Transformée de Laplace du sinus cardinal

On rappelle la définition du sinus cardinal sinc(x) =
sinx

x
prolongé par continuité en 0 par la valeur 1. On note

S sa primitive s’annulant en 0, soit S(x) =
∫ x

0
sinc(t) dt.

10. Pour tout x ∈ R∗, on a sincx =
1

x

∞∑
n=0

(−1)n x2n+1

(2n+ 1)!
=

∞∑
n=0

(−1)n x2n

(2n+ 1)!
. Par continuité du sinus cardinal et

de la série entière, la formule vaut aussi pour x = 0. Ainsi, sinc est développable en série entière avec un rayon de
convergence infini, donc la fonction sinc est de classe C∞ sur R.

Le sinus cardinal est continu et de limite nulle en l’infini, donc borné et admet donc une norme infinie. L’inégalité
| sinx| 6 |x| montre que ‖sinc‖∞ 6 1, mais l’inégalité est en fait une égalité car sinc(0) = 1. Enfin, sinc ∈ E par la
question 9.a. On note L = L(sinc) sa transformée de Laplace.

11. Comme sinc ∈ E, les questions 7 et 5 donnent

∀x > 0: L′(x) = −
∫ +∞

0
sin(t)e−xt dt = −L(sin)(x) = − 1

1 + x2
∴ L(x) = c− arctanx,

où c ∈ R. D’après la question 6, lim
x→+∞

L(x) = 0, d’où c =
π

2
et L(x) =

π

2
− arctanx = arctan

(
1

x

)
.

12. On pose G(x) = L(sinc2)(x) =
∫ +∞

0
sinc2(t) e−xt dt. On sait que L et G sont bien définies sur R∗+.

Réalisons une intégration par parties à partir de L(0).

L(0) =

∫ +∞

0
sinx︸︷︷︸
u′

×

v︷︸︸︷
1

x
dx =

[
1− cosx

x

]x→+∞

x→0

+

∫ +∞

0

1− cosx

x2
dx

=

∫ +∞

0

1− cosx

x2
dx =

∫ +∞

0

2 sin2(x/2)

x2
dx =

(x=2u)

∫ +∞

0

sin2 u

u2
dx = G(0).

Le crochet donne deux fois 0 car
1− cosx

x
=

(x→+∞)
O
(
1

x

)
&

1− cosx

x
∼

(x→0)

x

2

et un changement de variable bijectif conserve la nature de l’intégrale. Il s’ensuit que les deux intégrales sont de même
nature, donc convergentes car l’intégrale définissant G(0) est faussement impropre en 0 (la fonction est prolongeable
par continuité en 0 par la valeur 1/2) et par comparaison avec 1/u2 en l’infini.

13. Pour x > 0, on peut écrire :∫ +∞

0
S
(u
x

)
e−u du

(1)
= xL(S)(x) (2)

= L(S′)(x) + S(0) = L(sinc)(x) + 0 = L(x).

(1) La fonction S est continue comme primitive d’une fonction continue et qu’elle admet une limite finie en +∞
d’après la question 12 (convergence de L(0)). On peut donc lui appliquer la question 9.b ;
(2) S′ ∈ E par la question 10 ; on peut donc lui appliquer la question 8.

On applique alors le théorème de la valeur finale à S, qui vérifie bien les hypothèses de la question 9, pour passer
à la limite :

L(x) = xL(S)(x) −−−→
x→0
x>0

lim
y→+∞

S(y) =

∫ +∞

0
sinc(t) dt = L(0).
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Ainsi, L(0) =
∫ +∞

0
sinc(x) dx = lim

x→0
x>0

L(x) = lim
x→0
x>0

arctan

(
1

x

)
=
π

2
.

14.a. On applique le théorème de continuité (dire que sinc2 ∈ E ne donne pas la continuité en 0).

(i) Pour tout x > 0, la fonction t 7−→ sinc2(t)e−xt est continue (p.m.) sur ]0,+∞[.

(ii) Pour tout t > 0, la fonction x 7−→ sinc(t)e−xt est continue sur R+.

(iii) Pour tout x > 0, on a la domination intégrable
∣∣ sinc2(t)e−xt∣∣ 6 sinc2(t). Or, sinc2 est continue sur R+

et sinc2 t =
t→∞

O(1/t2), donc sinc2 est intégrable sur R+ (ce qui n’est pas le cas des fonctions de E, d’où
l’obligation de se placer sur [a,+∞[ à la question 6.

Le théorème s’applique donc directement sur R+ et donne la continuité de G sur R+.

14.b. La fonction sinc2 est continue et bornée sur R+ et appartient donc à E. La question 8 assure qu’elle est de
classe C∞ (on ne pouvait pas utiliser cette question pour la continuité car on n’aurait obtenu que la continuité sur
R∗+ et non sur R. De plus,

G′′(x) =

∫ +∞

0
sin2 te−xt dt =

∫ +∞

0

(
eit − e−it

2i

)2

e−xt dt = −1

4

∫ +∞

0

[
e2it − 2 + e−2it

]
e−xt dt

= −1

4

[
1

x− 2i
− 2

x
+

1

x+ 2i

]
=

1

2

(
1

x
− x

x2 + 4

)
.

14.c. La question est assez pénible... Par intégration, il vient

G′(x) =
1

2
lnx− 1

4
ln(x2 + 4) + C1 =

1

4
ln

x2

x2 + 4
+ C1.

Or, G′(x) = −L
(
t 7→ t sinc2(t)

)
−−−−→
x→+∞

0 par la question 6, d’où C1 = 0. Pour calculer G, on primitive ln(x2 + 4)

par une intégration par parties :∫
ln(x2 + 4) dx =

∫
ln(x2 + 4)︸ ︷︷ ︸

u

× 1︸︷︷︸
v′

dx = x ln(x2 + 4)−
∫

2x2

x2 + 4
dx

= x ln(x2 + 4)−
∫

2x2 + 8− 8

x2 + 4
dx = x ln(x2 + 4)− 2x+ 4arctan

x

2
+ C ∴

G(x) =
1

2
(x lnx− x)− x

4
ln(x2 + 4) +

x

2
− arctan

x

2
+ C0

=
1

2
x lnx− x

2
lnx− x

4
ln

(
1 +

4

x2

)
− arctan

x

2
+ C0 = −

x

4
ln

(
1 +

4

x2

)
− arctan

x

2
+ C0

=
x→+∞

O
(
1

x

)
− π

2
+ C0 = C0 −

π

2
+ o(1).

À nouveau, lim
x→+∞

G(x) = 0, et l’on en déduit C0 =
π

2
. Enfin, la continuité de G en 0, prouvée à la question 14.b.,

donne, en remontant à la première expression de G à la troisième ligne du calcul ci-dessus,

G(0) = lim
x→0
x>0

G(x) = C0 =
π

2
.

D. Injectivité de la transformation de Laplace

On admet le théorème de Stone-Weierstraß : toute fonction continue sur un segment y est limite uniforme d’une
suite de fonctions polynomiales.

Soit f ∈ E. On note g la fonction définie sur [0,+∞[ par g(s) =
∫ s

0
f(u)e−u du.

15. Soit x ∈ ]0,+∞[. La question 9 donne L(g′)(x) = xL(g)(x)− g(0), d’où

L(g)(x) = 1

x

(
L(g′)(x) + g(0)

)
=

1

x

∫ +∞

0
f(u)e−ue−xu du =

1

x
L(f)(x+ 1).
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16. Pour u ∈ ]0, 1], on pose φ(u) = g(− lnu). En posant t = − lnu (u = e−t) dans l’intégrale, il vient, pour x > 0,

L(g)(x) =
∫ +∞

0
g(t)e−xt dt =

∫ 0

1
g(− lnu)ux

(
− du

u

)
=

∫ 1

0
φ(u)ux−1 du.

17. Par hypothèse, L(f) est la fonction nulle. Pour n ∈ N, les questions 15 et 16 donnent∫ 1

0
φ(u)un du = L(g)(n+ 1) =

1

n+ 1
L(f)(n+ 2) = 0.

Par linéarité de l’intégrale,
∫ 1

0
φ(u)P (u) du = 0 pour tout polynôme P ∈ R[X].

18. La fonction φ est continue sur ]0, 1] et

lim
u→0

φ(u) = lim
u→0

g(− lnu) = lim
x→+∞

g(x) = L(f)(1).

Ainsi, φ est prolongeable par continuité en 0. Notons φ̃ le prolongement. On peut appliquer à φ̃ le théorème de
Stone-Weierstraß. Il existe ainsi une suite de polynômes (Pn)n>0 convergeant uniformément sur [0, 1] vers φ̃, donc
sur ]0, 1] vers φ par restriction.

19. Pour x ∈ ]0, 1], on a∣∣φ(x)Pn(x)− φ2(x)∣∣ = |φ(x)| × ∣∣Pn(x)− φ(x)∣∣ 6 ‖φ‖∞ ‖Pn − φ‖∞ −−−→n→∞
0.

Ainsi, la suite (φPn)n converge uniformément vers φ2, d’où
∫ 1

0
φ2(u) du = lim

∫ 1

0
φ(u)Pn(u) du = 0. Comme φ est

continue, c’est la fonction nulle. Corrélativement, g est aussi la fonction nulle, donc f(s)e−s = g′(s) = 0 et f est la
fonction nulle, ce qui montre l’injectivité de la transformée de Laplace.

E. Un développement asymptotique

20. La fonction 1/
√
t n’est pas continue en 0, mais on peut toujours écrire la formule donnant sa transformée de

Laplace... Pour x > 0, effectuons le changement de variable xt = u2

L
(
t 7→ 1√

t

)
(x) =

∫ ∞
0

e−xt√
t
dt =

∫ ∞
0

e−u
2

u

√
x× 2udu

x
=

2√
x

∫ ∞
0

e−u
2
du =

√
π

x
,

L
(
t 7→
√
t
)
(x) =

∫ ∞
0

√
t︸︷︷︸
u

× e−xt︸︷︷︸
v′

dt =

[√
t
e−xt

−x

]t→+∞

0

−
∫ +∞

0

e−xt

−2x
√
t
dt =

1

2x
L
(
t 7→ 1√

t

)
(x) =

√
π

2x3/2
.

21. On a W (x) =

∫ π/2

0
ex ln(sin t) dt, ce qui conduit à faire le changement de variable u = − ln(sin t), ou encore

t = arcsin(e−u), changement de variable continu et strictement monotone. En posant f(t) =
e−t√

1− e−2t
, on en

déduit

W (x) =

∫ π/2

0
ex ln(sin t) dt =

∫ 0

+∞
e−xu

(
− −e−u√

1− e−2u

)
du = L(f)(x).

22. D’après la formule de Taylor-Young, on a, pour t tendant vers 0,

e−2t = 1− 2t+
4t2

2
+O(t3) = 1− 2t+ 2t2 + o(t5/2),

ce qui se réécrit sous la forme 1 − e−2t = 2t
(
1 − t + o(t3/2)

)
. En reportant dans (1 + u)−

1
2 = 1 − u

2
+ o(u) pour u

tendant vers 0, il vient

(1− e−2t)−
1
2 =

1√
2t

(
1− t+ o(t3/2)

)− 1
2
=

1√
2t

(
1 +

t

2
+ o(t3/2) + o(t3/2)

)
=

1√
2t

(
1 +

t

2
+ o(t3/2)

)
.

En multipliant par e−t = 1− t+ t2

2
+ o(t2) = 1− t+ o(t3/2), on obtient

f(t) =
1√
2t

(
1 +

t

2
+ o(t3/2)

)(
1− t+ o(t3/2)

)
=

1√
2t

(
1− t

2
+ o(t3/2)

)
=

1√
2t
−
√
t

2
√
2
+ o(t).
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On peut classiquement écrire le reste o(t) du développement précédent sous la forme tε(t) avec ε de limite nulle en
0.

23. La linéarité de la transformée de Laplace (question 1) et les calculs de la question 20 donnent, à partir de
l’expression de f de la question précédente,

W (x) = L(f)(x) = 1√
2
L
(
t 7→ 1√

t

)
(x)− 1

2
√
2
L
(
t 7→
√
t
)
(x) + L

(
t 7→ tε(t)

)
(x)

=

√
π

2x
−
√
π

4
√
2

1

x
√
x
+ L

(
t 7→ tε(t)

)
(x)

Pour t > 0, le développement asymptotique de f donne

ε(t) =
e−t

t
√
1− e−2t

− 1

t
√
2t

+
1

2
√
2t
.

La fonction ε est donc de limite nulle en 0 et en l’infini. Étant continue, elle est bornée. Notons M = ‖t 7→ tε(t)‖∞ .
Il vient ∣∣∣∣∫ ∞

0
tε(t)e−nt dt

∣∣∣∣ 6 ∫ ∞
0
|ε(t)|te−nt dt 6M

∫ ∞
0

te−xt dt =ML(p1)(x) =
M

x2
∴

W (x) =

√
π

2x
−
√
π

4
√
2

1

x
√
x
+O

(
1

x2

)
.
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