
DMS 5 - PSI* — 2025 - 2026

Problème

Partie I — Introduction d’une fonction auxiliaire

Soit l’intervalle I =
]
−π

2
,
π

2

[
. On considère la fonction f définie sur I par

∀x ∈ I : f(x) =
sinx+ 1

cosx
.

On note f (n) la dérivée d’ordre n de f et, par convention, f (0) = f.

I.A. Dérivées successives

On veut montrer qu’il existe une unique suite de polynômes (Pn)n∈N à coefficients réels telle que

(P) : ∀n ∈ N, ∀x ∈ I : f (n)(x) =
Pn(sinx)

(cosx)n+1
.

1. Calculer les dérivées f ′, f ′′ et f (3) et expliciter les polynômes P0, P1, P2, P3.

2. Montrer la propriété (P) et, pour tout n ∈ N, exprimer Pn+1 en fonction de Pn et de P ′n.

3. Justifier que, pour tout entier n > 1, le polynôme Pn est unitaire, de degré n et que ses coefficients sont des
entiers naturels.

4. Montrer que 2f ′(x) = f(x)2 + 1 pour tout x ∈ I.

Pour tout n ∈ N, on pose αn = f (n)(0) = Pn(0).

5. Montrer que 2α1 = α2
0 + 1 et que

∀n ∈ N∗, 2αn+1 =

n∑
k=0

(
n

k

)
αkαn−k.

I.B. Développement en série entière

On note R le rayon de convergence de la série entière

∞∑
n=0

αn
n!
xn et g sa somme.

6. À l’aide de la formule de Taylor avec reste intégral, montrer que

∀N ∈ N,∀x ∈ [0, π/2[ :
N∑
n=0

αn
n!
xn 6 f(x).

7. En déduire la minoration R >
π

2
.

8. Montrer que, pour tout x ∈ I, on a 2g′(x) = g(x)2 + 1.

9. En considérant les fonctions arctan f et arctan g, montrer que, pour tout x ∈ I, f(x) = g(x).

10. En déduire que R =
π

2
.

I.C. Partie paire et partie impaire du développement en série entière

11. Justifier que toute fonction h : I → R s’écrit de fa̧con unique sous la forme h = p + i avec p : I → R une
fonction paire et i : I → R une fonction impaire.
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12. En déduire que

∀x ∈ I : tan(x) =
+∞∑
n=0

α2n+1

(2n+ 1)!
x2n+1 &

1

cosx
=

+∞∑
n=0

α2n

(2n)!
x2n.

13. Pour tout entier naturel n, exprimer tan(n)(0) en fonction des réels (αi)i∈N.

14. Rappeler, sans justification, l’expression de tan′ en fonction de tan.

15. En déduire que

∀n ∈ N∗ : α2n+1 =

n∑
k=1

(
2n

2k − 1

)
α2k−1α2n−2k+1.

Partie II — Une recherche d’équivalent

II.A. La fonction zêta de Riemann

Pour tout s > 1, on pose ζ(s) =

+∞∑
n=1

1

ns
.

16. Montrer que ζ est bien définie et continue sur ]1,+∞[.

17. Montrer que lim
s→+∞

ζ(s) = 1. En utilisant la comparaison série-intégrale, déterminer un équivalent de ζ(s)

quand s tend vers 1 par valeurs supérieures.

18. Déterminer une fonction C(s) à l’expression simple telle que

∀s ∈ ]1,+∞[ :

+∞∑
k=1

1

(2k − 1)s
= C(s)ζ(s).

II.B - Une formule pour la fonction cosinus

Pour tout entier naturel n et tout réel x, on pose In(x) =

∫ π/2

0
cos(2xt)(cos t)n dt.

19. Montrer que In est de classe C1 sur R et que I ′n(x) = −2

∫ π/2

0
t sin(2xt)(cos t)n dt. En déduire que

∀n ∈ [[2,+∞[[, ∀x ∈ R :

(
1− 4x2

n2

)
In(x) =

n− 1

n
In−2(x) &

(
1− 4x2

n2

)
In(x)

In(0)
=
In−2(x)

In−2(0)
.

20. Montrer que

∀n ∈ N∗,∀x ∈ R : sin(πx) = πx
I2n(x)

I2n(0)

n∏
k=1

(
1− x2

k2

)
.

21. En déduire que

∀n ∈ N∗,∀x ∈]0, 1[ : cos(πx) =
I4n(2x)

I4n(0)

I2n(0)

I2n(x)

n∏
p=1

(
1− 4x2

(2p− 1)2

)
.

II.C. Un autre développement de tangente

Dans toute cette sous-partie II.C, on pose J = [0, 1/2[ et, pour tout entier naturel n et tout réel x de J ,

Sn(x) =
+∞∑
p=1

(
+∞∑

k=n+1

22p+1x2p−1

(2k − 1)2p

)
.

22. Montrer que

∀n ∈ N∗,∀s ∈]1,+∞[ :

+∞∑
k=n+1

1

(2k − 1)s
6

1

2(s− 1)

1

(2n− 1)s−1
.

23. Justifier que, pour tout entier naturel n, la fonction Sn est définie sur J .
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24. Montrer que la suite (Sn)n converge simplement sur J vers la fonction nulle.

25. En dérivant x 7→ ln(cos(πx)), montrer que

∀x ∈ J : π tan(πx) = −2I ′4n(2x)

I4n(2x)
+
I ′2n(x)

I2n(x)
+

n∑
k=1

8x

(2k − 1)2
1

1− 4x2

(2k − 1)2

.

26. Montrer que

∀n ∈ N∗,∀x ∈ J : π tan(πx) + Sn(x) = −2I ′4n(2x)

I4n(2x)
+
I ′2n(x)

I2n(x)
+ 2

+∞∑
p=1

(22p − 1)ζ(2p)x2p−1.

27. Montrer l’inégalité t cos t 6 sin t, pour tout t ∈ [0, π/2].

28. En déduire que

∀n ∈ N∗, ∀x ∈ [0, 1] : 0 6 −I ′n(x) 6
4x

n
In(x)

puis, pour x ∈ [0, 1], la valeur de lim
n→+∞

I ′n(x)

In(x)
.

29. En déduire l’égalité

∀x ∈ J : π tan(πx) =
+∞∑
p=1

2(22p − 1)ζ(2p)x2p−1.

II.D. Un équivalent de α2n+1

30. En utilisant la partie I.C, montrer que

∀n ∈ N : α2n+1 =
2(22n+2 − 1)(2n+ 1)!

π2n+2
ζ(2n+ 2).

31. En déduire un équivalent de α2n+1 lorsque n tend vers l’infini (on laissera (2n+ 1)! dans l’équivalent sans
le remplacer par la formule de Stirling).

Exercice 1

Pour α > 0, on pose gα(x) = cos
(
α arcsin(x)

)
et l’on considère l’équation différentielle

(1− x2)y′′ − xy′ + α2y = 0 (Eα).

32. Justifier que gα est de classe C 2 sur ]− 1, 1[ et montrer que gα est solution de (Eα) sur ]− 1, 1[.

33. On cherche dans cette question à résoudre le problème de Cauchy suivant : y solution de (Eα), y(0) = 1,

y′(0) = 0. On cherche y sous la forme d’une série entière y(x) =
∞∑
n=0

anx
n de rayon de convergence non nul.

a. Exprimer an+2 en fonction de an.

b. Calculer a2p+1 pour p ∈ N. Donner une expression de a2p en fonction de p. On laissera le numérateur
sous la forme d’un produit.

c. Conclure.

34. Pour quelles valeurs du paramètre α le problème de Cauchy étudié admet-il une solution polynomiale
non nulle ? Plus généralement, pour quelles valeurs du paramètre α l’équation (Eα) admet-elle au moins une
solution polynomiale non nulle ?
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Exercice 2

Pour u > 0, on pose g(u) =

∫ +∞

0

1− e−ut

t (
√
t+ 1)

dt.

35. Montrer que g est bien définie et continue sur R+.

36. Montrer que g est de classe C 1 sur R∗+ et étudier ses variations.

37. Montrer qu’il existe une constante c > 0 telle que g(u) ∼
u→0
u>0

c
√
u. Quel est le domaine de dérivabilité de g ?
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