
DMS5 - PSI*, 2025 - 2026 – corrigé

Problème — Centrale PC, 2019, épreuve 2, parties I et II

Soit l’intervalle I = ]− π/2, π/2[. On considère la fonction f définie sur I par f(x) =
sinx+ 1

cosx
.

I.A. Dérivées successives

1. Les fonctions sinus et cosinus sont de classe C∞ sur I et cosx ne s’y annule pas. Les règles de calcul
usuelles (on utilise la dérivée d’un quotient pour f ′ et celle d’un produit pour les deux suivantes, ainsi que
(hm)′ = mh′hm−1) donnent

f ′(x) =
cos2 x− (1 + sinx)(− sinx)

cos2 x
=

sinx+ 1

cos2 x
,

f ′′(x) =
cosx

cos2 x
+

2 sinx(1 + sinx)

cos3 x
=

cos2 x+ 2 sinx+ 2 sin2 x

cos3 x
=

sin2 x+ 2 sinx+ 1

cos3 x
,

f ′′′(x) =
2 sinx cosx+ 2 cosx

cos3 x
+

3 sinx(sin2 x+ 2 sinx+ 1)

cos4 x

=
2 sinx(1− sin2 x) + 3 sinx(sin2 x+ 2 sinx+ 1)

cos4 x
=

sin3 x+ 4 sin2 x+ 5 sinx+ 2

cos4 x
.

L’hypothèse est donc vraie pour n ∈ [[0, 3]] avec P0 = P1 = X+ 1, P2 = (X+ 1)2 et P3 = X3 + 4X2 + 5X+ 2 =
(X + 1)2(X + 2) (la factorisation n’est pas demandée).

2. Raisonnons par récurrence simple sur n. L’initialisation a été faite à la question précédente. Admettons la
formule à n fixé. En dérivant par rapport à x, il vient

f (n+1)(x) =
d

dx

(
Pn(sinx)

(cosx)n+1

)
=

(cosx)P ′n(sinx)

(cosx)n+1
− (n+ 1)(− sinx)Pn(sinx)

(cosx)n+2

=
(1− sin2)P ′n(sinx) + (n+ 1)(sinx)Pn(sinx)

(cosx)n+2
,

soit f (n+1)(x) =
Pn+1(sinx)

(cosx)n+2
avec Pn+1 = (1−X2)P ′n + (n+ 1)XPn. Pour ce qui est de l’unicité de Pn :

∀x ∈
]π

2
,
π

2

[
:
Pn(sinx)

(cosx)n+1
=

Qn(sinx)

(cosx)n+1
⇐⇒ ∀x ∈

]π
2
,
π

2

[
: Pn(sinx) = Qn(sinx)

⇐⇒ ∀t ∈ ]− 1, 1] : Pn(t)−Qn(t) = 0 ⇐⇒ Pn = Qn,

un polynôme possédant une infinité de racines étant nul.

3. On procède également par récurrence simple. Pour 1 6 n 6 3, Pn est unitaire, de degré n et à coefficients

dans N. Supposons que ce soit le cas pour un certain entier n et posons Pn = Xn +

n−1∑
k=0

akX
k. Alors,

Pn+1 = (1−X2)P ′n(X) + (n+ 1)XPn(X) = (1−X2)

(
nXn−1 +

n−1∑
k=1

kakX
k−1

)
+ (n+ 1)X

(
Xn +

n−1∑
k=0

akX
k

)

= nXn−1 +

n−1∑
k=1

kakX
k−1 − nXn+1 −

n−1∑
k=1

kakX
k+1 + (n+ 1)Xn+1 +

n−1∑
k=0

(n+ 1)akX
k+1

= Xn+1 + nXn−1 +

n−1∑
k=1

kakX
k−1 +

n−1∑
k=1

(n+ 1− k)ak︸ ︷︷ ︸
∈N

Xk+1 + (n+ 1)a0X

vérifie également les trois conditions. Notons qu’une ligne de plus permettrait de donner les coefficients de
Pn+1 dans la base canonique, mais ce n’est pas nécessaire.

4. Pour x ∈ I,

f(x)2 + 1 =
(sinx+ 1)2

cos2 x
+ 1 =

sin2 x+ 2 sinx+ 1 + cos2 x

cos2 x
=

2(sinx+ 1)

cos2 x
= 2f ′(x).
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5. Pour tout entier naturel n, on pose αn = f (n)(0) = Pn(0). On calcule α0 = f(0) = 1 et α1 = f ′(1) = 1, d’où
2α1 = α2

0 + 1. Pour n > 1, on peut dériver n fois la relation de la question 4 en utilisant la formule de Leibniz.
Il vient

2f (n+1) =
n∑
k=0

(
n

k

)
f (k)f (n−k) ∴ 2αn+1 = 2f (n+1)(0) =

n∑
k=0

(
n

k

)
f (k)(0)f (n−k)(0) =

n∑
k=0

(
n

k

)
αkαn−k.

I.B. Développement en série entière

On note R le rayon de convergence de la série entière
∞∑
n=0

αn
n!
xn et g sa somme.

6. Appliquons la formule de Taylor avec reste intégral à l’ordre N à la fonction f , qui est de classe C∞.

f(x) =

N∑
n=0

f (n)(0)

n!
xN +

∫ x

0

(x− t)N

N !
f (N+1)(t) dt =

N∑
n=0

αn
n!
xn +

∫ x

0

(x− t)NPN+1(sin t)

N !(cos t)N+2
dt >

N∑
n=0

αn
n!
xn.

En effet, avec 0 < t 6 x <
π

2
, sin t et cos t sont strictement positifs et, PN+1 étant à coefficients positifs d’après

la question 3, le reste intégral est l’intégrale d’une fonction positive avec les bornes bien orientées, donc est
positif.

7. Il s’ensuit que la suite des sommes partielles de la série définissant g est bornée pour tout x <
π

2
. Or,

cette série est à termes positifs car αn > 0 pour tout n ∈ N (par positivité des coefficients de Pn ou par
une récurrence immédiate à partir de la formule démontrée à la question 5), donc la série converge pour tout

x <
π

2
, donc R > x pour tout x <

π

2
, donc R >

π

2
.

8. Effectuons un produit de Cauchy de g par elle-même pour |x| < R. Avec la question 5, on isole le terme
constant, puisqu’il ne vérifie pas la même relation de récurrence. Il vient

g(x)2 = α2
0 +

∞∑
n=1

xn
n∑
k=0

αkαn−k
k! (n− k)!

= α2
0 +

∞∑
n=1

xn

n!

n∑
k=0

(
n

k

)
αkαn−k

= α2
0 +

∞∑
n=1

2αn+1
xn

n!
= α2

0 + 2
∞∑
n=2

n
αn
n!
xn−1 = α2

0 + 2
(
g′(x)− α1

)
= 2g′(x)− 1.

9. Pour x ∈ I, posons f1 = arctan f et g1 = arctan g. Les relations obtenues aux questions 4 et 8 et le fait que
f1 et g1 soient dérivables (elles sont de classe C∞) donnent

∀x ∈ I : f ′1(x) =
f ′(x)

1 + f(x)2
=

1

2
=

g′(x)

1 + g(x)2
= g′1(x).

Ainsi, f1− g1 est constante. Or f(0) = g(0) = 1, donc f1(0) = g1(0)
(

= π/4
)

d’où f1 = g1 et, donc, la fonction
arctangente étant injective, f(x) = g(x) pour tout x ∈ I.

Curieusement, il n’était pas demandé de calculer f : de f ′1(x) =
1

2
, on tire

f1(x) =
x

2
+ f1(0) =

x

2
+ arctan 1 =

x

2
+
π

4
∴ f(x) = tan

(x
2

+
π

4

)
.

10. Il s’ensuit lim
x→π/2
x<π/2

g(x) = lim
x→π/2
x<π/2

f(x) = +∞. La fonction g n’est pas définie en
π

2
, donc R 6

π

2
, soit in fine

R =
π

2
.

I.C. Partie paire et partie impaire du développement en série entière

11. Notons F(I) l’espace vectoriel des fonctions réelles définies sur I et soit Λ ∈ L
(
F(I)

)
l’application qui à

f associe x 7−→ f(−x). Alors, Λ2 = idF(I). Donc Λ est une symétrie. Corrélativement, avec P(I) et I(I) les
s.e.v. de F(I) formés respectivement des fonctions paires et des fonctions impaires,

F(I) = E1(Λ)⊕ E−1(Λ) = P(I)⊕ I(I).
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12. On a f(x) =
sinx+ 1

cosx
= tanx +

1

cosx
, qui donne la décomposition de f comme somme de la fonction

impaire tangente et de la fonction paire 1/ cos. Par ailleurs, sous sa forme de série entière, f(x) = g(x) se

décompose en la somme de la série entière impaire

∞∑
n=0

α2n+1

(2n+ 1)!
x2n+1 et de la série entière paire

+∞∑
n=0

α2n

(2n)!
x2n.

L’unicité de la décomposition permet d’identifier :

∀x ∈ I : tan(x) =
+∞∑
n=0

α2n+1

(2n+ 1)!
x2n+1 &

1

cosx
=

+∞∑
n=0

α2n

(2n)!
x2n.

13. On connâıt l’expression des coefficients d’une série entière de rayon de convergence non nul. D’après la
question 10, les deux séries de la question précédente sont de rayon de convergence au moins égal à π/2, donc

le résultat s’applique. Il donne tan(n)(0) = 0 si n est pair et tan(n)(0) = αn si n est impair.

14. On a tan′ = 1 + tan2.

15. Comme à la question 8, on fait un produit de Cauchy. On note tanx =
∞∑
n=0

βnx
n avec, en vertu de la

question précédente, β2p = 0 et β2p+1 =
α2p+1

(2p+ 1)!
. On note enfin que tan2 est paire et vaut 0 en 0, ce qui

permet d’ignorer les termes nuls et d’écrire

1 + tan2 x = 1 +

∞∑
n=1

x2n
2n∑
p=0

βpβ2n−p = 1 +

∞∑
n=1

x2n
n∑
k=1

β2k−1β2n−2k+1

= 1 +
∞∑
n=1

x2n
n∑
k=1

α2k−1α2n−2k+1

(2k − 1)! (2n− 2k + 1)!
= 1 +

∞∑
n=1

x2n

(2n)!

n∑
k=1

(
2n

2k − 1

)
α2k−1α2n−2k+1

tan′(x) =
∞∑
n=0

α2n+1

(2n)!
x2n,

d’où α2n+1 =

n∑
k=1

(
2n

2k − 1

)
α2k−1α2n−2k+1 par unicité du DSE.

Partie II — Une recherche d’équivalent

II.A. La fonction zêta de Riemann

Pour tout s > 1, on pose ζ(s) =
+∞∑
n=1

1

ns
.

16. La fonction ζ est bien définie sur ]1,+∞[ (cours), ce qui sera redémontré à la question suivante par la

comparaison série-intégrale. De plus, pour tout n > 1, la fonction s 7−→ 1

ns
= e−s lnn est décroissante et l’on

a donc, pour a > 1, ‖n−s‖
[a,+∞[,∞ . Aussi la série converge-t-elle normalement (donc uniformément) sur tout

intervalle de la forme [a,+∞[ avec a > 1, ce qui assure en particulier la continuité de la fonction ζ sur [a,+∞[
pour tout a > 1, donc sur ]1,+∞[.

17. La décroissance de t 7−→ t−s donne

∀n > 2:
1

ns
6
∫ n

n−1

dt

ts
& ∀n > 1:

∫ n+1

n

dt

ts
6

1

ns
∴

1

1− s
=

∫ +∞

1

dt

ts
6
∞∑
n=1

1

ns
= ζ(s) 6 1 +

∫ +∞

1

dt

ts
= 1 +

1

s− 1
.

Le théorème des gendarmes donne ζ(s) ∼
s→1
s<1

1

s− 1
. En particulier, lim

s→1
s<1

ζ(s) = +∞ et lim
s→+∞

ζ(s) = 1. La limite

en l’infini peut aussi s’obtenir avec le théorème de la double limite en arguant de la convergence uniforme de
la série sur [2,+∞[.
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18. On décompose ζ(s) selon la parité de ses indices de sommation. Il vient

ζ(s) =
∞∑
k=1

1

(2k − 1)s
+
∞∑
k=1

1

(2k)s
=
∞∑
k=1

1

(2k − 1)s
+
ζ(s)

2s
∴

∞∑
k=1

1

(2k − 1)s
=
(
1− 2−s

)
ζ(s),

soit C(s) = 1− 2−s.

II.B - Une formule pour la fonction cosinus

Pour tout entier naturel n et tout réel x, on pose In(x) =

∫ π/2

0
cos(2xt)(cos t)n dt.

19. On applique le théorème de dérivation des intégrales à paramètre :

i) pour tout x ∈ R, la fonction t 7−→ cos(2xt)(cos t)n est continue (par morceaux) et continue, donc
intégrable sur le segment [0, π/2] ;

ii) pour tout t ∈ [0, π/2], la fonction x 7−→ cos(2xt)(cos t)n est de classe C1 ;

iii) on calcule
∂

∂x

[
cos(2xt)(cos t)n

]
= −2t sin(2xt)(cos t)n. Cette fonction, continue (p.m.) est dominée par

la constante π, trivialement intégrable.

Il s’ensuit que In est bien de classe C1 sur R et que, pour tout x ∈ R, I ′n(x) = −2

∫ π/2

0
t sin(2xt)(cos t)n dt.

On considère n ∈ N, n > 2 et x ∈ R∗ et l’on effectue sur In(x) deux intégrations par parties successives.

In(x) =

∫ π/2

0
cos(2xt)︸ ︷︷ ︸

u′

(cos t)n︸ ︷︷ ︸
v

dt =
1

2x

[
sin(2xt)(cos t)n

]π/2
t=0
− n

2x

∫ π/2

0
sin(2xt)(− sin t(cos t)n−1) dt

=
n

2x

∫ π/2

0
sin(2xt)︸ ︷︷ ︸

u′

sin t(cos t)n−1︸ ︷︷ ︸
v

dt

=
n

4x2
[
− cos(2xt) sin t(cos t)n−1

]π/2
t=0
− n

4x2

∫ π/2

0
− cos(2xt)

[
(cos t)n − (n− 1) sin2 t(cos t)n−2

]
dt

=
n

4x2

∫ π/2

0

(
n(cos t)n − (n− 1)(cos t)n−2

)
dt =

n

4x2
(
nIn(x)− (n− 1)In−2(x)

)
.

On en déduit(
1− n2

4x2

)
In(x) = −n(n− 1)

4x2
In−2(x) ∴

(
1− 4x2

n2

)
In(x) =

n− 1

n
In−2(x)

en multipliant par −4x2

n2
. La relation s’étend à x = 0 par continuité de In et de In−2. Enfin, en divisant la

relation obtenue pour x par celle obtenue pour x = 0, i.e. In(0) =
n− 1

n
In−2(0), il vient

(
1− 4x2

n2

)
In(x)

In(0)
=
In−2(x)

In−2(0)
.

20. On calcule facilement I0(x) =

∫ π/2

0
cos(2xt) dt =

[
sin(2xt)

2x

]π/2
t=0

=
sin(πx)

2x
si x 6= 0 et I0(0) =

π

2
, d’où

sin(πx)

πx
=
I0(x)

I0(0)
=

(
1− 4x2

22

)
I2(x)

I2(0)
=

(
1− 4x2

22

)
· · ·
(

1− 4x2

(2n)2

)
I2n(x)

I2n(0)
=
I2n(x)

I2n(0)

n∏
k=1

(
1− x2

k2

)

et le résultat en multipliant par πx, avec extension au cas x = 0 par continuité (ou en notant qu’elle donne
trivialement 0 = 0).

4



21. Le � en déduire � est miséricordieux et indique qu’il y a mieux à faire que de se lancer dans des calculs
similaires sur I ′n(x) ou Dieu sait quoi. Si x 6= 0,

cos(πx) =
sin(2πx)

2 sinπx
=

sinc(2πx)

sinc(πx)
=
I4n(2x)

I4n(0)

I2n(0)

I2n(x)

2n∏
k=1

(
1− 4x2

k2

) n∏
k=1

(
1− x2

k2

)−1
=
I4n(2x)I2n(0)

I4n(0)I2n(x)

n∏
k=1

(
1− 4x2

(2k)2

)(
1− 4x2

(2k − 1)2

) n∏
k=1

(
1− x2

k2

)−1
=
I4n(2x)I2n(0)

I4n(0)I2n(x)

n∏
p=1

(
1− 4x2

(2p− 1)2

)
.

À nouveau, le résultat est trivial pour x = 0 (1 = 1).

II.C. Un autre développement de tangente

Dans toute cette sous-partie II.C, on pose J = [0, 1/2[ et, pour tout entier naturel n et tout réel x de J ,

Sn(x) =
+∞∑
p=1

(
+∞∑

k=n+1

22p+1x2p−1

(2k − 1)2p

)
.

22. On utilise la comparaison série-intégrale. La fonction t 7−→ (2t− 1)−s étant décroissante sur [1,+∞[,

1

(2k − 1)s
6
∫ k

k−1

dt

(2t− 1)s
∴

+∞∑
k=n+1

1

(2k − 1)s
6
∫ +∞

n

dt

(2t− 1)s
=

[
− 1

2(s− 1)(2t− 1)s−1

]t→+∞

n

=
1

2(s− 1)

1

(2n− 1)s−1
.

23. La question précédente permet de majorer le terme général (positif) de la série :

0 6
+∞∑

k=n+1

22p+1x2p−1

(2k − 1)2p
6

8x

2(2p− 1)(2n− 1)

(
2x

2n− 1

)2(p−1)
= o

((
2x

2n− 1

)2(p−1)
)
.

Pour x ∈ [0, 1/2[,

(
2x

2n− 1

)2

< 1 et la série géométrique converge, ce qui assure que la fonction Sn est bien

définie sur J .

24. On reprend la majoration :

0 6 Sn(x) 6
2

2n− 1

∞∑
p=1

(
2x

2n− 1

)2(p−1)
=

2

2n− 1
× 1

1− 4x2

(2n− 1)2

∼
n→∞

1

n
,

ce qui montre que la suite (Sn)n converge simplement sur J vers la fonction nulle.

25. Si x ∈ J , cos(πx) ∈ ]0, 1], donc ln
(

cos(πx)
)

existe. Les intégrales considérées sont également strictement
positives (intégration de fonctions continues positives non nulles). La question 21 donne la formule

− ln(cos(πx)) = − ln
(
I4n(2x)

)
+ ln

(
I2n(x)

)
− ln

(
I2n(0)

I4n(0)

)
−

n∑
k=1

ln

(
1− 4x2

(2k − 1)2

)
∴

π tan(πx) = −2I ′4n(2x)

I4n(2x)
+
I ′2n(x)

I2n(x)
− 0 +

n∑
k=1

8x

(2k − 1)2
1

1− 4x2

(2k − 1)2

par dérivation.
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26. Pour x ∈ ]0, 1/2[, on part de la somme ci-dessus en appliquant le DSE
u

1− u
=
∞∑
p=1

up à u =
4x2

(2k − 1)2
:

n∑
k=1

8x

(2k − 1)2
1

1− 4x2

(2k − 1)2

+ Sn(x) =

n∑
k=1

2

x

∞∑
p=1

(
4x2

(2k − 1)2

)p

+
2

x

∞∑
p=1

∞∑
k=n+1

(
4x2

(2k − 1)2

)p

=
2

x

∞∑
p=1

∞∑
k=1

(
4x2

(2k − 1)2

)p

=

∞∑
p=1

22p+1x2p−1
∞∑
k=1

1

(2k − 1)2p
(Q.18)

=

∞∑
p=1

22p+1x2p−1(1− 2−2p)ζ(2p) = 2

∞∑
p=1

(22p − 1)ζ(2p)x2p−1 ∴

π tan(πx) + Sn(x) = −2I ′4n(2x)

I4n(2x)
+
I ′2n(x)

I2n(x)
+ 2

+∞∑
p=1

(22p − 1)ζ(2p)x2p−1.

27. La fonction tangente étant convexe sur [0, π/2[, elle est au-dessus de sa tangente à l’origine, ce qui donne
t cos t 6 sin t pour tout t ∈ [0, π/2[, inégalité étendue à π/2 par continuité.

28. D’après la question 18,5, I ′n(x) = −2

∫ π/2

0
t sin(2xt)(cos t)n dt 6 0 car, pour x ∈ [0, 1], 0 6 2xt 6 π et

la fonction intégrée est donc positive. On applique alors l’inégalité de convexité de la question 27, puis l’on
réalise une intégration par parties :

−I ′n(x) = 2

∫ π/2

0
t(cos t) sin(2xt)(cos t)n−1 dt 6 2

∫ π/2

0
sin(2xt)︸ ︷︷ ︸

u

sin t(cos t)n−1︸ ︷︷ ︸
v′

dt

6
4

n

[
sin(2xt)(− cosn t)

]π/2
0
− 4x

n

∫ π/2

0
cos(2xt)(− cosn t) dt =

4x In(x)

n
.

Le théorème des gendarmes donne alors immédiatement lim
n→+∞

I ′n(x)

In(x)
= 0.

29. Les questions 24 et 28 permettent de passer à la limite dans l’expression de la question 26, ce qui donne,
pour x ∈ J ,

π tan(πx)←−−−−
n→∞

π tan(πx) + Sn(x) = −2I ′4n(2x)

I4n(2x)
+
I ′2n(x)

I2n(x)
+ 2

+∞∑
p=1

(22p − 1)ζ(2p)x2p−1 −−−−→
n→∞

2

+∞∑
p=1

(22p − 1)ζ(2p)x2p−1.

II.D. Un équivalent de α2n+1

30. D’après la question 12 et la question 29,

π tan(πx)
(Q.12)

= π

+∞∑
n=0

α2n+1

(2n+ 1)!
(πx)2n+1 =

+∞∑
n=0

α2n+1

(2n+ 1)!
π2n+2x2n+1 (Q.29)

=
2

π

+∞∑
p=1

(22p − 1)ζ(2p)x2p−1.

La série entière étant de rayon de convergence non nul en vertu de la question 7, il y a unicité du DSE et
l’identification des coefficients donne

∀n ∈ N : α2n+1 =
2(22n+2 − 1)(2n+ 1)!

π2n+2
ζ(2n+ 2).

31. La question 17 donne lim
n→+∞

ζ(2n+ 2) = 1. Il s’ensuit

α2n+1 ∼
22n+3(2n+ 1)!

π2n+2
.

6



Exercice 1 — Banque PT, 2010, épreuve C (extrait)

32. Les fonctions x 7→ α arcsinx et u 7→ cos(u) sont de classe C∞ sur ]−1, 1[ et R respectivement. Par
composition, gα est de classe C∞ sur ]−1, 1[ .
Pour tout x ∈ ]−1, 1[ , la formule de dérivation d’une fonction composée donne

g′α(x) = − α√
1− x2

sin (α arcsinx) ,

g′′α(x) =
−αx

(1− x2)3/2
sin (α arcsinx)− α2

1− x2
cos (α arcsinx)

La dérivée seconde de gα peut se réécrire

g′′α(x) =
x

1− x2
g′α(x)− α2

1− x2
gα(x),

ce qui montre que gα est solution de (Eα) sur ]− 1, 1[.

33.a. On suppose que pour x ∈ ] − 1, 1[, y(x) =
+∞∑
n=0

anx
n avec a0 = y(0) = 1, a1 = y′(0) = 0 et un rayon de

convergence R > 0. Alors,(
1− x2

)
y′′(x)− xy′(x) + α2y(x) = (1− x2)

+∞∑
n=0

n(n− 1)anx
n−2 − x

+∞∑
n=0

nanx
n−1 + α2

+∞∑
n=0

anx
n

=

+∞∑
n=0

(n+ 2)(n+ 1)an+2x
n −

+∞∑
n=0

n(n− 1)anx
n −

+∞∑
n=0

nanx
n +

+∞∑
n=0

α2anx
n

=
+∞∑
n=0

[
(n+ 2)(n+ 1)an+2 −

(
n2 − α2

)
an
]
xn.

Par unicité du développement en série entière, comme cette série entière est supposée nulle sur ] − 1, 1[, tous
ses coefficients sont nuls. Ainsi, pour tout n ∈ N,

an+2 =
n2 − α2

(n+ 1)(n+ 2)
an.

33.b. Comme a1 = 0, a3 =
1− α2

2× 3
a1 = 0 et, par une récurrence immédiate, a2p+1 = 0 pour tout p ∈ N. Par

ailleurs, on obtient immédiatement

∀p > 1: a2p =
(2p− 2)2 − α2

2p(2p− 1)
× (2p− 4)2 − α2

(2p− 2) (2p− 3)
× · · · × 02 − α2

2× 1
× a0 =

1

(2p)!

p−1∏
k=0

(
4k2 − α2

)
.

33.c. À partir de ces coefficients, on forme la série entière
∑
p>0

a2px
2p. Pour x 6= 0, posons up =

∣∣a2px2p∣∣ . La

relation de récurrence de la question 3.a donne

up+1

up
=

∣∣∣∣a2p+2

a2p

∣∣∣∣x2 =

∣∣∣(2p)2 − α2
∣∣∣

(2p+ 1)(2p+ 2)
x2 −−−−→

p→+∞
x2.

D’après le critère de d’Alembert, si |x| < 1, la série est absolument convergente et si |x| > 1, la série est
divergente. Le rayon de convergence vaut donc 1... sauf si α est un entier pair car, dans ce cas, la suite (a2p)p
est nulle à partir d’un certain rang ; la série entière est un polynôme et le rayon de convergence est infini. Dans

tous les cas, R. > 0 et l’on a bien résolu le problème de Cauchy proposé. La série entière
∑
p>0

a2px
2p est solution

de l’équation différentielle (E) sur l’intervalle ]− 1, 1[.

34. On a déjà répondu à la première partie de la question ci-dessus. Dans le cas général, on peut reprendre
les calculs précédents avec a0 et a1 quelconques. On suppose que a0 ou a1 est non nul. S’il existe une solution

polynomiale

+∞∑
n=0

anx
n de (E), alors la suite (an)n est nulle à partir d’un certain rang, donc il existe un entier

n ∈ N tel que
n2 − α2

(n+ 1)(n+ 2)
= 0 ce qui impose α = ±n donc α ∈ Z. Réciproquement, supposons que α est
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un entier relatif. Supposons pour fixer les idées que α est pair. On trouve alors une solution polynomiale (non
nulle) en posant a1 = 0 et a0 = 1 (de même, en inversant si α est impair).

Exercice 2 — Oral Mines-Ponts)

Pour u > 0, on pose g(u) =

∫ +∞

0

1− e−ut

t(
√
t+ 1)

dt.

35. On montre que g vérifie les hypothèses du théorème de continuité des intégrales à paramètre :

(i) pour tout u > 0, la fonction t 7−→ 1− e−ut

t(
√
t+ 1)

est continue (p.m.) sur ]0,+∞[ ;

(ii) pour tout t > 0, la fonction u 7−→ 1− e−ut

t(
√
t+ 1)

est continue sur ]0,+∞[ ;

(iii) pour dominer la fonction, on va d’abord donner deux majorations du numérateur ; l’une sera pertinente
pour les petites valeurs de t, l’autre pour les grandes. Tout d’abord, on a trivialement 0 6 1−e−ut 6 1 ;

par ailleurs, 1− e−x =

∫ x

0
e−t dt 6 x, d’où 0 6 1− e−ut 6 ut. Ainsi,

1− e−ut

t(
√
t+ 1)

6
1

t(
√
t+ 1)

6
1

t3/2
&

1− e−ut

t(
√
t+ 1)

6
u√
t+ 1

∴

∀a > 0, ∀x ∈ [0, a], ∀t > 0: 0 6
1− e−ut

t(
√
t+ 1)

6
a√
t+ 1

1[0,1](t) +
1

t3/2
1]1,+∞[(t),

ce qui donne une domination intégrable et permet d’appliquer le théorème de continuité sur [0, a].
Corrélativement, g est bien définie et continue sur [0, a] pour tout a > 0, donc sur R+.

36. On applique le théorème de dérivation des intégrales à paramètre.

(i) Pour tout u > 0, la fonction t 7−→ 1− e−ut

t(
√
t+ 1)

est intégrable sur ]0,+∞[ ; cela vient de la domination

montrée à la question précédente et du théorème de comparaison.

(ii) Pour tout t > 0, la fonction u 7−→ 1− e−ut

t(
√
t+ 1)

est de classe C 1 sur R+.

(iii) Pour tout u > 0, la fonction t 7−→ ∂

∂u

(
1− e−ut

t(
√
t+ 1)

)
=

e−ut√
t+ 1

est continue (p.m.) sur R+.

(iv) Passons à la domination.

∀a > 0, ∀x ∈ [a,+∞[ : 0 6
e−ut√
t+ 1

6
e−at√
t+ 1

=
t→+∞

o
(
e−at

)
,

fonction de référence intégrable sur R+.

Le théorème de dérivation s’applique donc sur [a,+∞[ et g est de classe C 1 sur [a,+∞[ pour tout a > 0, donc
sur R∗+ (la question 37 prouvera que g n’est pas dérivable en 0 et que ce résultat est donc optimal).

Il est alors clair que, pour tout u ∈ R∗+, g′(u) =

∫ +∞

0

e−ut√
t+ 1

> 0, donc g est croissante. Cela pouvait aussi

s’obtenir directement à partir des variations de u 7→ e−ut et la croissance de l’intégrale.

Remarque. On a suivi l’énoncé (c’est un peu la règle du jeu...) La partie la plus difficile est sans doute
la domination du théorème de continuité. C’est un bon exemple d’intégrale à paramètre où, si l’énoncé en
laisse la possibilité et que l’on applique directement le théorème de dérivation, il est plus facile de prouver
l’intégrabilité à l’ordre 0 et la domination à l’ordre 1. De même, pour montrer que g est de classe C∞, on
montrerait l’intégrabilité à l’ordre 0 et la domination pour toutes les dérivées d’ordre p > 1.

37. On pose x = ut dans l’intégrale définissant g. Il vient

g(u) =

∫ +∞

0

1− e−ut

t(
√
t+ 1)

dt =

∫ +∞

0

1− e−x

x
(√

x√
u

+ 1
) dx =

√
u

∫ +∞

0

1− e−x

x
(√
x+
√
u
) dx =

√
uh(u).
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Appliquons le théorème de continuité à h sur R+. Les deux premières hypothèses sont clairement vérifiées. Par
ailleurs,

∀x > 0, ∀u > 0: 0 6
1− e−x

x
(√
x+
√
u
) 6

1− e−x

x
√
x

= τ(x) & τ(x) ∼
x→0
x>0

1√
x
, τ(x) ∼

x→+∞

1

x3/2
.

Ainsi, τ est une domination intégrable, le théorème s’applique et h est continue en 0. Corrélativement,

g(u) ∼
u→0
u>0

c
√
u avec c = h(0) =

∫ +∞

0

1− e−x

x
√
x

dx.

La fonction u 7−→
√
u n’étant pas dérivable en 0 (la limite de son taux d’accroissement à l’origine est infinie),

il en va de même pour g, dont le domaine de dérivabilité est ainsi R∗.
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