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I. Résultats préliminaires

I.A. Soient Ω un ouvert non vide de R2 et P un polynôme de deux variables tel que P (x, y) = 0 pour tout (x, y) ∈ Ω.

I.A.1.a Ω étant ouvert, il existe une boule centrée sur (x, y) de rayon r incluse dans Ω. On a alors

I × J = ]x− r/
√

2, x+ r/
√

2[× ]y − r/
√

2, y + r/
√

2[⊂ Ω.

En effet, si (u, v) ∈ I ×J alors |x−u| < r/
√

2 et |y− v| < r/
√

2 et donc (x−u)2 + (y− v)2 < r ce qui montre
que I × J ⊂ D((x, y), r) ⊂ Ω.

Sans calcul, il est aussi possible de dire que, dans R2, la norme euclidienne (qui est la norme imposée
par l’énoncé) et la norme infinie sont équivalentes et définissent la même notion d’ouvert. Or, les boules de
R2 relativement à la norme infinie sont des produits d’intervalles de même longueur, d’où l’existence de I et J .

I.A.1.b P étant un polynôme de deux variables, on peut l’écrire (pour un certain n)

∀(x, y) ∈ R2 : P (x, y) =
∑

(i,j)∈N2

i+j6n

αk,lx
kyl =

n∑
k=0

(
n−k∑
l=0

αk,ly
l

)
xk =

n∑
k=0

Qk(y)xk avec ∀k, Qk ∈ R[X].

D’après ce qui précède, pour y ∈ J fixé, x 7→ P (x, y) est la fonction nulle sur I. Comme c’est une fonction
polynomiale et que I est infini, c’est la fonction polynomiale nulle. Ainsi (un polynôme d’une variable est nul
quand ses coefficients le sont)

∀k ∈ J0, dK, ∀y ∈ J : Qk(y) = 0.

De la même façon, Qk est le polynôme nul et tous les coefficients αk,l le sont. P est donc le polynôme nul.

I.A.2 P (x, y) = x2 + y2 − 1 est nul sur le cercle unité, qui possède une infinité d’éléments, mais n’est pas le
polynôme nul. Le résultat précédent ne subsiste donc pas avec la seule hypothèse � Ω infini �.

I.B.1 Par définition, Pm est l’espace vectoriel engendré par la famille (fk,l : (x, y) 7→ xkyl) k,l∈N
k+l6m

. C’est donc bien

un espace vectoriel, de dimension finie... La famille génératice trouvée est libre (puisqu’un polynôme n’est
nul que si tous ses coefficients le sont). Elle forme une base de Pm et la dimension de l’espace est donc (pour
chaque valeur de k ∈ J0,mK, on a m− k + 1 choix possibles pour l)

dim(Pm) = #
{

(k, l) ∈ N2 ; k + l 6 m
}

=

m∑
k=0

(m− k + 1) =

m+1∑
j=1

j =
(m+ 1)(m+ 2)

2
.

I.B.2 Il est clair que tout polynôme de degré 1 est harmonique. Ainsi, P (x, y) = 2x convient. Ce n’est évidemment
plus le cas pour ceux de degré 2. Posons P2(x, y) = x2 − y2. On a alors ∂1,1P2(x, y) = 2 et ∂2,2P2(x, y) = −2,
ce qui montre que P2 est harmonique.

I.B.3.a P 7→ ∆P est une application linéaire (linéarité de la dérivation partielle) et l’ensemble des polynômes
harmonique est l’espace vectoriel Ker(∆) ∩ P (une intersection de sous-espaces est un sous-espace).

I.B.3.b D’après le théorème du rang,

(m+ 1)(m+ 2)

2
= dim(Pm) = dim(Ker(∆m)) + dim(Im(∆m))

Or, de façon immédiate, Im(∆m) ⊂ Pm−2 (quand on dérive partiellement deux fois, on perd au moins deux
degrés). Ainsi,

dim(Im(∆m)) 6
(m− 1)m

2
∴ dim(Ker(∆m)) >

(m+ 1)(m+ 2)

2
− (m− 1)m

2
= 2m+ 1.

I.B.3.c Comme Ker(∆m) ⊂ Ker(∆) pour tout m, on peut en déduire que l’espace vectoriel des polynômes har-
moniques est de dimension infinie.
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IC.1 Posons H(x, y) = xy. Alors, H est un polynôme harmonique qui est partout égal à f : (x, y) 7→ xy.

IC.2 On factorise f(x, y) = x4 − y4 = (x2 − y2)(x2 + y2). Ainsi, f cöıncide avec H(x, y) = x2 − y2 sur C et H
est harmonique. On peut aussi penser à prendre H(x, y) = x4 − y4 + (1− x2 − y2)(x2 − y2)... après avoir fait
la partie IV.

II. Quelques exemples d’applications harmoniques

II.A Ωx0,y0,λ est l’image de Ω par l’homothétie de rapport λ composée avec la translation de vecteur (x0, y0).
Dans le cas proposé, on obtient le dessin suivant :

II.B.1 Comme ∂if est de classe C2, on peut lui appliquer le théorème de Schwarz qui indique que l’on peut
permuter les dérivées partielles. On a ainsi ∆(∂if) = ∂i(∆f). Quand f est harmonique, ∂1f et ∂2f le sont
donc aussi.

II.B.2 Comme il a été indiqué plus haut,

Ωx0,y0,λ = ϕ(Ω) avec t(x0,y0) ◦ hλ(Ω),

où tu est la translation de vecteur u et hλ = λ idR2 est l’homothétie de rapport λ. Notons alors que ϕ
est une bijection de R2 sur R2 et que, pour v ∈ R2 et η > 0, ϕ

(
B(v, η)

)
= B(ϕ(v), |λ|η). Soit alors

w ∈ Ωx0,y0,λ. Posons v = ϕ−1(w) ∈ Ω. Comme Ω est ouvert, il existe une boule B(v, η) ⊂ Ω, d’où
ϕ
(
B(v, η)

)
= B(w, |λ|η) ⊂ φ(Ω) = Ωx0,y0,λ, ce qui montre que Ωx0,y0,λ est ouvert.

Alternativement, Ωx0,y0,λ = ϕ−1(Ω) est l’image réciproque de Ω par l’application continue ϕ−1 = hλ−1 ◦
t−(x0,y0), donc est ouvert.

II.B.3 Posons h(x, y) = g(λ(x, y) + (x0, y0)) = g(λx+ x0, λy+ y0. Quand g est de classe C2, h l’est aussi et une
application de la règle de la châıne donne

∂i,ih(x, y) = λ2∂i,ig(λ(x, y) + (x0, y0)).

Ainsi, le caractère harmonique de g entrâıne immédiatement celui de h.

II.C.1 Les fonctions h1 et h2 sont de classe C2 sur l’ouvert R2 \ {(0, 0)} par théorèmes d’opérations. De plus,

∂1h1(x, y) =
2x

x2 + y2
, ∂1,1h1(x, y) =

2(y2 − x2)
(x2 + y2)2

, ∂2h1(x, y) =
2y

x2 + y2
, ∂2,2h1(x, y) =

2(x2 − y2)
(x2 + y2)2

,

d’où ∆(h1) = 0, c’est-à-dire h1 harmonique. En remarquant que h2 =
1

2
∂1h1, on en déduit avec les questions

précédentes que h2 est aussi harmonique.

II.C.2 Notons ϕt l’application proposée. Alors,

ϕt(x, y) =
1− [x2 + y2 + 2x cos t+ 2y sin t+ cos2 t+ sin2 t]

x2 + y2
∴ ϕt = −1− cos(t)∂1h1 − sin(t)∂2h1,



qui est harmonique comme combinaison linéaire de fonctions harmoniques.

II.D.1 On remarque, en utilisant les notations introduites en question précédente, que

Nt(x, y) = ϕt(x− cos(t), y − sin(t)).

On est dans le cas de la question II.B.3 avec λ = 1, (x0, y0) = (− cos(t),− sin(t)) et g = ϕt. Cette question
indique que Nt est harmonique sur l’image Ω de R2 \ {(0, 0)} par (x, y) 7→ (x+ cos(t), y + sin(t)) c’est à dire
sur R2 \ {(cos(t), sin(t))}. Le disque D(0, 1) étant inclus dans Ω, Nt est harmonique sur D(0, 1).

II.D.2 Comme (cos t, sin t) 6∈ D(0, 1), la fonction t 7→ N(x, y, t) est de classe C∞ sur son domaine.

II.D.3 À l’aide de quelques manipulations, on obtient la décomposition demandée avec α = β = 1 :

N(x, y, t) =
1− |z|2

|z − eit|2
=

1− |z|2

e−it(z − eit)(z − e−it)eit
=

1− |z|2

(1− ze−it)(1− zeit)

=
1− ze−it + 1− ze−it − (1− ze−it − zeit + |z|2)

(1− ze−it)(1− zeit)
=

1

1− zeit
+

1

1− ze−it
− 1.

II.D.4 En utilisant le DSE de (1 + u)−1, qui est de rayon de convergence 1, et comme |ze−it| = |z| < 1, on a

∀t ∈ [0, 2π],
1

1− ze−it
=

∞∑
k=0

zke−ikt.

Soit fk : t 7→ zke−ikt. Alors, (fk)k est une suite de fonctions continues sur [0, 2π] et ‖fk‖[0,2π],∞ = |z|k est le

terme général d’une série convergente (géométrique de raison |z| < 1).
∑

fk est ainsi normalement (donc

uniformément) convergente sur le segment [0, 2π]. On est dans un des cas d’interversion somme-intégrale et
l’on peut écrire ∫ 2π

0

dt

1− ze−it
=
∞∑
k=0

zk
∫ 2π

0
e−ikt dt = 2π,

toutes les intégrales étant nulles sauf celle pour k = 0. En conjuguant, il vient

∫ 2π

0

dt

1− zeit
= 2π, d’où in fine,

en reprenant l’expression de N(x, y, t) obtenue à la question précédente,
1

2π

∫ 2π

0
N(x, y, t) dt = 1+1− 2π

2π
= 1.

III. Problème de Dirichlet sur le disque unité de R2

III.A.1.a Il s’agit d’utiliser le théorème de régularité des intégrales à paramètres. Ici, y est fixé et l’on pose
g(x, t) = N(x, y, t)f(cos(t), sin(t)) pour t ∈ [0, 2π] et x ∈ Iy = {x ∈ R; x2 + y2 < 1}.
— Pour tout x ∈ Iy, t 7→ g(x, t) est continue sur le segment [0, 2π] et donc intégrable sur ce segment.

— La fonction x 7→ g(x, t) est de classe C2 sur Iy et ses dérivées sont

x 7→ ∂1Nt(x, y)f(cos(t), sin(t)) et x 7→ ∂1,1Nt(x, y)f(cos(t), sin(t)).

— Pour tout x ∈ Iy, t 7→ ∂1Nt(x, y)f(cos(t), sin(t)) et t 7→ ∂1,1Nt(x, y)f(cos(t), sin(t)) sont continues sur
[0, 2π].

— Soit [a, b] ⊂ Iy. Les applications (x, t) 7→ ∂1Nt(x, y)f(cos(t), sin(t)) et (x, t) 7→ ∂1,1Nt(x, y)f(cos(t), sin(t))
sont continues sur le fermé-borné [a, b] × [0, 2π]. On peut donc les majorer sur ce fermé-borné par des
constantes. Les majorants sont indépendants de x et intégrables que [0, 2π] (une fonction constante est
intégrable sur un segment).

Le théorème s’applique et permet d’affirmer que Nf admet des dérivées partielles d’ordre 1 et 2 par rapport
à sa première variable. Ces dérivées s’obtiennent en dérivant partiellement sous l’intégrale. De façon plus
générale,

∂i,jNf (x, y) =
1

2π

∫ 2π

0
∂i,jNt(x, y)f(cos(t), sin(t)) dt.

Cela est vrai pour tout (x, y) ∈ D(0, 1) et pour tous i, j ∈ {1, 2}, la même preuve permettant de conclure pour
tout type de dérivation partielle à tout ordre. Un abus de notation (au vu des notations du préambule, qui se
contente de parler de fonctions de deux variables) donne ∂i,jNt(x, y) = ∂i,jN(x, y, t) et la formule de l’énoncé.



III.A.1.a En particulier, le caractère harmonique de Nt et la linéarité du passage à l’intégrale donnent le ca-
ractère harmonique de u, qui est égale à Nf sur D(0, 1).

III.A.2.a Pour visualiser la situation, on considère le point M(t0) = (cos(t0), sin(t0)) d’affixe eit0 sur le cercle
unité C(0, 1). On s’intéresse alors à l’intersection de la boule D(M(t0), δ) avec C(0, 1). C’est un arc du cercle
unité, et le cercle en entier pour δ > 2.

Plus précisément, en posant ξ = 2 arcsin(δ/2) et en supposant dorénavant que δ < 2,∥∥(cos t, sin t)− (cos t0, sin t0)
∥∥
2

=
∣∣eit − eit0

∣∣ =
∣∣∣ei t−t02 − e−i

t−t0
2

∣∣∣ = 2

∣∣∣∣sin( t− t02

)∣∣∣∣ ∴

∀t ∈ R : ‖(cos t, sin t)− (cos t0, sin t0)‖2 6 δ ⇐⇒
∣∣∣∣sin( t− t02

)∣∣∣∣ 6 δ

2
⇐⇒ t ∈

[
t0 − ξ, t0 + ξ

]
mod (2π).

Si ξ 6 t0, I
δ
0 =

[
t0 − ξ, t0 + ξ

]
, si ξ > t0, on obtient bien un arc de cercle, mais la contrainte de rester dans

[0, 2π] donne Iδ0 = [2π + t0 − ξ, 2π] ∪ [0, t0 + ξ].

III.A.2.b Notons M0 = (x0, y0) = (cos(t0), sin(t0)). f étant continue en M0, il existe δ > 0 tel que

∀(x, y) ∈ D(M0, δ), |f(x, y)− f(x0, y0)| 6
ε

4π
.

Pour tout t ∈ Iδ0 , et en notant M(t) = (cos(t), sin(t)), on a alors |f(M(t)) − f(M(t0))| 6
ε

4π
par définition

de Iδ0 et, comme N est une fonction positive,∣∣∣∣∣
∫
Iδ0

N(x, y, t)(f(M(t))− f(M(t0))) dt

∣∣∣∣∣ 6 ε

4π

∫
Iδ0

N(x, y, t) dt 6
ε

4π

∫ 2π

0
N(x, y, t) dt =

ε

2
,

en utilisant à nouveau la positivité de N est le fait que Iδ0 ⊂ [0, 2π] par définition.

IIIA.2c Pour z = x+iy, |z−eit0 | =
∥∥(x, y)−(cos t0, sin t0)

∥∥
2
6
δ

2
et l’hypothèse t 6∈ Iδ0 équivaut à |eit−eit0 | > δ,

d’où, par inégalité triangulaire,

|z − eit| > |eit − eit0 | − |z − eit0 | > δ − δ

2
=
δ

2
∴ N(x, y, t) =

1− |z|2

|z − eit|

2

6
1− |z|2

(δ/2)2
= 4

1− (x2 + y2)

δ2
.

III.A.2.d La fonction f étant continue sur C(0, 1), qui est fermé et borné, elle est bornée et l’on peut poser
‖f‖∞ = sup

t∈C(0,1)
|f(t)|. Si η 6 δ/2, la question précédente donne alors

∣∣∣∣∣
∫
t∈[0,2π]\Iδ0

N(x, y, t)(f(M(t))− f(M0)) dt

∣∣∣∣∣ 6 2‖f‖∞
∫
t∈[0,2π]\Iδ0

N(x, y, t) dt

6 2‖f‖∞ × 2π × 4

δ2
(1− x2 − y2) = c(1− x2 − y2).

Enfin, si M = (x, y) est proche de M0 = (cos(t0), sin(t0)), alors x2 + y2 = ‖M‖2 est proche de ‖M0‖2 = 1. Il

existe donc η1 tel que, si ‖M −M0‖ 6 η1, alors c(1− (x2 + y2)) 6
ε

2
(c est une constante, elle ne dépend que



de δ). En posant η = min(η1, δ/2), on peut alors tout combiner pour obtenir∣∣∣∣∣
∫
t∈[0,2π]\Iδ0

N(x, y, t)(f(M(t))− f(M0)) dt

∣∣∣∣∣ 6 ε

2
.

III.A.3 On sait que la restriction de u à C(0, 1), qui est égale à f , est continue. Il s’agit donc de montrer que,
pour tout t0 ∈ [0, 2π], lim

(x,y)→(cos t0,sin t0)
(x,y)∈D(0,1)

u(x, y) = f(x, y). Soient donc t0 et ε. Pour (x, y) ∈ D(0, 1),

∣∣u(x, y)− f(cos(t0), sin(t0))
∣∣ =

∣∣∣∣∫ 2π

0
N(x, y, t)(f(M(t))− f(M0)) dt

∣∣∣∣ .
La question III.A.2.b donne une valeur de δ pour laquelle la question IIIA.2d donne une valeur η. On a alors,
en découpant l’intégrale sur Iδ0 et son complémentaire,

|u(x, y)− u(cos(t0), sin(t0))| 6 ε

quand ‖(x, y) − (cos(t0), sin(t0))‖ 6 η. On peut conclure que u ∈ Df , c’est à dire que u est solution sur le
disque unité du problème de Dirichlet associé à f .

III.B.1.a Par hypothèse, un admet un maximum local en (x̃, ỹ), point intérieur à D(0, 1). D’après la question
I.A.1.a, x 7→ un(x, ỹ) ne prend que des valeurs supérieures ou égales à un(x̃, ỹ) sur un intervalle ouvert conte-
nant x̃.

Or, si une fonction g ∈ C2(]a, b[) atteint un maximum en c, g′(c) = 0 et, par la formule de Taylor-Young,

g(c + h) − g(c) =
h2

2
g′′(c) + o(h2) et donc g′′(c) 6 0 — sinon, g(c + h) − g(c) ∼h→0

h2

2
g′′(c) est localement

strictement positive ce qui est en contradiction avec la maximalité locale en c. On en déduit que ∂1un(x̃, ỹ) = 0
et ∂1,1un(x̃, ỹ) 6 0.

III.B.1.b Sachant que u est harmonique, un calcul direct donne

∀(x, y) ∈ D(0, 1) : ∆un(x, y) =
4

n
> 0

et la question précédente montre, par l’absurde, que un n’admet pas de maximum local sur D(0, 1).

IIIB.2 Cependant, un étant continue sur le fermé-borné D(0, 1) admet un maximum sur ce fermé-borné et il
est donc atteint en un point de C(0, 1) où un prend la valeur 1/n (car u est nulle sur le cercle). On a ainsi

∀(x, y) ∈ D(0, 1) : un(x, y) 6
1

n
.

III.B.3 Ce qui précède est vrai pour tout n ∈ N∗. On peut, à x, y fixés quelconque, faire tendre n vers l’infini
pour en déduire que u est négative sur D(0, 1). Or, −u est clairement solution du même problème que u et
on a donc aussi la positivité de u. Finalement,

∀(x, y) ∈ D(0, 1), u(x, y) = 0.

III.C On a construit un élément u de Df (existence d’une solution). Si v est un autre élément, alors u − v est
solution de D0 et est donc nulle d’après la partie III.B. Il y a donc aussi unicité de la solution.

IV. Retour sur les polynômes harmoniques

IV.A.1 La linéarité de φm−2 est immédiate par linéarité des opérateurs de dérivation. Si Q ∈ Pm−2 alors

Q̃ ∈ Pm, d’où ∆Q̃ ∈ Mm−2, une dérivation partielle faisant perdre au moins un degré. On en déduit que
Im(φm−2) ⊂ Pm−2. Autrement dit, φm−2 est un endomorphisme de Pm−2.

Soit Q ∈ Ker(φm−2). On a alors ∆Q̃ = 0. Comme la restriction de Q̃ à C(0, 1) est nulle, Q̃ est ainsi solution

du problème de Dirichlet D0. D’après III.B, Q̃ = 0. Or, Q 7→ (1− x2 − y2)Q est injective (elle est linéaire et
si (1− x2 − y2)Q = 0, alors Q s’annule sur D(0, 1) et est nul d’après IA.1). On en déduit que Q = 0 et φm−2
est donc injective.



IV.A.2 L’application φm−2 est un isomorphisme de Pm−2 (application linéaire injective d’un espace de dimen-
sion dans lui-même, ce qui entrâıne la bijectivité). Comme ∆(−P ) ∈ Pm−2, il admet donc un antécédent T

par φm−2. On a alors ∆T̃ = ∆(−P ) c’est à dire que P + T̃ est harmonique.

IV.A.3 Le polynôme u = P +(1−x2−y2)T est harmonique et est égale à PC sur le cercle unité. C’est donc une
solution de DPC . Avec III.C, on peut dire que c’est l’unique solution. Et comme T ∈ Pm−2, cette solution est
dans Pm.

IV.A.4 On sait par IVA.2 que l’on peut trouver des réels a, b tels que x3 + (1− x2− y2)T (x, y) soit harmonique
avec T (x, y) = ax + by (on peut prendre le terme constant nul car 1 − x2 − y2 est harmonique). On obtient

facilement T (x, y) =
3

4
x. D’après la question précédente, DPC =

{
(x, y) 7→ x3 +

3x

4
(1− x2 − y2)

}
.

IVB.1 L’existence d’une décomposition est donnée par la question IVA.2 (on peut toujours trouver un m > 2
tel que P ∈ Pm). Supposons que l’on puisse trouver deux décompositions. On a alors H1, H2 harmoniques et
Q1, Q2 polynômes tels que

H1(x, y) + (1− x2 − y2)Q1(x, y) = H2(x, y) + (1− x2 − y2)Q2(x, y).

Posons Q = Q1 − Q2 ; il existe m > 2 tel que Q ∈ Pm−2. La relation précédente donne ∆Q̃ = 0 et donc
Q ∈ Ker(φm−2). Ceci donne (par injectivité) la nullité de Q et donc Q1 et Q2. L’égalité H1 = H2 en découle.
On a ainsi prouvé l’unicité de la décomposition.

IV.B.2 Considérons la restriction ∆m : Pm → Pm−2, dont le noyau est par définition Hm. Si P ∈ Pm−2, soit

Q = φ−1m−2(P ) (on a montré que φm−2 est un isomorphisme). Alors, ∆m(Q̃) = P , ce qui montre la surjectivité
de ∆m. La dimension de Ker(∆m) est alors donnée par le théorème du rang.

On peut aussi montrer que Pm = Hm ⊕ (1− x2 − y2)Pm−2.
— L’injectivité de φm−2 donne le caractère direct de la somme.
— Soit P ∈ Pm. La question IVA.2 donne T ∈ Pm−2 tel que H = P + (1 − x2 − y2)T soit harmonique.

Comme c’est un élément de Pm, H ∈ Hm. Ainsi,

P = H − (1− x2 − y2)T ∈ Hm ⊕ (1− x2 − y2)Pm−2.
Comme T 7→ (1− x2 − y2)T est injective (IVA.1), (1− x2 − y2)Pm−2 et Pm−2 ont même dimension, d’où

dim(Hm) = dim(Pm)− dim(Pm−2) = 2m+ 1.

Le résultat reste vrai pour m ∈ {0, 1} (dans ces deux cas Hm = Pm).

IV.B.3 Pour trouver une base de H3, il nous suffit d’exhiber sept polynômes harmoniques de degré au plus trois
formant une famille libre. Certains sont immédiats : 1, x, y, xy et x2 − y2. La question IVA.4 a fourni un
polynôme harmonique de degré 3. Par symétrie, on en trouve un dernier. On obtient ainsi une famille de 7
éléments de H3 dont on vérifie aisément l’indépendance.

H3 = Vect

(
1, x, y, xy, x2 − y2, x3 +

3x

4
(1− x2 − y2), y3 +

3y

4
(1− x2 − y2)

)
.

IV.C.1 L’application (i1, i2, . . . , in) 7−→ {i1, i1 + i2 + 1, . . . , i1 + · · · + in−1 + n − 2} réalise une bijection de{
(i1, i2, . . . , in) ∈ Nn ; i1 + i2 + · · ·+ in = m

}
sur l’ensemble des parties de J0,m+ n− 2K à n− 1 éléments :

l’énumération est strictement croissante donc donne bien une partie à n− 1 éléments et i1 + · · ·+ ın−1 6 m
et la bijection réciproque est donnée par

(j1 < j2 < · · · < jn−1) 7−→ (j1, j2 − j1 − 1, . . . , jn−1 − jn−2 − 1,m+ n− 2− jn−1).

Il y a donc

(
m+ n− 1

n− 1

)
=

(
m+ n− 1

m

)
éléments dans ces deux ensembles, le premier comptant les monômes

de degré m. On peut alors compter les nombre d’éléments de la base � canonique � de Pm :

dim(Pm) =

m∑
k=0

(
n+ k − 1

k

)
.

IV.C.2 Le raisonnement de IV.B.2 donne cette fois Pm = Hm ⊕ (1− x21 − x22 − · · · − x2n)Pm−2, d’où

dim(Hm) = dim(Pm)− dim(Pm−2) =

(
n+m− 1

m

)
+

(
n+m− 2

m− 1

)
.


