DMS5 - PSI*, 2025 - 2026 — corrigé

Probleme — Centrale PC, 2019, épreuve 2, parties I et 11

i 1
Soit Iintervalle I =] —7/2,7/2[. On considére la fonction f définie sur I par f(x) = %

I.A. Dérivées successives

1. Les fonctions sinus et cosinus sont de classe C™ sur I et cosx ne s’y annule pas. Les regles de calcul
usuelles (on utilise la dérivée d'un quotient pour f’ et celle d'un produit pour les deux suivantes, ainsi que
(R™) = mh’h™"1) donnent

cos?x — (1 +sinz)(—sinz) sinz+1

!
xTr) = =
(@) cos?x cos?z ’
" cosz  2sinz(l +sinz) cos’z + 2sinz + 2sin’x  sin?x + 2sinz + 1
f ($):: 2 + 3 = 3 = 3 ’
cos? cos3 cos3 cos3
() QSinxcosa:—i—Qcosx+38inx(sin23c+23inx+1)
€Tr) =
cos3 x costx
2sinz(1 —sin?2) + 3sinz(sin?2 + 2sinz + 1)  sin®x 4+ 4sin®z + 5sina + 2
cost x costx ’

L’hypothése est donc vraie pour n € [0,3] avec Py = Py = X 4+1, P, = (X +1)% et Py = X3 +4X? 45X +2 =
(X 4+ 1)%(X +2) (la factorisation n’est pas demandée).

2. Raisonnons par récurrence simple sur n. L’initialisation a été faite a la question précédente. Admettons la
formule a n fixé. En dérivant par rapport a x, il vient

Fr(z) = d ([ Py(sinx) _ (cosz)Py(sinz)  (n+1)(—sinz)P,(sinz)
dz \ (cosz)nt! (cos z)nt1 (cos z)"t2
(1 —sin?)P)(sinz) + (n+ 1)(sinz) P, (sinz)
B (cos z)nt2 ’
soit f" ) () = W avec Ppi1 = (1 — X?)P, + (n+1)XP,. Pour ce qui est de I'unicité de P, :
T [ Pu(sinz)  Qu(sinz) T Tl _ B )
Vo € } 55 { *leos L~ (cosz)Hl — Vx € } 53 [ : Py(sinz) = Qp(sinz)

< Vte|-1,1]: P,(t) — Qn(t) =0 <= P, = Qn,
un polynome possédant une infinité de racines étant nul.

3. On procede également par récurrence simple. Pour 1 < n < 3, P, est unitaire, de degré n et a coefficients
n—1

dans N. Supposons que ce soit le cas pour un certain entier n et posons P, = X" + Z apX®. Alors,
k=0

n—1 n—1
Po1=(1—-XHP(X)+ (n+ 1)XP,(X) = (1 - X?) <nX”1 +) kaka1> +(n+1)X (X” +)° aka)

k=1 k=0
n—1 n—1 n—1
=nX" 14+ Z kap Xk 1 —pxnt!t — Z kap X*+H! + (n+1)X" 4 Z(n + l)akX]H'1
k=1 k=1 k=0
n—1 n—1
= X" ppxnt 4 Z kap X* 1 + (n+1—k)ap X* 1+ (n+1)agX
k=1 k:lT

vérifie également les trois conditions. Notons qu'une ligne de plus permettrait de donner les coefficients de
P, +1 dans la base canonique, mais ce n’est pas nécessaire.

4. Pour z € I,

sinz +1)? sinz + 2sinz + 1+ cos?x  2(sinz + 1)
f(x)2+1:( 2 ) t1l= 2 -2 2 =2f'(x).
cos? cos? cos? x
1




5. Pour tout entier naturel n, on pose oy, = f™(0) = P,(0). On calcule ag = f(0) = 1 et ay = f'(1) = 1, d’ont
2001 = a% + 1. Pour n > 1, on peut dériver n fois la relation de la question 4 en utilisant la formule de Leibniz.
II vient

T Sl T Z()”’ 057750 :Z<>a’““”"“‘

k=0 -0
1.B. Développement en série entiere

«
On note R le rayon de convergence de la série entiere Z —Tm" et g sa somme.

= n!
6. Appliquons la formule de Taylor avec reste intégral a 'ordre N & la fonction f, qui est de classe C™.

N N N
fo 0) n /x (x =) (N+1) On _pn /gﬁ (z — )N Pyya(sint) An _n
_ _\ "% >N Ran,
/(@) T;) nl " + 0 NI / (t)dt T;) " + 0 Nl(cost)N+2 di > 7;) nl”’

T
En effet, avec 0 < t < a < —, sint et cost sont strictement positifs et, Pyy1 étant a coefficients positifs d’apres

la question 3, le reste intégral est l'intégrale d’une fonction positive avec les bornes bien orientées, donc est
positif.

T
7. 1l s’ensuit que la suite des sommes partielles de la série définissant g est bornée pour tout z < 3 Or,

cette série est a termes positifs car a;,, > 0 pour tout n € N (par positivité des coefficients de P,, ou par
une récurrence immédiate a partir de la formule démontrée a la question 5), donc la série converge pour tout

T
x < 5 donc R > x pour tout x < , donc R >

8. Effectuons un produit de Cauchy de g par elleeméme pour |z| < R. Avec la question 5, on isole le terme
constant, puisqu’il ne vérifie pas la méme relation de récurrence. Il vient

oo n
_ o2t Z Z kakan k =al+ 221 %T kz_o (Z) QO

—ao—i—ZQanH —a0+22n S =af +2(d (x) —a1) =24/ (z) — 1.

n=1

9. Pour x € I, posons f; = arctan f et g = arctan g. Les relations obtenues aux questions 4 et 8 et le fait que
f1 et g1 soient dérivables (elles sont de classe C*°) donnent

TN S (C
1+ f(@)2 2 1+g(x)? ’
) =

9(0) =1, donc f1(0
) pour tout x € I.

Ve el: fi(x) = ——"

Ainsi, f1 — g1 est constante. Or f(0) 91(0 )( = 7r/4) d’ou f1 = g1 et, dong, la fonction

arctangente étant injective, f(x) = g(x
. q . / 1 .
Curieusement, il n’était pas demandé de calculer f : de fi(x) = 50 on tire

fl(w):g—i-ﬁ((]):g%—arctanl: —1—2 f(m):tan(ngg)-

N8

3

10. Il s’ensuit lim g(z) = lim f(z) = +oo. La fonction g n’est pas définie en E, donc R < —, soit in fine
x—/2 Tz—7/2 2 2
x<m/2 x<m/2

s
R=—.
2
I.C. Partie paire et partie impaire du développement en série entiere

11. Notons F(I) l'espace vectoriel des fonctions réelles définies sur I et soit A € L(F(I)) I'application qui &
f associe z — f(—z). Alors, A% = idz(7). Donc A est une symétrie. Corrélativement, avec P(I) et Z(I) les
s.e.v. de F(I) formés respectivement des fonctions paires et des fonctions impaires,

F(I) = Ey(A) ® E_1(A) = P(I) & Z(I).
2



sinx + 1

12. On a f(x) = ——— = tanz + , qui donne la décomposition de f comme somme de la fonction
cos T cos T
impaire tangente et de la fonction paire 1/ cos. Par ailleurs, sous sa forme de série entiere, f ( ) = g(x) s
Q2n+1 2+l X2n 22
décompose en la somme de la série entiere impaire —_— et de la série entiere paire
p p Z < (2n +1)! p Z on)”
L’unicité de la décomposition permet d’identifier :
400 o 1 ~+o00 a
. . 2n+1 2n+1 . 2n  2n
Ve € I: tan(x) = —= & = "
(z) nzzo (2n+1)! cos x 2n)!

13. On connait 'expression des coeflicients d’une série entiere de rayon de convergence non nul. D’apres la
question 10, les deux séries de la question précédente sont de rayon de convergence au moins égal a m/2, donc
le résultat s’applique. Il donne tan(”)(O) = 0 si n est pair et tan(”)(()) = a, si n est impair.

14. On a tan’ = 1 + tan?.

(e e]
15. Comme a la question 8, on fait un produit de Cauchy. On note tanz = Z Bnx™ avec, en vertu de la
n=0
e}
question précédente, B2, = 0 et Bapi1 = ﬁ. On note enfin que tan? est paire et vaut 0 en 0, ce qui
D !

permet d’ignorer les termes nuls et d’écrire

00 2n oo n
1+tan’z =1+ Z %" Z BpBon—p =1+ Z " Z Bok—1B2n—2k+1

n=1 p=0 n=1 k=1
o0 n o o 9] on M
2n 2k—12n—2k+1
- —1 1Qon
2 ; 2%k — 1) (2n — 2k + 1) +Z ';(%-1)0% 1A2n=2k-+1

00
tan :E : n+1 2n

n

2n

d’oll aopy1 = Z <2/<: B 1>a2k_1a2n_2k+1 par unicité du DSE.
k=1

Partie II — Une recherche d’équivalent

II.A. La fonction zéta de Rie+mann
[o.¢]
1
Pour tout s > 1, on pose ((s) = —.
n=1 n
16. La fonction ¢ est bien définie sur |1, +oo[ (cours), ce qui sera redémontré a la question suivante par la
slnn

1
comparaison série-intégrale. De plus, pour tout n > 1, la fonction s — — = e~ est décroissante et ’on
ns

a donc, pour a > 1, [|[n™°([, . .- Aussi la série converge-t-elle normalement (donc uniformément) sur tout
intervalle de la forme [a, 400 avec a > 1, ce qui assure en particulier la continuité de la fonction ¢ sur [a, +00[

pour tout a > 1, donc sur |1, 4+o0].

17. La décroissance de t — t~° donne

1 nodt s T |
Vn>2:</ — & Vn}l:/ — < —
n— n

ns 1 8 s ns
1 teodt o oo dt 1
- =< = ((s) < 1 Sy
1-s /1 Z ns + /1 ts + s—1
1
Le théoreme des gendarmes donne ((s) ~ . En particulier, lim {(s) = 400 et hm ¢(s) = 1. La limite
5= & ~eo

en 'infini peut aussi s’obtenir avec le théoreme de la double limite en arguant de la convergence uniforme de
la série sur [2, +oo].



18. On décompose ((s) selon la parité de ses indices de sommation. Il vient
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I1.B - Une formule pour la fonction cosinus

w/2
Pour tout entier naturel n et tout réel x, on pose I, (x) = / cos(2xt)(cost)" dt.
0

19. On applique le théoreme de dérivation des intégrales a parametre :

i) pour tout z € R, la fonction ¢ — cos(2xt)(cost)”™ est continue (par morceaux) et continue, donc
intégrable sur le segment [0, 7/2];

i) pour tout t € [0,7/2], la fonction x — cos(2zt)(cost)™ est de classe C';

0
iti) on calcule — [ cos(2at)(cost)"] = —2tsin(2at)(cost)™. Cette fonction, continue (p.m.) est dominée par

la constante m, trivialement intégrable.

w/2
Il s’ensuit que I,, est bien de classe C! sur R et que, pour tout = € R, I,(x) = —2/ tsin(2xt)(cost)" dt.
0

On considere n € N, n > 2 et € R* et l'on effectue sur I,,(x) deux intégrations par parties successives.

/2 /2
I,(z) = / cos(23:t) (cos H" dt = 21x [sin(2xt)(cost)" ]ﬂ_/Q - /0 sin(2xt)(—sint(cost)" 1) dt

= / sin(2xt) smt(cos t)nL de

v
w/2

w2 _ — cos(2at)[(cost)” — (n— 1) sin? (cos t)”*2] dt

t=0 A2 0

= 2 [ — cos(2at) sint(cost)”*l]
x

n w/2 n
=12 (n(cost)™ — (n —1)(cos t)”_Q) dt = @(nln(m) — (n— 1) I—o(x)).
0

On en déduit

2 2
n n(n —1) ‘ 4z n—1
72
en multipliant par —— La relation s’étend a x = 0 par continuité de I,, et de I,,_s. Enfin, en divisant la
n
-1
relation obtenue pour z par celle obtenue pour x = 0, i.e. I,(0) = n I,,_5(0), il vient
n

(1-%) 50 - 120

n2

w/2
20. On calcule facilement Iy(z) = / cos(2zt) dt = [ 5
0 T

in(22t)]™? s
S ) -5t
0 2x 2

- (-5 05 (-5 - -5

et le résultat en multipliant par 7z, avec extension au cas x = 0 par continuité (ou en notant qu’elle donne
trivialement 0 = 0).




21. Le < en déduire > est miséricordieux et indique qu’il y a mieux a faire que de se lancer dans des calculs
similaires sur I (z) ou Dieu sait quoi. Si z # 0,

. . 2n n -1
sin(2rz)  sinc(2mx)  I4n(2z) 12, (0) 4 x?
cos(mz) 2sin sinc(mx) I4,(0) Iop(x) ]};[1 k2 kI;[l k2

I4n 2:13 Izn(o
B I4n [271 CC)

RO ) 00D
" < 2p—21) )

A nouveau, le résultat est trivial pour 2 = 0 (1 = 1).

I1.C. Un autre développement de tangente

Dans toute cette sous-partie II.C, on pose J = [0,1/2[ et, pour tout entier naturel n et tout réel x de J,

—+o00 —+o00 2p+1,.2p—1

2P 2P

Sol@) =2 ( 2 (2k — 1)%) :
p=1 \k=n+1

22. On utilise la comparaison série-intégrale. La fonction ¢ — (2t — 1)7°

1 - /’“ dt
(2k —1)° = Jp_1 (2t — 1)

™= 1 too gt 1 t=+o0 1 1
2. @h—1p S /n @t—1) {_2(5 —1)(2t— 1)8—1L T 2(5-1)(2n—1)5 1

k=n+1

étant décroissante sur [1, +oo],

23. La question précédente permet de majorer le terme général (positif) de la série :

I 92p+1,2p-1 Sz 2 2(p—1) 20 2(p—1)
0< ) < —0 .
2k—1)% S 2(2p—1)(2n— 1) <2n—1> <2n—1>

k=n+1

2z
2n —1

2
Pour z € [0,1/2], ( ) < 1 et la série géométrique converge, ce qui assure que la fonction .S, est bien

définie sur J.
24. On reprend la majoration :

2 X/ 22 \2PY 2 1 1
O g S g == ~ T,
n(®) 2n—1pzl<2n—1) m—1" 12 nDeon

C (2n—1)2

ce qui montre que la suite (.S,,),, converge simplement sur J vers la fonction nulle.

25. Si x € J, cos(mz) €]0,1], donc In (cos(rz)) existe. Les intégrales considérées sont également strictement
positives (intégration de fonctions continues positives non nulles). La question 21 donne la formule

—In(cos(mz)) = —In (I4n(22)) + In (I24(2)) — In <228> Zl ( %_21))

21}, (2x) 12 x) 1
t = nl )
mtan(rr) = =y T @) 0 Z 2k —1)2 422

©(2k—1)2

par dérivation.



26. Pour z €]0,1/2],

i2m¢ %M +&@:iii(% ) E:Z<§m1>pii§x%—1y

k=1 1— k=1 p=1 p=1k=n+1 p=1k=1
(2k —1)2
[e'e] B [e’e] 1 (Q.IS) [e'e) B B [e’e] B
:E:?pﬂﬁpl§:@%iiﬁ5 =7 21— 27)((2p) =2y (2% — 1)¢(2p)2*
p=1 k=1 p=1 p=1

" (9 ! (g too
mtan(mx) + Sp(zr) = — 2]{;?((22@) + 2225 +2 2(221’ —1)¢(2p)a®P L.

27. La fonction tangente étant convexe sur [0, 7/2[, elle est au-dessus de sa tangente a 'origine, ce qui donne
tcost < sint pour tout ¢ € [0, /2], inégalité étendue & 7/2 par continuité.

/2
28. D’apres la question 18,5, I/ (z) = —2/ tsin(2xt)(cost)™ dt < 0 car, pour = € [0,1], 0 < 2zt < 7 et

la fonction intégrée est donc positive. On applique alors 'inégalité de convexité de la question 27, puis I'on
réalise une intégration par parties :

w/2 /2
—I)(z) = 2/ t(cost) sin(2xt)(cos )"t dt < 2 sin(2xt) sint(cost)" ! dt
0 0 \W—’\—f—/
1 w2 Az [T 4z,
< —[sin(2:ct)( cos t)] 2 _ x/ cos(2xt)(—cos™ t) dt = M
n n J -

I (x
Le théoreme des gendarmes donne alors immédiatement lim n() = 0.
n—+oo I, ()

29. Les questions 24 et 28 permettent de passer a la limite dans I’expression de la question 26, ce qui donne,
pour x € J,

214, (27) I2n z) 2 2p—1 ~— 2 2p-1
7 tan(mx) S mtan(mx) + Sp(zr) = — Tan (22) Izn 2) + 22 (277 = 1)¢(2p)x~P™ P 2; (27 = 1)¢(2p)™ .

I1.D. Un équivalent de ag, 1

30. D’apres la question 12 et la question 29,

+ + +
7 tan(rz) (@.12) ﬂzoo M(Mﬁ)m“ _ ZOO _@2n4l  on+2, 204l (Q-29) 2 ZOO(22p — 1)¢(2p)z%t
= (2n+1)! = (2n+1)! (ot '

La série entiere étant de rayon de convergence non nul en vertu de la question 7, il y a unicité du DSE et
Iidentification des coefficients donne
2(227F2 — 1)(2n + 1)!

Vn € N: op41 = o2

¢(2n +2).

31. La question 17 donne lim ((2n + 2) = 1. Il s’ensuit

n—-+o0o

22nH3(2n 4+ 1)!
Qopt1 ™~ W



Exercice 1 — Banque PT, 2010, épreuve C (extrait)

32. Les fonctions x — «aarcsinz et u +— cos(u) sont de classe C* sur |—1,1] et R respectivement. Par
composition, g, est de classe C*° sur |—1, 1].
Pour tout = € |—1, 1], la formule de dérivation d’une fonction composée donne

gh(z) = % (avarcsinz),

V1—z2

—ax , , a?
sin (aarcsinz) —

galz) = EIT:T£5E§5

La dérivée seconde de g, peut se réécrire

— 3 C08 (cvarcsin )

i
gg(,ﬂ) = 1_ ng(,;v(‘r) - mga(x)a

ce qui montre que g, est solution de (&) sur | — 1, 1].
+o0
33.a. On suppose que pour z €] — 1,1[, y(z) = Zana:” avec ag = y(0) = 1, a = y'(0) = 0 et un rayon de
n=0
convergence R > 0. Alors,
+00
(1- :L‘2) Y (z) — zy (x) + Py(x) = (1 — 2?) Z nn—1)apz" ™ * —x Z napz" 4+ o? Z anx"
n=0
+oo +oo
= Z(n +2)(n+ 1apqaz™ — Z n(n —1)a,z" Z nanz" + Z a‘anx"
n=0 n=0
+oo
= Z [(n+2)(n + Dapia — (n* — a?) an 2"

n=0
Par unicité du développement en série entiere, comme cette série entiere est supposée nulle sur | — 1, 1], tous
ses coefficients sont nuls. Ainsi, pour tout n € N,

n2 — o2
pyo = ———————a
T+ D(n+2) "
1—a? . P

33.b. Comme a1 =0, ag = 5% 3 a1 = 0 et, par une récurrence immédiate, az,+1 = 0 pour tout p € N. Par

ailleurs, on obtient immédiatement

-1
(2p —2)* — a2 (2p — 4)% — o? 0% — a? 15 9

Vp=1:ag = X X oo X ——— X g = 70— 4k* —a”) .

g T plp-1) T (2p—2)(2p-3) 2x1 (219)!,5)( )

33.c. A partir de ces coefficients, on forme la série entiere g agpa:2p . Pour x # 0, posons u, = ‘agpx% ‘ . La

p=0
relation de récurrence de la question 3.a donne
2_ 2
Up+l _ | 92p+2) 2 _ ‘(Qp) N ‘ 72 s 2
Up azp 2p+1)2p+2) potoo

D’apres le critere de d’Alembert, si |z| < 1, la série est absolument convergente et si |x| > 1, la série est
divergente. Le rayon de convergence vaut donc 1... sauf si « est un entier pair car, dans ce cas, la suite (agp)p
est nulle a partir d’un certain rang ; la série entiere est un polynome et le rayon de convergence est infini. Dans

tous les cas, R. > 0 et I’on a bien résolu le probleme de Cauchy proposé. La série entiere Z agp:ngp est solution
p=0
de l'équation différentielle (€) sur l'intervalle | — 1, 1].

34. On a déja répondu a la premiere partie de la question ci-dessus. Dans le cas général, on peut reprendre
les calculs précédents avec ag et a1 quelconques. On suppose que ag ou a; est non nul. S’il existe une solution

+o0
polynomiale Z apx” de (£), alors la suite (ay),, est nulle & partir d’un certain rang, donc il existe un entier
n=0
n? — ao?
n € N tel que = 0 ce qui impose o = +n donc « € Z. Réciproquement, supposons que « est

(n+1)(n+2)
7



un entier relatif. Supposons pour fixer les idées que « est pair. On trouve alors une solution polynomiale (non
nulle) en posant a; = 0 et ap = 1 (de méme, en inversant si « est impair).

Exercice 2 — Oral Mines-Ponts)

+o0 1— efut

t(Vt+1) at

35. On montre que g vérifie les hypotheses du théoreme de continuité des intégrales a parametre :

Pour u > 0, on pose g(u) = /
0

—ut

t(Vt+1)

—ut

(i) pour tout u > 0, la fonction ¢ — est continue (p.m.) sur |0, +oo[;

t(Vt+1)

(iii) pour dominer la fonction, on va d’abord donner deux majorations du numérateur ; l'une sera pertinente
pour les petites valeurs de t, I'autre pour les grandes. Tout d’abord, on a trivialement 0 < 1—e " < 1;

(ii) pour tout ¢t > 0, la fonction u — est continue sur |0, +o0[;

par ailleurs, 1 —e™* = Tt < x, o 0 < 1 — e < ut. Ainsi,
0
1—e ¥ 1 1 1—eut u
< & <
t(VE+1)  t(VE+1) S pr t(WVE+1) i+l

—ut 1

1—e
Va > 0, Vx € |0,a], Vi > 0: 0 < < 1 t) + =111 400l (t),
“ z €[0,4] t(WVE+1) Wi+l 0.1 + 75111 +eol ()

ce qui donne une domination intégrable et permet d’appliquer le théoreme de continuité sur [0, al.
Corrélativement, g est bien définie et continue sur [0, a] pour tout a > 0, donc sur R, .

36. On applique le théoreme de dérivation des intégrales a parametre.
1— e—ut

t(VE+1)

montrée a la question précédente et du théoréme de comparaison.

(i) Pour tout u > 0, la fonction t — est intégrable sur ]0, +oo[; cela vient de la domination

—ut

t(Vt+1)

o (1—e v e .
(iii) Pour tout u > 0, la fonction ¢ — 5 est continue (p.m.) sur R.

tVi+1)) Vi+l

(ii) Pour tout ¢ > 0, la fonction u — est de classe €' sur R,.

(iv) Passons a la domination.

—ut —at
Ya > 0, Vz € [a,+oo[: 0 ° o(e*“t),

\[+1 \f_|_1ta+oo

fonction de référence intégrable sur R, .

Le théoréeme de dérivation s’applique donc sur [a, +00[ et g est de classe & sur [a, +o0o[ pour tout a > 0, donc

sur R’} (la question 37 prouvera que g n’est pas déri\;able en ? et que ce résultat est donc optimal).
(o] —u

\f

et la croissance de l'intégrale.

Il est alors clair que, pour tout u € RY, g "(u) = > 0, donc g est croissante. Cela pouvait aussi

s’obtenir directement & partir des variations de u — e~ %

Remarque. On a suivi I'énoncé (c’est un peu la régle du jeu...) La partie la plus difficile est sans doute
la domination du théoréeme de continuité. C’est un bon exemple d’intégrale a parametre ou, si I’énoncé en
laisse la possibilité et que 'on applique directement le théoreme de dérivation, il est plus facile de prouver
lintégrabilité & I'ordre 0 et la domination & ordre 1. De méme, pour montrer que g est de classe €°°, on
montrerait 'intégrabilité a 'ordre 0 et la domination pour toutes les dérivées d’ordre p > 1.

37. On pose x = ut dans 'intégrale définissant g. Il vient

too 1 _ gut too | _ e +o0 1—e %
g(u):/o Wdt:/o $(%+1 f/ \F+\f)d$:\/ﬂh(u).



Appliquons le théoreme de continuité a h sur Ry. Les deux premieres hypotheses sont clairement vérifiées. Par
ailleurs,

1—e™@ 1—e™@ 1 1
: < < — ~Y —_— ~Y T e
Ve >0,Vu>0:0< (V5 + &) S v 7(z) & () o = 7(z) o too 2372

Ainsi, 7 est une domination intégrable, le théoréeme s’applique et h est continue en 0. Corrélativement,

Tl _e®
g(u) L, CVu avee ¢ = h(0) = o dz.

La fonction u — /u n’étant pas dérivable en 0 (la limite de son taux d’accroissement & 1’origine est infinie),
il en va de méme pour g, dont le domaine de dérivabilité est ainsi R*.

u>0



