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I. Résultats préliminaires

I.A. Soient  un ouvert non vide de R? et P un polynéme de deux variables tel que P (x,y) = 0 pour tout (z,y) € Q.

I.A.1.a Q étant ouvert, il existe une boule centrée sur (x,y) de rayon r incluse dans . On a alors
IxJ=]x—7r/NV2,x+71/V2[xy—r/V2,y+r/V2[CQ

En effet, si (u,v) € I x J alors |z —u| < r/v2 et |y—v| < r/v2 et donc (z —u)? + (y —v)? < r ce qui montre
que I x J C D((z,y),r) C Q.

Sans calcul, il est aussi possible de dire que, dans R?, la norme euclidienne (qui est la norme imposée
par 1’énoncé) et la norme infinie sont équivalentes et définissent la méme notion d’ouvert. Or, les boules de
R? relativement & la norme infinie sont des produits d’intervalles de méme longueur, d’ot1 I'existence de I et .J.

I.A.1.b P étant un polynéome de deux variables, on peut I’écrire (pour un certain n)

n

n
V(z,y) € R*: P Z gyt = Z (Z akly) = ZQk(y):ck avec Yk, Qi € R[X].
(i.5)EN? k=0 k=0
i+j<n
D’apres ce qui précede, pour y € J fixé, z — P(z,y) est la fonction nulle sur I. Comme c’est une fonction
polynomiale et que I est infini, ¢’est la fonction polynomiale nulle. Ainsi (un polynéme d’une variable est nul
quand ses coefficients le sont)
VEk € [0,d], Yy € J: Qry) =
De la méme facon, @, est le polynome nul et tous les coefficients oy, le sont. P est donc le polynome nul.

I.A.2 P(z,y) = 2° + y? — 1 est nul sur le cercle unité, qui possede une infinité d’éléments, mais n’est pas le
polynome nul. Le résultat précédent ne subsiste donc pas avec la seule hypothése « €2 infini >.

I.B.1 Par définition, Py, est I’espace vectoriel engendré par la famille (fi;: (z,y) — 2%y kien . Clest donc bien
k

+i<m

un espace vectoriel, de dimension finie... La famille génératice trouvée est libre (puisqu’un polynéme n’est
nul que si tous ses coefficients le sont). Elle forme une base de Pp, et la dimension de I’espace est donc (pour
chaque valeur de k € [0, m], on a m — k 4+ 1 choix possibles pour [)

m m+1
dim(Py,) = #{(k,1) e N*; k+1< m}zz(m_kH Z;j_(m+1)2(m+2)
= J

I.B.2 Il est clair que tout polynome de degré 1 est harmonique. Ainsi, P(z,y) = 2x convient. Ce n’est évidemment
plus le cas pour ceux de degré 2. Posons Py(z,y) = 22 — y%. On a alors O11Po(z,y) =2 et aoPa(x,y) = -2,
ce qui montre que P» est harmonique.

I.B.3.a P +— AP est une application linéaire (linéarité de la dérivation partielle) et ’ensemble des polynémes
harmonique est 'espace vectoriel Ker(A) NP (une intersection de sous-espaces est un sous-espace).

1.B.3.b D’apres le théoréeme du rang,
(m+1)(m+2)
2

Or, de facon immédiate, Im(A,,) C Pp—2 (quand on dérive partiellement deux fois, on perd au moins deux
degrés). Ainsi,

= dim(Py,) = dim(Ker(A,,)) + dim(Im(A,,))

(m—1)m m+1)(m+2) (m—1)m
2 2 2
I.B.3.c Comme Ker(A,,) C Ker(A) pour tout m, on peut en déduire que ’espace vectoriel des polynomes har-

moniques est de dimension infinie.

=2m+1.

dim(Im(A,,)) < dim(Ker(Ay,)) > (



IC.1 Posons H(z,y) = xy. Alors, H est un polynéme harmonique qui est partout égal a f: (z,y) — zy.

IC.2 On factorise f(x,y) = z* — y* = (2 — y*)(2® + 9?). Ainsi, f coincide avec H(z,y) = 2> — y* sur C et H
est harmonique. On peut aussi penser & prendre H(z,y) = z* —y* + (1 — 22 — 3?)(2® — ?)... aprés avoir fait
la partie IV.

I1. Quelques exemples d’applications harmoniques

ILA Q)41 est I'image de € par 'homothétie de rapport A composée avec la translation de vecteur (o, o).
Dans le cas proposé, on obtient le dessin suivant :

0 et son image
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I1.B.1 Comme Jif est de classe C2, on peut lui appliquer le théoréeme de Schwarz qui indique que l'on peut
permuter les dérivées partielles. On a ainsi A(9;f) = 9;(Af). Quand f est harmonique, 0 f et dof le sont
donc aussi.

II.B.2 Comme il a été indiqué plus haut,
Qroyor = ¢()  avec t(wo.w0) © h(22),

ou t, est la translation de vecteur w et hy = Aidgz2 est 'homothétie de rapport A. Notons alors que ¢
est une bijection de R? sur R? et que, pour v € R* et 7 > 0, ¢(B(v,n)) = B(p(v),|A\|n). Soit alors
w € Qg x. Posons v = ¢ l(w) € Q. Comme Q est ouvert, il existe une boule B(v,n) C €, d’on
¢(B(v,n)) = B(w, |\|n) C ¢(2) = Qyy 0.1, ce qui montre que g 40 1 €st ouvert.

Alternativement, Qg .\ = gp_l(Q) est I'image réciproque de ) par I’application continue <p_1
[ donc est ouvert.

= h)\fl (¢]
70,90)°

I1.B.3 Posons h(z,y) = g(A(z,y) + (20, 10)) = g(A\x + z0, \y + yo. Quand g est de classe C?, h Pest aussi et une
application de la regle de la chaine donne

0,ih(z,y) = N20;,,9(Nx,y) + (70, 10))-

Ainsi, le caractére harmonique de g entraine immédiatement celui de h.

I1.C.1 Les fonctions h; et hy sont de classe C? sur 'ouvert R? \ {(0,0)} par théoremes d’opérations. De plus,

2z 2(y* — z°) 2(2* — )

2y
oL Oaha(z,y) = @21 by (z,y) = b1 (z,y) = [CEEk

81h1($,y) = ma

1
d’out A(hy) = 0, c’est-a-dire hy harmonique. En remarquant que hg = 581111, on en déduit avec les questions

précédentes que ho est aussi harmonique.

I1.C.2 Notons ¢; I'application proposée. Alors,

1 — [#2 +y? + 27 cost + 2ysint + cos® t + sin? #]
$2+y2

or(x,y) = wr = —1 — cos(t)01hy — sin(t)da2hq,



qui est harmonique comme combinaison linéaire de fonctions harmoniques.

II.D.1 On remarque, en utilisant les notations introduites en question précédente, que

Nt((L‘, y) = (pt(x - COS(t), Y- Siﬂ(t)).
On est dans le cas de la question I1.B.3 avec A = 1, (x0,y0) = (—cos(t), —sin(t)) et g = ¢ Cette question
indique que Ny est harmonique sur I’image Q de R?\ {(0,0)} par (z,y) — (z + cos(t),y + sin(t)) c’est & dire
sur R? \ {(cos(t),sin(t))}. Le disque D(0,1) étant inclus dans Q, N; est harmonique sur D(0,1).

I1.D.2 Comme (cost,sint) ¢ D(0,1), la fonction ¢t — N(x,y,t) est de classe C™° sur son domaine.

II.D.3 A laide de quelques manipulations, on obtient la décomposition demandée avec o = =1 :

Nz, y.t) = 1—z)? _ 1.—|z|2 L 1f|z|2 .
’ |Z _ elt|2 e*lt(z _ elt)(z _ e*lt)elt (1 _ Zeflt)(l _ Eelt)
S l—zet4l—ze - (1—ze -zt 4+ |27) 1 1
(1 — ze~i)(1 — zelt) T 1 —zeit | ] — zeit

I1.D.4 En utilisant le DSE de (1 +u) ™!, qui est de rayon de convergence 1, et comme |ze | = |

— — § :Zk 7lkt

Soit fi.: t + 2Fe %t Alors, (fy), est une suite de fonctions continues sur [0, 27]

z| <1,o0na

vt € [0, 27],

o = |2|" est le

terme général d’une série convergente (géométrique de raison |z| < 1). g fx est ainsi normalement (donc

uniformément) convergente sur le segment [0,27]. On est dans un des cas d’interversion somme-intégrale et

I’on peut écrire
2m ot
e "™ dt =2
/0 1— ze it Z / ™

2T dt
toutes les intégrales étant nulles sauf celle pour £ = 0. En conjuguant, il vient / T3t = 27, d’ou in fine,
—Zze
5 o
en reprenant 'expression de N (z,y,t) obtenue a la question précédente, o N(z,y,t)dt =14+1— or = 1.
™ Jo 7

III. Probleme de Dirichlet sur le disque unité de R>

ITII.A.1.a II s’agit d’utiliser le théoreme de régularité des intégrales a parametres. Ici, y est fixé et 'on pose
g(z,t) = N(z,y,t)f(cos(t),sin(t)) pour t € [0,27] et x € I, = {x € R; x> +y* < 1}.
— Pour tout x € I, t — g(z,t) est continue sur le segment [0, 27| et donc intégrable sur ce segment.
— La fonction z — g(,t) est de classe C? sur I, et ses dérivées sont

x> O1N(z,y) f(cos(t),sin(t)) et x> 011N (z,y)f(cos(t),sin(t)).

— Pour tout x € I, t — 01 Ni(x,y)f(cos(t),sin(t)) et t — 01,1 Ni(x,y)f(cos(t),sin(t)) sont continues sur
[0, 27].

— Soit [a,b] C 1. Les applications (x,t) — 01 N¢(x,y) f(cos(t),sin(t)) et (x,t) — 01,1 N(x, y) f(cos(t),sin(t))
sont continues sur le fermé-borné [a,b] x [0,27]. On peut donc les majorer sur ce fermé-borné par des
constantes. Les majorants sont indépendants de z et intégrables que [0,27] (une fonction constante est
intégrable sur un segment).

Le théoreme s’applique et permet d’affirmer que Ny admet des dérivées partielles d’ordre 1 et 2 par rapport

a sa premiere variable. Ces dérivées s’obtiennent en dérivant partiellement sous l'intégrale. De facon plus

générale,
2T

0 iNe(z,y) = — [ 9;;Ne(x,y) f(cos(t),sin(t)) dt.

2
Cela est vrai pour tout (x,y) € D(0,1) et pour tous i,j € {1,2}, la méme preuve permettant de conclure pour
tout type de dérivation partielle a tout ordre. Un abus de notation (au vu des notations du préambule, qui se
contente de parler de fonctions de deux variables) donne 0; jNi(x,y) = 0; ;N (x,y,t) et la formule de I’énoncé.



ITI.A.1.a En particulier, le caractere harmonique de N; et la linéarité du passage a l'intégrale donnent le ca-
ractere harmonique de u, qui est égale & Ny sur D(0,1).

ITI.A.2.a Pour visualiser la situation, on considere le point M(tg) = (cos(to),sin(tp)) d’affixe e’ sur le cercle
unité C(0,1). On s’intéresse alors a l'intersection de la boule D(M(ty), d) avec C(0,1). C’est un arc du cercle
unité, et le cercle en entier pour § > 2.

L'arclps avec b =045 etty=0.3
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Plus précisément, en posant £ = 2arcsin(d/2) et en supposant dorénavant que § < 2,

. [t—1o
Sin
2

sin (t;t())’ <g — te [to—f,to+£] mod (27).

Lt—tg L t—tp
e 2 —e 'z

=2

H(cost, sint) — (costo,sintO)H2 — ‘eit _ eito‘ _

Vt € R: ||(cost,sint) — (costg,sinty)|le < § <—

Si € < tg, Ig = [to — &t + 5], si € > tg, on obtient bien un arc de cercle, mais la contrainte de rester dans
[0,27] donne I§ = [27 +tg — &, 27| U [0, tg + &].

ITI.A.2.b Notons My = (g, y0) = (cos(tp),sin(tp)). f étant continue en My, il existe § > 0 tel que

V(x,y) € D(Mo,d), |f(z,y) — f(xo,y0)| < —

o

Pour tout ¢ € I3, et en notant M (t) = (cos(t),sin(t)), on a alors |f(M(t)) — f(M(to))| < 4i par définition
T

de Ig et, comme N est une fonction positive,

27
<— | Naytdi<-— [ Nayt)dt=-

Ny O(F(M(B) = FM ) dt| < - | = .

9
IO

en utilisant & nouveau la positivité de N est le fait que I C [0, 27] par définition.

_ S L
ITIA.2c Pour z = z+iy, |z —e'0| = H(x,y) — (cos tp, sin tO)Hz < 5 et Phypothése t ¢ I§ équivaut & |e't —el*0| > g,

d’ou, par inégalité triangulaire,

. . . . _[4]22 1.2
|z—e‘t|>\elt—elt°]—|z—elt°|>5—g:g N(:c,y,t):l |Z| <1 |Z‘ _

f L@+
[z —ef] = (5/2)2 &2 '
ITT.A.2.d La fonction f étant continue sur C(0,1), qui est fermé et borné, elle est bornée et I'on peut poser

|fllcc = sup [|f(t)]. Sin < /2, la question précédente donne alors
tec(0,1)

/ Ny, ) (F(M(2)) — F(Mo)) dt| < 2] floo / N(ay.t) dt
te[0,27]\I§ te[0,2m\I§

4
< 2[[f]loo X 27 X 5—2(1 —2? —yH) =c(1 — 22 —9?).
Enfin, si M = (z,y) est proche de My = (cos(tg), sin(tp)), alors 2> 4 3> = | M||? est proche de ||Mp||* = 1. 11

5
existe donc 7y tel que, si [[M — Mol| < 1, alors ¢(1 — (2 +y7)) < 3 (c est une constante, elle ne dépend que



de ¢). En posant n = min(#n1,d/2), on peut alors tout combiner pour obtenir

<

| ™

/ Ny, )(FM(1)) — F(Mo)) dt
te[0,2m\I§

ITI.A.3 On sait que la restriction de u a C(0,1), qui est égale a f, est continue. Il s’agit donc de montrer que,
pour tout ¢y € [0, 27], lim u(z,y) = f(z,y). Soient donc ¢y et €. Pour (z,y) € D(0,1),
(z,y)—(cos to,sinto)
(z,y)€D(0,1)

2m
N(z,y, t)(F(M(t)) - f(Mo)) dt

|u(x, y) — f(cos(to), sin(to))| =

La question ITI.A.2.b donne une valeur de § pour laquelle la question I1TA.2d donne une valeur 5. On a alors,
en découpant l'intégrale sur Ig et son complémentaire,

|u(x,y) — u(cos(ty),sin(tp))| < e

quand [|(z,y) — (cos(to),sin(t))|| < 1. On peut conclure que u € Dy, c’est & dire que u est solution sur le
disque unité du probléeme de Dirichlet associé a f.

ITI.B.1.a Par hypothese, u,, admet un maximum local en (Z,y), point intérieur & D(0,1). D’apres la question
LLA.l.a, z — u,(x,y) ne prend que des valeurs supérieures ou égales & u, (Z,y) sur un intervalle ouvert conte-
nant .

Or, si une fonction g € C?(Ja, b]) atteint un maximum en ¢, ¢’(c) = 0 et, par la formule de Taylor-Young,
h2 h2
glc+h)—g(e) = ?g”(c) 4+ 0(h?) et donc ¢”(c) < 0 — sinon, g(c+ h) — g(c) ~n_0 ?g”(c) est localement

strictement positive ce qui est en contradiction avec la maximalité locale en ¢. On en déduit que 0yu,(z,y) =0
et 81,1un(f,gj) < 0.

ITI1.B.1.b Sachant que u est harmonique, un calcul direct donne
4
V(z,y) € D(0,1): Aup(z,y) = > 0
et la question précédente montre, par I'absurde, que u,, n’admet pas de maximum local sur D(0, 1).

ITIIB.2 Cependant, u, étant continue sur le fermé-borné D(0,1) admet un maximum sur ce fermé-borné et il
est donc atteint en un point de C'(0,1) ou u, prend la valeur 1/n (car u est nulle sur le cercle). On a ainsi

— 1
V(z,y) € D(0,1): up(x,y) < -

ITI.B.3 Ce qui précede est vrai pour tout n € N*. On peut, & z,y fixés quelconque, faire tendre n vers I'infini
pour en déduire que u est négative sur D(0,1). Or, —u est clairement solution du méme probleme que u et
on a donc aussi la positivité de u. Finalement,

V(z,y) € D(0,1), u(z,y) = 0.

ITII.C On a construit un élément u de Dy (existence d'une solution). Si v est un autre élément, alors v — v est
solution de Dy et est donc nulle d’apres la partie III.B. Il y a donc aussi unicité de la solution.

IV. Retour sur les polynéomes harmoniques

IV.A.1 La linéarité de ¢,,_o est immédiate par linéarité des opérateurs de dérivation. Si Q € P,,_o alors
Q € P, dou AQ € M,,_2, une dérivation partielle faisant perdre au moins un degré. On en déduit que
Im(¢y—2) C Prp—2. Autrement dit, ¢y,,—2 est un endomorphisme de Py, —s.

Soit Q € Ker(¢m—2). On a alors AQ = 0. Comme la restriction de Q & C(0, 1) est nulle, Q est ainsi solution
du probleme de Dirichlet Dy. D’apres 111.B, @ =0.0r,Q+— (1— z? — y2)Q est injective (elle est linéaire et
si (1 —22—19?)Q =0, alors Q s’annule sur D(0,1) et est nul d’aprés IA.1). On en déduit que Q = 0 et ¢p,_o
est donc injective.



IV.A.2 L’application ¢,,_2 est un isomorphisme de P,,_2 (application linéaire injective d’un espace de dimen-
sion dans lui-méme, ce qui entraine la bijectivité). Comme A(—P) € Pp,_2, il admet donc un antécédent T
par ¢p,—2. On a alors AT = A(—P) c’est a dire que P + T' est harmonique.

IV.A.3 Le polynéme u = P+ (1 —2% —y?)T est harmonique et est égale & Pg sur le cercle unité. C’est donc une
solution de Dp,,. Avec II1.C, on peut dire que c’est I'unique solution. Et comme T € P,,_2, cette solution est
dans P,,.

IV.A.4 On sait par IVA.2 que l'on peut trouver des réels a, b tels que 23 + (1 — 2% — y*)T(z, y) soit harmonique
avec T'(z,y) = ax + by (on peut prendre le terme constant nul car 1 — 22 — y* est harmonique). On obtient

3 3
facilement T'(z,y) = —xz. D’apres la question précédente, Dp. = < (z,y) — 2> + S 22 —y?) .
4 © 4

IVB.1 L’existence d’une décomposition est donnée par la question IVA.2 (on peut toujours trouver un m > 2
tel que P € P,,). Supposons que 'on puisse trouver deux décompositions. On a alors Hi, Ho harmoniques et
Q1, Q2 polynoémes tels que

Hl(xay) =+ (1 - 1"2 - y2)Ql(xay) = HZ(‘rvy) + (1 - 5[72 - y2)Q2(‘T7y)
Posons Q = Q1 — Q2 il existe m > 2 tel que QQ € P,,_2. La relation précédente donne A@ = 0 et donc

Q € Ker(¢,,—2). Ceci donne (par injectivité) la nullité de @ et donc Q1 et Q2. L'égalité Hy = Ho en découle.
On a ainsi prouvé 'unicité de la décomposition.

IV.B.2 Considérons la restriction A, : Pp, — P2, dont le noyau est par définition H,,. Si P € Pp,_o, soit
Q= ¢1;L1_2(P) (on a montré que ¢,,—2 est un isomorphisme). Alors, A,,(Q) = P, ce qui montre la surjectivité
de A,,. La dimension de Ker(A,,) est alors donnée par le théoréeme du rang.

On peut aussi montrer que Py, = Hpp @ (1 — 2% — 4*)Pp_a.
— L’injectivité de ¢,,—2 donne le caractere direct de la somme.
— Soit P € P,,. La question IVA.2 donne T' € P,,_5 tel que H = P + (1 — 22 — yz)T soit harmonique.
Comme c’est un élément de P,,, H € H,,. Ainsi,
P=H-(1-2>—y)T €Hmn® (1 —2° - y*)Ppn_a.
Comme T + (1 — 2% — )T est injective (IVA.1), (1 — 2% — *)Pm_2 et Pp_o ont méme dimension, d’ot
dim(Hy,) = dim(Py,) — dim(Pp—2) = 2m + 1.

Le résultat reste vrai pour m € {0,1} (dans ces deux cas H,, = Puy).

IV.B.3 Pour trouver une base de Hs, il nous suffit d’exhiber sept polynémes harmoniques de degré au plus trois
formant une famille libre. Certains sont immédiats : 1, z, y, 2y et 2> — y%. La question IVA.4 a fourni un
polynéme harmonique de degré 3. Par symétrie, on en trouve un dernier. On obtient ainsi une famille de 7
éléments de Hs dont on vérifie aisément 'indépendance.

3x 3
7“3 = Vect (L z, Y, 1Y, $2 - y23 1'3 + Z(l - 172 - y2)a y3 + Zy(l - xQ - y2)> .

IV.C.1 L’application (i1,12,...,4,) —> {i1,41 +i2 + 1,...,41 + -+ 4+ i,—1 + n — 2} réalise une bijection de
{(z’l,ig, couyin) EN" Gyt iy, = m} sur ensemble des parties de [0,m +n — 2] & n — 1 éléments :
I’énumération est strictement croissante donc donne bien une partie a n — 1 éléments et 41 +--- + 1,1 < M
et la bijection réciproque est donnée par

(jl <j2<"'<jn—1)'_>(jlva_jl_17'--’jn—l_jn—2_1am+n_2_jn—l)'

m+n—1 m4+n— .
Il y a donc < + 1 > = < + > éléments dans ces deux ensembles, le premier comptant les monoémes
n— m

de degré m. On peut alors compter les nombre d’éléments de la base < canonique > de Py, :
S n+k—1
di = .
im(Py,) Z ( f >
k=0
IV.C.2 Le raisonnement de IV.B.2 donne cette fois Py, = Hpm @ (1 — 22 — 23 — -+ — 22)Pp,_o, d’ott

dim (M) = dim(Pp,) — dim(Pp_s) = (" e 1) + <" m = 2).

m m—1



