
Probabilités - Résumé

1. Cadre théorique de la théorie des probabilités

1.1. L’axiomatique de Kolmogorov. Cette axiomatique donne le cadre dans lequel s’inscrit la théorie des probabilités depuis
la parution des Grundbegriffe der Wahrscheinlichkeitsrechnung (principes de base du calcul des probabilités) en 1933. Ce cadre
s’inscrit plus largement dans la théorie de la mesure dont est issue la théorie générale de l’intégrale de Lebesgue (1904). À
partir du niveau L3, il est fréquent qu’un cours unique traite des théories de l’intégration et des probabilités dans le cadre de
celle de la mesure. Cette théorie est hors programme en CPGE.

On n’en conserve ici que quelques définitions, ce qui a pour conséquence que, si Ω est infini non dénombrable, on ne décrit
pas l’univers Ω (sauf dans dans le cas d’école du pile ou face), ni la tribu A des événements (même dans le cadre du pile ou
face). Si Ω est au plus dénombrable, on prend A = P(Ω). De plus, dans le cadre du programme, on se restreint aux variables
aléatoires discrètes, c’est-dire à valeurs dans un ensemble au plus dénombrable (cette restriction exclut des lois parmi les plus
courantes : lois exponentielle, uniforme sur un intervalle et normales).

1.2. Définitions.

Définition 1. Si Ω est un ensemble non vide, une partie A ⊂P(Ω) est une tribu (ou σ-algèbre) sur Ω si :

(i) Ω ∈ A ;

(ii) ∀A ∈ A : A ∈ A ;

(iii) ∀(An)n ∈ A
N :

⋃
n>0

An ∈ A.

Un espace probabilisable est un couple (Ω,A), où Ω est un ensemble non vide, A une tribu sur Ω.

Définition 2. Si Ω est un ensemble non vide et A une tribu sur Ω, on appelle (mesure de) probabilité sur (Ω,A)
une application P : A → [0, 1] telle que :

(i) P(Ω) = 1 ;

(ii) Pour toute suite d’événements (An)n deux à deux incompatibles (i.e. Ai ∩Aj = ∅), la série de terme général

P(An) converge et P
Ç ∞⊎
n=0

An

å
=
∞∑
n=0

P(An) ( additivité dénombrable).

Un espace probabilisé est un triplet (Ω,A,P), où Ω est un ensemble non vide, A une tribu sur Ω et P une probabilité
sur (Ω,A).

Notations : A = Ω\A est l’événement contraire de A. Le signe
⊎

désigne une réunion disjointe et exprime l’incom-
patibilité ; on rencontre aussi

⊔
. On peut aussi utiliser

⋂
↓ An pour une intersection décroissante (i.e. An ⊃ An+1) et⋃

↑ An pour une réunion croissante (i.e. An ⊂ An+1). Notons qu’une intersection croissante ou une union décroissante
sont sans intérêt car elles sont égales à A0.

1.3. Opérations sur les événements et premières propriétés. Comme en algèbre linéaire (définitions d’un espace vec-
toriel et d’une application linéaire), si les définitions sont à connaître, il est encore plus important de savoir quelles sont les
opérations permises, de connaître leur signification et leurs propriétés.

Opérations sur les événements. Passage au complémentaire, réunion et intersection finies ou dénombrables dans
un premier temps. Dans un deuxième temps, toute combinaison finie de ces opérations. Par exemple, A \B = A∩B
et la différence symétrique A

i
B = (A ∪B) \ (A ∩B) = (A \B) ] (B \A). On rappelle les lois de de Morgan :⋃

i∈I
Ai =

⋂
i∈I

Ai &
⋂
i∈I

Ai =
⋃
i∈I

Ai.

Il est bon de savoir décoder quelques cas particuliers usuels, comme

A∗ =
⋃
p>0

⋂
n>p

An et A∗ =
⋂
p>0

⋃
n>p

An = A i.s.
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A∗ est l’événement « tous les An à partir d’un certain rang » et A∗ est l’événement « An pour une infinité de valeurs
de n » ou, ce qui est équivalent, « An pour des valeurs de n arbitrairement grandes ». On l’appelle A infiniment
souvent, d’où la notation A i.s.

Proposition 1. Propriétés du calcul sur les événements :

(i) P(∅) = 0 ;

(ii) P(A1 ]A1 ] · · · ]An) = P(A1) + P(A2) + · · ·+ P(An) ( additivité finie) ;

(iii) P(A) = 1−P(A) ;

(iv) A ⊂ B =⇒ P(A) 6 P(B) ( croissance) ;

(v) P(A ∪B) = P(A) + P(B)−P(A ∩B) ;

(vi) P

Ç n⋃
k=1

Ak

å
=

n∑
k=1

(−1)k+1
∑

16i1<i1<···<ik6n
P
Ä
Ai1 ∩Ai2 ∩ · · · ∩Aik

ä
( formule du crible, HP) ;

(vii) P
Ä⋂
↓ An

ä
= lim

n→∞
P(An) ( continuité décroissante) ;

(viii) P
Ä⋃
↑ An

ä
= lim

n→∞
P(An) ( continuité croissante) ;

(ix) P

Ç N⋃
n=0

An

å
6

N∑
n=0

P(An) ( sous-additivité finie) ;

(x) P

Ç ∞⋃
n=0

An

å
6 lim

N→+∞

N∑
n=0

P(An) =
∞∑
n=0

P(An) (sous-additivité dénombrable) ;

(xi)
∣∣∣P(B)−P(A)

∣∣∣ 6 max
Ä
P(A ∩B), P(B ∩A)

ä
6 P(A

i
B).

L’inégalité (x) s’écrit ainsi plus simplement P
Ç ∞⋃
n=0

An

å
6
∞∑
n=0

P(An), étant entendu qu’en cas de divergence de

la série, on peut lui attribuer la valeur +∞, ce qui, pour majorer une probabilité, est de toute façon peu informatif.

Astuce utile. Toute réunion au plus dénombrable peut s’écrire de manière croissante et de manière disjointe et toute
intersection peut s’écrire de manière décroissante. Ainsi,⋃

n>0

An =
⊎
n>0

Bn =
⋃
↑
n>0

Cn, avec B0 = A0, Bn =
(n>1)

An \ (A0 ∪A1 ∪ · · · ∪An−1) et Cn = A0 ∪A1 ∪ · · · ∪An;

∞⋂
n=0

An =
⋂
↓
n>0

Bn, où Bn = A0 ∩A1 ∩ · · · ∩An.

Ainsi, pour Cn = B0 ∪B1 ∪ · · · ∪Bn,
N⊎
n=0

Bn =
N⋃
↑
n=0

Cn ∴ P

Ç N⊎
n=0

Bn

å
=

N∑
n=0

P(Bn) = P(CN ) ∴

P

Ç ⊎
n>0

Bn

å
= lim

N→∞

N∑
n=0

P(Bn) = lim
N→∞

P(Cn).

Cela montre la convergence de la série de terme général P(Bn) et le fait que, si (Bn)n est une suite d’événements
deux à deux incompatibles, alors limP(Bn) = 0.

En général, la probabilité d’une intersection ou d’une réunion n’est pas la limite des probabilités des événe-

ments considérés. Toutefois, si limP(An) = 0, alors P

Ç ∞⋂
n=0

An

å
= 0 car, pour tout p ∈ N,

∞⋂
n=0

An ⊂ Ap, d’où

P

Ç ∞⋂
n=0

An

å
6 lim

p→∞
P(Ap) = 0. De même, si limP(An) = 1, alors P

Ç ∞⋃
n=0

An

å
= 1. Cela n’est pas à savoir par

cœur, mais l’on peut à l’occasion refaire le raisonnement pour se passer du passage à une suite monotone.
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1.4. Axiomatique des variables aléatoires.

Définition 3. Une variable aléatoire discrète (v.a.d.) est une fonction définie sur un espace probabilisé (Ω,A,P) et
à valeurs dans un ensemble E telle que X(Ω) soit fini ou dénombrable et telle que (X = x) = X−1({x}) ∈ A pour
tout x ∈ X(Ω).

Théorème et définition 1. Si X est une v.a.d., on définit un espace probabilisé
Ä
X(Ω),P

Ä
X(Ω)

ä
, PX

ä
par

∀A ∈P
Ä
X(Ω)

ä
: PX(A) = P(X ∈ A) = P

Ä
X−1(A)

ä
=
∑
a∈A

P(X = a).

La mesure de probabilité PX est appelée la loi de X.

Tout cela est plutôt abstrait... Retenir avant tout que la loi de X est entièrement donnée et décrite par les valeurs P(X = x)
pour x ∈ X(Ω), un peu comme une application linéaire est entièrement décrite par l’image d’une base. Cela est spécifique aux
v.a. discrètes. Comme X(Ω) est au plus dénombrable, on peut le décrire en extension sous la forme X(Ω) = {x0, x1, . . . , xn}
ou X(Ω) = {x0, x1, . . . , xn, . . .}. De plus, pour A ⊂ X(Ω), P(A) =

∑
a∈A

P(X = a) ne dépend pas de la numérotation de A.

Quand un énoncé demande de déterminer la loi d’une v.a. X, il est attendu, dans l’ordre, de déterminer X(Ω), de calculer
P(X = x) pour tout x ∈ X(Ω) et, enfin, de reconnaître la loi si X suit une loi au programme. Il est parfois possible de
court-circuiter les calculs en reconnaissant directement une loi usuelle.

Exemple 1. La plupart des v.a. rencontrées dans les énoncés sont à valeurs dans N. Si A = (X est paire), alors,

P(A) = P(X ∈ 2N) =
∑
n∈2N

P(X = n) =
∞∑
k=0

P(X = 2k).

Remarque 1. On se contente, sauf exception, des
{
x ∈ X(Ω) ; P(X = x) > 0

}
à la place de X(Ω) en écartant donc les

valeurs prises par X avec une probabilité nulle. Un cas typique est l’indice d’apparition du premier face lors d’une série de
lancers de pile/face, cas fondateur de la loi géométrique. On peut définir une valeur bidon relative à l’événement presque
impossible « face n’est jamais apparu », comme X = 0, ou X = +∞ (valeur plus naturelle, mais qui n’est pas entière) ; cela
n’a pas d’importance et l’on peut considérer sans inconvénient que X(Ω) = N∗. Vérifier que X est à valeurs entières, c’est donc
vérifier que P(X ∈ N) = 1. En L3 et au-delà, on travaille dans des espaces quotients construits pour négliger rigoureusement
les événements presque impossibles ; cela n’est pas du tout au programme, mais on peut garder l’idée que l’on ne se laisse pas
compliquer la vie par ce genre d’événements.

Propriétés. L’ensemble des variables aléatoires réelles forme un espace vectoriel. Plus généralement, si (Xi)16i6n

est une suite finie de variables aléatoires et si f(X1, X2, . . . , Xn) est bien définie, alors c’est une variable aléatoire. À
titre d’exemple, montrons qu’une somme de deux v.a. à valeurs dans N est une v.a. Comme N est stable par addition,
X1 +X2 est bien à valeurs dans N. Pour vérifier que X1 +X2 est une v.a., il faut donc montrer que, pour tout n ∈ N,

(X1 + X2 = n) est un événement, ce que prouve la décomposition (X1 + X2 = n) =
n⋃
k=0

(X1 = k) ∩ (X2 = n − k),

puisque, par hypothèse, (X1 = k) et (X2 = n− k) en sont.

Définition 4. Si X est une v.a.d. réelle, c’est-à-dire prenant ses valeurs dans une partie au plus dénombrable de R,
on appelle fonction de répartition de X la fonction FX : R→ [0, 1] définie par FX(x) = P(X 6 x).

Propriétés. FX est croissante, continue à droite, lim
x→−∞

FX(x) = 0 et lim
x→+∞

FX(x) = 1 : pour x 6 y, deux réels, on

a (X 6 x) ⊂ (X 6 y), d’où, par croissance des mesures de probabilité, FX(x) 6 FX(y). Cela entraîne l’existence de
lim

x→±∞
FX(x) et l’on a

lim
x→+∞

FX(x) = lim
n→∞
n∈N

FX(n) = lim
n→+∞

P(X 6 n) = P

Ç⋃
↑
n>0

(X 6 n)

å
= P(X ∈ R) = 1.

La limite quand x tend vers −∞ se calcule de manière similaire. Pour h > 0,

FX(x+ h)− FX(x) = P(x < X 6 x+ h) & FX(x)− F −X(x− h) = P(x− h < X 6 x).

En prenant x = n−1, le théorème de continuité décroissante montre que FX est continue à droite en tout point et
continue à gauche en x si, et seulement si, P(X = x) = 0. Autrement dit, les points de discontinuité de FX sont les
éléments de X(Ω).
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2. Probabilités conditionnelles et indépendance

2.1. Définition.

Théorème et définition 2. Soient (Ω,A,P) un espace probabilisé et B ∈ A un événement tel que P(B) > 0. Alors,

on définit un nouvel espace probabilisé (Ω,A,PB) par PB(A) =
P(A ∩B)

P(B)
.

L’autre notation usuelle pour les probabilités conditionnelles est P(A |B) = PB(A). La première se lit « proba-
bilité de A sachant B ». Il faut bien comprendre que le conditionnement est une modification de la mesure de la
probabilité et non des événements eux-mêmes. En particulier, A |B n’est pas un événement. On peut comprendre
le calcul des probabilités comme une évaluation des chances qu’adviennent les issues possibles d’une expérience en
présence d’une information partielle. Si l’on rajoute de l’information, la probabilité change. Or calculer une probabi-
lité, c’est intrinsèquement le faire d’un certain point de vue, eu égard aux connaissances à disposition.

Définition 5. Deux événements A et B sont indépendants si P(A ∩B) = P(A)P(B). On note alors A ⊥⊥ B.

En particulier, si B n’est pas presque impossible, A et B sont indépendants si, et seulement si, PB(A) = P(A).
Par symétrie, on a la même équivalence en intervertissant A et B, soit PA(B) = P(B) si P(A) 6= 0. L’interprétation
est naturelle : la connaissance de B n’influe pas sur la probabilité de A. Le calcul et l’intuition annoncent de même
que A et B sont indépendants ssi A et B le sont, ssi A et B le sont.

Des conditionnements itérés reviennent à conditionner par une intersection. On vérifie facilement que si B ∩ C
n’est pas presque impossible, alors

PB(A |C) = PC(A |B) = P(A |B ∩ C).

Définition 6. Les événements d’une famille (Ai)i∈I sont indépendants (on dit aussi « mutuellement indépendants »)
si, pour toute partie J ⊂ I finie, on a

P

Ç ⋂
j∈J

Aj

å
=
∏
j∈J

P(Aj).

Il est évident que si des événements sont indépendants, ils le sont deux à deux. La réciproque est fausse. La définition
avec les parties finies vaut aussi si I est fini. Ainsi, pour que les événements A1, A2, ..., An soient indépendants, il ne
suffit pas que P(A1 ∩ A2 ∩ · · · ∩ An) = P(A1)P(A2) · · ·P(An). En revanche, A1, A2, ..., An sont indépendants si, et
seulement si,

(1) ∀(B1, . . . , Bn) ∈
n∏
i=1

¶
Ai, Ai

©
: P(B1 ∩B2 ∩ · · · ∩Bn) = P(B1)P(B2) · · ·P(Bn).

2.2. Couples de variables aléatoires.

Définition 7. Si X et Y sont deux variables aléatoires discrètes définies sur un même espace probabilisé (Ω,A,P),
le couple (X,Y ) : ω 7→ (X(ω), Y (ω)) définit une v.a.d. à valeurs dans l’ensemble au plus dénombrable X(Ω)× Y (Ω).
Les lois de X et de Y sont dites lois marginales du couple et celle du couple est dite loi conjointe. Les lois de X
sachant (Y = y) ou de X sachant (X = x) sont dites lois conditionnelles.

Notation : on note généralement P(X = x, Y = y) pour P
Ä
(X = x) ∩ (Y = y)

ä
.

La loi conjointe détient l’ensemble de l’information relative au couple. On peut en déduire les lois marginales et
conditionnelles :

P(X = x) =
∑

y∈Y (Ω)

P(X = x, Y = y) & P(Y = y) =
∑

x∈X(Ω)

P(X = x, Y = y),

P(X=x)(Y = y) =
P(X = x, Y = y)

P(X = x)
& P(Y=y)(X = x) =

P(X = x, Y = y)

P(Y = y)
,

la donnée des lois conditionnelles étant bien sûr valables si les événements par rapport auxquels on conditionne — ici,
(X = x) et (Y = y) — ne sont pas négligeables, ce que l’on a supposé par convention. On peut, plus généralement,
définir la loi conditionnelle de X sachant tout événement A de probabilité non nulle par x 7→ PA(X = x). Si (X,Y )
est un couple de v.a.d., on peut retrouver la loi de conjointe du couple à partir de la loi marginale de X et des lois
conditionnelles de Y sachant (X = x).
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Remarque 2. Il existe des théorèmes qui garantissent l’existence d’un espace probabilisé approprié permettant de
considérer des suites de variables aléatoires vérifiant telle ou telle hypothèse (suite de v.a.i.i.d, chaîne de Markov, etc).
Ces théorèmes sont entièrement hors programme, jusque dans leur énoncé. On ne se posera donc pas, en pratique
(sauf si la question est posée, évidemment), la question de savoir ce qu’est Ω, ni A, ni même s’ils existent. Les variables
aléatoires sont des fonctions, mais on ne raisonne pas du tout sur elles comme sur des fonctions de la variable réelle
en analyse.

2.3. Variables aléatoires indépendantes.

Définition 8. 1. Deux v.a.d. X et Y définies sur un même espace probabilisé sont indépendantes si

∀(x, y) ∈ X(Ω)× Y (Ω): P(X = x, Y = y) = P(X = x)P(Y = y),

i.e., si les événements (X = x) et (Y = y) sont indépendants pour tout couple de valeurs prises par X et par Y . De
manière équivalente, pour tout x ∈ X(Ω), les v.a. Y et Y|(X=x) ont même loi. On note alors X ⊥⊥ Y .

2. Les v.a. d’une famille finie (X1, X2, . . . , Xn) définies sur un même espace probabilisé sont indépendantes si

∀(xi)16i6n ∈
n∏
i=1

Xi(Ω): P

(
n⋂
i=1

(Xi = xi)

)
=

n∏
i=1

P(Xi = xi).

3. Les v.a. d’une famille quelconque de v.a.d. définies sur un même espace probabilisé sont indépendantes si toute
sous-famille finie est constituée de v.a. indépendantes.

Proposition 2. Soit une famille finie (X1, X2, . . . , Xn) de v.a.d. définies sur un même espace probabilisé. Les pro-
positions suivantes sont équivalentes :

(i) Les v.a. X1, X2, . . . , Xn sont indépendantes.

(ii) ∀(Ai)16i6n ∈
n∏
i=1

P
Ä
Xi(Ω)

ä
: P

(
n⋂
i=1

(Xi ∈ Ai)
)

=
n∏
i=1

P(Xi ∈ Ai).

Remarque 3. — La définition n’est pas exactement analogue à celle des familles finies d’événements indépendants,
pour lesquelles on considère des sous-familles quelconques, même dans le cas d’une famille finie, alors que ce n’est
pas nécessaire pour les v.a.d. Cela est dû au fait que l’on peut expulser des i du produit en prenant Ai = Xi(Ω).
— Quand deux v.a. sont indépendantes, la loi conjointe est donnée par le produit des lois marginales et les lois
conditionnelles se confondent avec les lois marginales (c’est une reformulation de la définition).

Proposition 3 (Lemme des coalitions). Si les v.a. (Xi)i∈N sont indépendantes dans leur ensemble, et si J et K sont
deux parties finies de I telles que J ∩K = ∅, si f et g sont des fonctions donnant un sens à U = f(Xj , j ∈ J) et
V = g(Xk, k ∈ K), alors U et V sont indépendantes.

À nouveau, la formulation est abstraite, mais facile à comprendre : si X1, X2, X3, X4, X5 sont mutuellement in-
dépendantes, alors U = X1X3 et V = X2 + X4 − 2X5 sont indépendantes. C’est évident intuitivement. Noter que
le lemme des coalitions est déjà intéressant quand J et K sont des singletons : si X et Y sont indépendantes, alors
f(X) et g(Y ) le sont aussi.

Exemple 2. Soient X et Y indépendantes suivant une loi uniforme U
Ä
{−1, 1}

ä
et Z = XY . Alors, X,Y, Z ne sont

pas indépendantes dans leur ensemble (considérer (X = 1, Y = 1, Z = −1)), mais indépendantes deux à deux car
P(X = 1, Z = 1) = P(X = 1, Y = 1) = P(X = 1)P(Z = 1) = 1/4. En effet, on a ainsi montré que (X = 1) et
(Z = 1) étaient indépendants, donc, par complémentation, il en va de même de (X = 1) et (Z = −1), de (X = −1)
et (Z = 1), et de (X = −1) et (Z = −1). Ainsi, X et Z sont indépendantes, donc Y et Z également par symétrie.

Exemple 3 (à connaître). Soient (Xi)16i6n une famille de v.a.i.i.d. à valeurs dans N, U = min(X1, X2, . . . , Xn) et
V = max(X1, X2, . . . , Xn). Déterminer la loi de U et celle de V en fonction de celle de X1.

Les événements les plus simples associés sont (U > k) =
n⋂
i=1

(Xi > k) et (V 6 k) =
n⋂
i=1

(Xi 6 k), d’où les

probabilités P(U > k) = P(X1 > k)n et P(V 6 k) = P(X1 6 k)n, dont on déduit facilement

P(U = k) = P(X1 > k)n −P(X1 > k + 1)n et P(V = k) = P(X1 6 k)n −P(X1 6 k − 1)n.
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3. Compléments sur les événements

3.1. Presque. Dans le cadre des univers finis, un événement de probabilité nulle est impossible. Il n’en va pas de
même quand l’univers est infini.

Définition 9. Un événement est dit presque sûr s’il est de probabilité 1 et négligable s’il est de probabilité nulle (on
dit aussi presque impossible).

Propriétés Soit (Ω,A,P) un espace probabilisé. Les événements ci-dessous appartiennent tous à A.

— On suppose que A ⊂ B. Si A est presque sûr, alors B est presque sûr. Si B est presque impossible, alors A est
presque impossible ;

— siA est presque sûr, alors, pour tout événementB,P(B) = P(B∩A) ou, ce qui revient au même,P(B |A) = P(B) ;

— une réunion au plus dénombrable d’événements presque impossible est presque impossible. Une intersection au
plus dénombrable d’événements presque sûrs est presque sûre.

Exemple 4. On joue à pile ou face sans s’arrêter. Si An est l’événement « les n premiers lancers ont amené pile »

et A est « on n’a jamais fait face », alors A =
⋂
↓ An, donc P(A) = limP(An) = lim

Å
1

2

ãn
= 0. Ainsi, A est presque

impossible.

Exemple 5. On reprend le jeu du pile ou face. Soit l’événement « on n’a jamais fait p fois pile consécutivement ».

On note A cet événement. On note Fn l’événement « le ne tirage a donné face » et, pour m ∈ N, Φm =

p(m+1)⋃
k=pm+1

Fk.

Ainsi, Φm exprime que les p tirages consécutifs d’indices pm+ 1 à pm+ p n’ont pas tous donné pile et l’on a

A ⊂
⋂
m>0

Φm =
⋂
↓
n>0

Ä
Φ0 ∩ Φ1 ∩ · · · ∩ Φn

ä
∴

P(A) 6 P

Ç ⋂
m>0

Φm

å
= lim

n→∞
P
Ä
Φ0 ∩ Φ1 ∩ · · · ∩ Φn

ä
= lim

n→∞

Å
1− 1

2p

ãn+1

−−−−→
m→∞

0.

Le fait d’avoir introduit les événements Φm permet de travailler sur des événements indépendants car liés à des
tirages distincts. Plus précisément, les événements Φm sont indépendants et de même probabilité, obtenue en passant
à l’événement complémentaire, soit

Φm =

p(m+1)⋂
k=pm+1

Fk ∴ P(Φm) = 1−
Å

1

2

ãp
.

Exemple 6. On reste dans le pile ou face. Soient Fn l’événement « le n-ème lancer a amené face » et B l’événement
« la suite de lancers a vu des séries arbitrairement longues de pile et de face alternés consécutivement ». Alors,
B =

⋂
↓ B`, avec B` l’événement « la suite de lancers a vu au moins une série de 2` lancers consécutifs ayant alterné

pile et face et commençant par face » (une telle série commençant par pile donne une série de longueur 2(` − 1)
commençant par face). On peut écrire

B` =
⋃
n>1

[(
`−1⋂
i=0

Fn+2i

)⋂(
`−1⋂
i=0

Fn+2i+1

)]
=
⋃
n>1

Cn,`.

L’indépendance des lancers donne P(Cn,`) = 2−2`. Par ailleurs,

B` =
⋂
n>1

Cn,` ⊂
K⋂
k=1

C2`k,`.

Or, les événements (C2`k,`)k sont indépendants dans leur ensemble (ce que ne sont pas les Cn,`) car ils sont construits

à partir d’expériences qui le sont. Il s’ensuit P(B`) 6
Ä
1− 2−2`

äK
pour tout K, donc P(B`) = 0. Finalement, B` est

presque sûr pour tout `, donc P(B) = limP(B`) = 1.
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4. Quelques modélisations d’univers

4.1. Modélisation d’univers finis liés à la physique statistique.

Exemple 7 (Modèle de Maxwell-Boltzmann). Ce modèle est utilisé pour étudier la répartition d’un système de particules selon
différents niveaux d’énergie. Il repose sur un modèle d’urnes : on veut répartir r boules discernables dans n urnes. Les boules sont
réparties de manière indépendante et équiprobable dans chaque urne. On peut prendre comme univers Ω = J1, nKJ1,rK, ensemble
des applications de J1, rK dans J1, nK (à chaque boule est associée une urne), muni de l’équiprobabilité. Chaque répartition est

donc individuellement de probabilité
1

nr
. Notons A l’événement « Chaque urne contient au plus une boule », et X la variable

aléatoire comptant le nombre de boules présentes dans la première urne. Alors

P(A) =
nombre d’applications injectives de J1, rK dans J1, nK

#Ω
=

n!

(n− r)!nr
et X ∼ B

Å
r,

1

n

ã
.

Exemple 8 (Modèle de Fermi-Dirac). Ce modèle est utilisé pour étudier la répartition de fermions indiscernables sur les états
d’énergie d’un système à l’équilibre thermodynamique. Il repose sur la répartition de r boules indiscernables dans n urnes, étant
entendu qu’une urne ne peut pas contenir plus d’une boule. On peut prendre comme univers Ω = Pr

(
J1, nK

)
, ensemble des

parties de J1, nK à r éléments, muni de l’équiprobabilité. Chaque répartition est donc individuellement de probabilité
Ç
n

r

å−1
.

En reprenant la v.a. X de l’exemple précédent, X suit une loi de Bernoulli de paramètre
Ç
n− 1

r − 1

åÇ
n

r

å−1
=
r

n
.

Exemple 9 (Modèle de Bose-Einstein). Ce modèle s’intéresse aux bosons. Il repose sur la répartition de r boules indiscernables
dans n urnes (comme pour le modèle de Maxwell-Boltzmann, mais avec des boules indiscernables). On peut cette fois prendre
comme univers l’ensemble

Ωn,r =
{

(α1, α2, . . . , αn) ∈ Nn ; α1 + α2 + · · ·+ αn = r
}
.

muni de l’équiprobabilité. Le calcul de #Ωn,r peut se faire à partir des suites croissantes (α1, α1 + α2, . . . , α1 + α2 + · · ·+ αn),
lequel se ramène aux suites strictement croissantes. Une alternative consiste à représenter en lignes les boules et les urnes avec
des traits de séparation. Par exemple,

◦ ◦ ◦ ◦ | ◦ | ◦ ◦||| ◦ | ∈ Ω7,8 correspond à 4 + 1 + 2 + 0 + 0 + 1 + 0.
Il y a n− 1 symboles | représentant les cloisons entre les urnes et r symboles ◦ correspondant aux boules. En tout, il y a donc

r+n− 1 symboles parmi lesquels il faut placer r◦ (ou n− 1 |), soit #Ωn,r =

Ç
r + n− 1

r

å
=

Ç
r + n− 1

n− 1

å
. La v.a. X comptant

le nombre de boules se trouvant dans la première urne est à nouveau à valeurs dans J0, rK et l’événement (X = k) correspond
à une représentation de préfixe ◦k|, soit

P(X = k) =
#Ωn−1,r−k

#Ωn,r
=

Ç
r + n− k − 2

r − k

åÇ
r + n− 1

r

å−1
.

L’événementA correspond à αi ∈ {0, 1} et revient à choisir les r urnes ayant recueilli une boule, d’oùP(A) =

Ç
n

r

åÇ
r + n− 1

r

å−1
.

Si l’on s’intéresse en variante à l’événement B :« chaque urne contient au moins une boule », il est pratique de revenir aux suites
(α1, α1 +α2, . . . , α1 +α2 + · · ·+αn−1), lesquelles décrivent maintenant les suites (um)16m6n−1 strictement croissantes (donc les

parties) de J1, r−1K à n−1 éléments, d’où P(B) =

Ç
r − 1

n− 1

åÇ
r + n− 1

r

å−1
(dans le cas du modèle de Maxwell-Boltzmann, cela

aurait conduit à dénombrer les applications surjectives, ce qui est un exercice classique, mais nécessitant des indications). Enfin,

si Y désigne le nombre d’urnes restées vides, Y (Ωn,r) = Jmax(n−r, 0), n−1K et P(Y = k) =

Ç
n

k

åÇ
r − 1

n− k − 1

åÇ
r + n− 1

r

å−1
,Ç

n

k

å
pour le choix des k urnes vides et

Ç
r − 1

n− k − 1

å
correspondant au dénombrement ayant conduit au calcul de P(B) avec

n− k urnes et r boules.

4.2. Univers du pile ou face infini. Posons Ω = {P, F}N. Les éléments de Ω sont les suites infinies de lancers (P, P, F, P, F, . . .).
Un cylindre est une partie de Ω prescrivant le résultat d’un nombre fini de lancers initiaux. Par exemple, [PP ] est l’ensemble
des suites infinies de tirages ayant commencé par deux fois pile. Un tel cylindre est de longueur 2. On peut aussi définir des
cylindres généralisés, qui sont en fait des réunions finies de cylindres du type [P ∗ FF ] = [PPFF ] ∪ [PFFF ], ensemble des
suites infinies de tirage dont le premier lancer est P, les troisième et quatrième F.

On peut montrer (la preuve est difficile et totalement hors programme) que si l’on prend pour A la plus petite tribu conte-
nant tous les cylindres (son existence est facile à prouver car c’est l’intersection de toutes les tribus contenant les cylindres, cet
ensemble étant non vide puisque P(Ω) est une tribu — il est plus délicat de voir que cette tribu n’est pas P(Ω)), il existe
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une unique probabilité P sur (Ω,A) telle que, si C est un cylindre de longueur n, alors P(C) = 2−n. Un cylindre généralisé au
sens ci-dessus est de probabilité 2−m où m est sa longueur, compte non tenu des étoiles. On peut modéliser tout ce qui a trait
aux séries de lancers de pile ou face en prenant cet espace probabilisé. La construction s’adapte à des lancers de dés ou à toute
répétition indépendante d’expériences à valeurs discrètes.

5. Formules liées au conditionnement

Définition 10. Soient (Ω,A,P) un espace probabilisé, I un ensemble au plus dénombrable et (Ai)i∈I une famille
d’événements.
1. On dit que (Ai)i∈I est un système complet d’événements si Ω =

⊎
i∈I

Ai.

2. On dit que (Ai)i∈I est un système quasi-complet d’événements si
⊎
i∈I

Ai est presque sûr.

Exemple 10. Dans une suite infinie de « pile ou face », si An est l’événement « le nème lancer a amené le premier
face », (An)n>1 est un système quasi-complet d’événements.

5.1. Formule des probabilités composées.

Proposition 4. Pour une famille finie (Ak)16k6n d’événements d’un espace probabilisé (Ω,A,P) et si A1∩· · ·∩An−1

n’est pas presque impossible, on a

P(A1 ∩ · · · ∩An) = P(A1)P(A2 |A1)P(A3 |A1 ∩A2) · · ·P(An |A1 ∩ · · · ∩An−1).

La formule des probabilités composées est utile pour estimer la probabilité d’un événement dépendant d’une suite
antérieure d’expériences ; il s’applique notamment aux tirages sans remise.

5.2. Formule des probabilités totales.

Proposition 5. Soient I un ensemble au plus dénombrable et (Ai)i∈I un système complet ou quasi-complet d’événe-
ments d’un espace probabilisé (Ω,A,P). Alors, pour tout A ∈ A :

P(A) =
∑
i∈I

P(A ∩Ai) =
∑
i∈I

P(Ai)6=0

P(A |Ai)P(Ai) =
∑
i∈I

P(A |Ai)P(Ai).

Les deux premières égalités sont vraies même si certains Ai sont négligeables. La troisième est un abus de langage
toléré et pratique, les éventuelles probabilités non définies P(A |Ai) étant multipliée par 0.

La formule des probabilités totales s’applique notamment au résultat d’une deuxième expérience dont les condi-
tions dépendent du résultat d’une première expérience aléatoire, dont les issues sont prises comme système complet
ou quasi-complet.

5.3. Formule de Bayes.

Proposition 6. Soient I un ensemble au plus dénombrable et (Ai)i∈I un système complet ou quasi-complet d’événe-
ments d’un espace probabilisé (Ω,A,P). Alors, pour tout A ∈ A et i0 ∈ I :

P(Ai0 |A) =
P(Ai0 ∩A)

P(A)
=

P(A |Ai0)P(Ai0)∑
i∈I P(A |Ai)P(Ai)

.

La formule de Bayes se place dans la même configuration que la formule des probabilités totales, à ceci près que
l’on cherche à retrouver le résultat de la première expérience en observant le résultat de la deuxième. Cette formule
s’appelle ainsi aussi formule de probabilités des causes.

Exemple 11. Lors d’une épidémie, 35% des animaux d’un élevage sont atteints par la maladie. Il existe un test de
dépistage avec les caractéristiques suivantes : la probabilité qu’un animal malade montre une réaction positive est
0,9 ; la probabilité qu’un animal sain montre une réaction négative est 0,8. On prend un animal au hasard. On note
M l’événement qu’il soit malade, M , qu’il soit sain, N , qu’il soit négatif au test et N qu’il soit positif. Les données

se traduisent par P(M) =
35

100
=

7

20
, donc P(M) =

13

20
, puis P(N |M) =

9

10
et P(N |M) =

8

10
(il serait maladroit

ici de simplifier la fraction).
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On cherche dans un premier temps les probabilités qu’un animal soit malade (resp. sain) en fonction du résultat du
test. La formule de Bayes donne

P(M |N) =
P(N |M)P(M)

P(N |M)P(M) + P(N |M)P(M)
=

9
10 ×

7
20

9
10 ×

7
20 + 2

10 ×
13
20

=
63

89
.

On suppose maintenant que si l’on répète plusieurs fois le test sur le même animal, les résultats des tests sont
indépendants. On cherche la probabilité qu’un animal testé deux fois comme sain soit sain. Avec des notations
transparentes, on cherche la probabilité P(M |NN). L’hypothèse d’indépendance donne P(NN |M) = P(N |M)2 =
64

100
et P(NN |M) = P(N |M)2 =

1

100
. On utilise à nouveau la formule de Bayes.

P(M |NN) =
P(NN |M)P(M)

P(NN |M)P(M)
=

64
100 ×

13
20

64
100 ×

13
20 + 1

100 ×
7
20

=
832

839
.

Cherchons maintenant la probabilité qu’un animal testé une fois comme sain, puis une fois comme malade soit malade.
On commence par calculer

P(NN ∪NN |M) = 1−P(NN |M)−P(NN |M) = 1− 1

100
− 81

100
=

18

100
.

P(NN ∪NN |M) = 1−P(NN |M)−P(NN |M) = 1− 64

100
− 4

100
=

32

100
.

On peut alors une nouvelle fois utiliser la formule de Bayes.

P(M |NN ∪NN) =
P(NN ∪NN |M)P(M)

P(NN ∪NN |M)P(M) + P(NN ∪NN |M)P(M)
=

18
100 ×

7
20

18
100 ×

7
20 + 32

100 ×
13
20

=
63

271
.

On peut aussi utlliser la formule des probabilités totales avec le système complet d’événements (MM) pour calculer

P(NN) =
839

2000
et P(NN) =

619

2000
, d’où P(NN ∪NN) =

542

2000
, ce qui redonne le dénominateur précédent.

6. Dictionnaire

L’axiomatique de Kolmogorov utilise la théorie des ensembles. L’ensemble Ω modélise l’univers des issues possibles
d’une expérience. Les événements sont des parties de Ω, donc des ensembles, et P(A) une mesure de ces ensembles.

Ω événement certain ∅ événement impossible

P(A) = 1 événement presque sûr P(A) = 0 événement négligeable (presque impossible)

{ω} (ω ∈ Ω) événement élémentaire A événement contraire

A ∪B A ou B A ∩B A et B

A
i
B A ou (exlusif) B A ∩B = ∅ événements incompatibles

A ⊂ B A implique B
⊎
An réunion d’événements 2 à 2 incompatibles⊎

An = Ω système complet P
Ä⊎

An
ä

= 1 système quasi-complet⋃
n>0

⋂
k>n

Ak An à.p.c.r.
⋂
n>0

⋃
k>n

Ak An pour une infinité de n (An i.s.)

Remarque 4. Les probabilités (a priori) faciles à calculer sont :
— celle d’une réunion au plus dénombrable d’événements deux à deux incompatibles ;
— celle d’une intersection finie d’événements indépendants dans leur ensemble ;
— celle de l’intersection d’une suite décroissante ou de la réunion d’une suite croissante d’événements ;
— celles données par l’une des trois formules des probabilités conditionnelles (probabilités composées, probabilités
totales, formule de Bayes).
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7. Moments

Définition 11. Les moments d’une v.a.r. sont les E(Xk) et les moments centrés sont les E
Ä
(X−E(X))k

ä
, k ∈ N∗.

Pour donner un sens à cela, il faut commencer par définir le moment d’ordre 1, c’est-à-dire l’espérance. On pourra
noter que le moment centré d’ordre 1 est nul et n’a donc pas d’intérêt.

7.1. Espérance.

Définition 12. Si X est une v.a.d. à valeurs réelles ou complexes, on dit que X admet une espérance si la famille
(P(X = x)x∈X(Ω) est sommable. Si tel est le cas, la somme de la série est l’espérance de X et est notée E(X).

Dans le cas des variables aléatoires positives, on peut indifféremment utiliser d’espérance finie et admettant une
espérance. De fait, une famille positive non sommable peut sans inconvénient se voir affecter la valeur +∞.

Remarque 5. On rappelle que la sommabilité signifie, par définition, la convergence absolue de
∑

xnP(X = xn)

d’une énumération X(Ω) = {x0, x1, . . .} et que tant la sommabilité que la somme sont indépendantes de cette
énumération.

La raison de l’hypothèse à valeurs réelles est qu’une espérance est une moyenne. Si l’on modélise un jeu de cartes,
on peut définir une v.a. à valeurs dans {♥,♦,♣,♠}. Une moyenne n’a dans ce contexte aucun sens ; quelle serait la
moyenne de ♥ et de ♠ ? Cette hypothèse de valeurs réelles peut être naturellement amoindrie car il suffit précisément
que l’on puisse faire une moyenne, donc additionner et multiplier par un scalaire... Une structure adéquate est bien
sûr celle d’espace vectoriel. En particulier, il n’est pas compliqué de parler d’espérance d’une variable aléatoire à
valeurs dans Rn. On se ramène au cas réel en raisonnant coordonnée par coordonnée.

Propriétés.
(i) X admet une espérance si, et seulement si, |X| admet une espérance.

(ii) Si (a, b) ∈ R2 et si X admet une espérance, alors aX + b aussi et E(aX + b) = aE(X) + b.
(iii) Si X > 0 et si X admet une espérance, alors E(X) > 0.
(iv) Si X > 0, si X admet une espérance et si E(X) = 0, alors X = 0 p.s.
(v) Théorème de comparaison. Si 0 6 |X| 6 Y et si Y admet une espérance, alors X admet une espérance et

|E(X)| 6 E(|X|) 6 E(Y );

en particulier, l’espérance est croissante et toute v.a. réelle bornée admet une espérance.

(vi) Théorème de transfert. Si ϕ : R→ R alors E
Ä
ϕ(X)

ä
=

∑
x∈X(Ω)

ϕ(x)P(X = x), où il est entendu que l’existence

de E
Ä
ϕ(X)

ä
est équivalente à la convergence absolue de la série

∑
x∈X(Ω)

ϕ(x)P(X = x) et qu’en cas de

convergence absolue, ils sont égaux.
(vii) L’ensemble des v.a.d. définies sur un espace probabilisé (Ω,A,P) et admettant une espérance est un espace

vectoriel, sur lequel l’espérance définit une application linéaire.

(viii) Inégalité de Markov. Si X > 0 admet une espérance, alors, pour tout réel a > 0, on a P(X > a) 6
E(X)

a
.

Preuve : l’inégalité X > a1(X>a) donne E(X) > aP(X > a) par croissance de l’espérance.

Remarque 6. Toutes ces propriétés sont faciles à retenir car ce sont des propriétés que l’on a déjà vues dans le cadre de
l’intégration (sauf le théorème de transfert et l’inégalité de Markov). Ce n’est pas un hasard, la théorie générale de l’intégrale
englobant les probabilités. Même si cela ne se voit pas à bac + 2, une espérance est une intégrale. On notera qu’on n’a pas
mentionné la propriété la plus importante : la linéarité de l’espérance. Elle s’énonce en effet dans le cadre des couples.

Exemple 12. Un joueur joue contre contre la banque du casino à pile ou face. Contre une mise initiale m, il remporte 1 si
face sort du premier coup, 2 si face sort seulement au deuxième et 2n−1 si le premier face est obtenu au n-ème coup. Que doit
valoir m pour que le jeu soit équitable, c’est-à-dire pour que l’espérance de gain soit nulle de chaque côté ?

Le gain G du joueur est g−m, où g est ce que lui verse le casino. En notant X la date d’apparition du premier face, g vaut

2n−1 avec probabilité 2−n, ce qui donne m = E(G) =
∞∑

n=1

2n−1 × 2−n =
∞∑

n=1

2−1 = +∞. La variable g n’admet pas d’espérance
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et la mise devrait être infinie.

Il s’agit du Paradoxe de Saint-Pétersbourg. C’est un paradoxe en ce que toute mise initiale finie donne une espérance de gain
infinie, mais qu’il ne viendrait à l’idée de personne de miser à un tel jeu, contrairement à ce que « conseille » la théorie des
probabilités. En fait, il est intéressant de jouer à un jeu d’espérance strictement positive car la loi des grands nombres montre
que la probabilité de gagner tend vers 1 quand le nombre de répétitions du jeu tend vers l’infini.

Toutefois, le fait de disposer d’une fortune finie au départ, ce qui est le cas de la plupart des gens, interdit d’une part de miser
des millions de fois une certaine somme, et l’esprit se refuse d’autre part à la perspective de gagner peu avec une probabilité
énorme et de tout perdre avec une probabilité infime. Les jeux comme Euromillions proposent au contraire de perdre une mise
consentie et maîtrisée avec une probabilité élevée, de gagner un peu de temps en temps, et de rêver de gagner une fortune. Une
variante de ce paradoxe est la martingale bien connue consistant à doubler sa mise à la roulette à chaque fois que l’on perd,
jusqu’à ce que l’on gagne... ou que l’on soit ruiné.

7.2. Moments d’ordre 2.

7.2.1. Variance.

Définition 13. Le moment centré d’ordre 2 s’appelle la variance, soit V(X) = E
Ä
(X −E(X))2

ä
. On appelle écart-

type de X la grandeur σ(X) =
»
V(X). Une variable aléatoire est dite centrée si elle est d’espérance nulle et réduite

si son écart-type vaut 1.

Proposition 7. Si X est une v.a.d., l’existence de E(X2) entraîne celle de E(X) et est équivalent à celle de V(X).

Pour voir que l’existence de E(X2) entraîne celle de E(X), on peut développer (|X| − 1)2 > 0, ou utiliser une
majoration plus probabiliste dans l’esprit, soit

|X| =
Ä
1|X|61 + 1|X|>1

ä
|X| 6 1 + 1|X|>1|X| 6 1 +X2.

La deuxième majoration est plus faible que la première d’un facteur 2, mais elle se généralise bien à des puissances
supérieures.

Propriétés.
(i) V(X) = E(X2)−E(X)2 (formule de Koenig) ;
(ii) V(aX + b) = a2 V(X), donc σ(aX + b) = |a|σ(X) ;
(iii) V(X) = 0 si, et seulement si, X est presque sûrement constante ;
(iv) Inégalité de Bienaymé-Tchebychev. Si X admet un moment d’ordre 2, alors, pour tout a > 0, on a

P
Ä
|X −E(X)| > a

ä
6

V(X)

a2
.

Démonstration. Montrons l’inégalité de Bienaymé-Tchebychev. En utilisant la croissance de la fonction x 7−→ x2 sur
R+ (astuce utilisée à l’occasion avec d’autres fonctions croissantes),

P
Ä
|X −E(X)| > a

ä
= P

Ä
(X −E(X))2 > a2

ä
6

(Markov)

E
Ä
(X −E(X)2

ä
a2

=
V(X)

a2
.

�

7.2.2. Couples.

Proposition 8. 1. Si X et Y admettent un moment d’ordre 2, alors XY admet une espérance et

E(XY ) =
∑

(x,y)∈X(Ω)×Y (Ω)

xyP(X = x, Y = y).

2. L’application (X,Y ) 7→ E(XY ) définit sur l’espace vectoriel des v.a.d. admettant une espérance une application
bilinéaire symétrique positive. C’est « presque » un produit scalaire en ce sens que E(X2) = 0 n’équivaut pas à X = 0,
mais à X = 0 p.s.
3. L’inégalité de Cauchy-Schwarz montre que si X et Y admettent un moment d’ordre 2, alors XY admet une espé-
rance et E(XY )2 6 E(X2)E(Y 2). Dans le cas de v.a.i., on a un résultat plus fort :
3. Si X ⊥⊥ Y admettent une espérance, alors XY admet une espérance et E(XY ) = E(X)E(Y ).
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Définition 14. Si X et Y admettent un moment d’ordre 2, on définit la covariance du couple (X,Y ) par

cov(X,Y ) = E
Ä
(X −E(X))(Y −E(Y )

ä
= E(XY )−E(X)E(Y ).

Si cov(X,Y ) = 0, on dit que X et Y sont non corrélées. C’est un peu plus faible que l’indépendance en vertu de la
proposition 8 et d’un contrexemple vu en exercice.

Propriétés.

(i) cov(X,X) = V(X).

(ii) L’inégalité de Cauchy-Schwarz donne | cov(X,Y )| 6 σ(X)σ(Y ).

(iii) Les v.a.d. admettant un moment d’ordre 2 forment un espace vectoriel.

(iv) Théorème de transfert. Si X et Y sont des v.a.d., et ϕ : R2 → R, alors

E(ϕ(X,Y )) =
∑

(x,y)∈X(Ω)×Y (Ω)

ϕ(x, y)P(X = x, Y = y),

au sens où l’existence de E(ϕ(X,Y )) est équivalente à la convergence absolue de la série∑
(x,y)∈X(Ω)×Y (Ω)

ϕ(x, y)P(X = x, Y = y)

et qu’en cas d’existence, il y a égalité numérique.

(v) Corrélativement, si X et Y admettent une espérance et si (λ, µ) ∈ R2, alors λX + µY admet une espérance
et l’on a E(λX + µY ) = λE(X) + µE(Y ).

(vi) Si (X1, X2, . . . , Xn) admettent un moment d’ordre 2, alors

V(X1 +X2 + · · ·+Xn) =
n∑
i=1

V(Xi) + 2
∑

16i<j6n

cov(Xi, Xj).

(vii) Si (X1, X2, . . . , Xn) sont deux à deux indépendantes et admettent une variance, alors

V(X1 +X2 + · · ·+Xn) =
n∑
i=1

V(Xi).

8. Séries génératrices

Cette section introduit un outil spécifique aux variables aléatoires à valeurs dans N (et donc discrètes).

Définition 15. Si X est une v.a. à valeurs dans N, on définit sa série (ou fonction) génératrice par

GX(t) = E(tX) =
∞∑
n=0

P(X = n)tn.

L’expression comme série entière est donnée par le théorème de transfert. La série génératrice est une série entière
de rayon de convergence R > 1 et vérifie GX(1) = 1. Par unicité du développement en série entière, elle caractérise
entièrement la loi : GX = GY si, et seulement si, X et Y suivent la même loi. On peut dériver GX terme à terme.
Si R > 1, le théorème de transfert donne G(p)

X (1) = E
Ä
X(X − 1) · · · (X − p+ 1)

ä
pour tout p > 1 et, en particulier,

pour p = 1, G′X(1) = E(X). Ainsi, les moments E(Xp) existent pour tout p. Si le rayon de convergence vaut 1, c’est
plus subtil, comme le montre le théorème suivant.

Théorème 1. Soit X, une variable aléatoire à valeurs dans N.
1. La v.a. X admet une espérance si, et seulement si, GX est dérivable à gauche en 1. On a alors E(X) = G′X(1).

2. La v.a. X admet une variance si, et seulement si, GX est deux fois dérivable à gauche en 1. On a alors la relation
G′′X(1) = E(X(X − 1)), d’où V(X) = G′′X(1) +G′X(1)−G′X(1)2.

3. La v.a. X admet une espérance si, et seulement si, la série
∑

P(X > n) converge. On a alors

E(X) =
∞∑
n=0

P(X > n) =
∞∑
n=1

P(X > n).
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Ce théorème est important, même s’il ne faut pas forcément se précipiter sur les séries génératrices pour calculer une espérance
ou une variance. Sa démonstration est non exigible. Les trois propriétés sont des conséquences assez immédiates de la version
suivante du théorème de la double limite, qui se démontre lui-même bien plus facilement que celui admis dans le chapitre sur
le convergence uniforme et qu’il faut prendre comme un exercice instructif, et non comme un résultat (de plus...) à apprendre
sur la convergence des séries de fonctions :

Lemme 1. Soit une suite de fonctions continues et croissantes fn : [a, b] → R+ avec −∞ < a < b < +∞. On suppose que la

série
∞∑

n=0

fn(x) converge simplement sur [a, b[ et l’on note f sa somme. Alors, les limites étant dans [0,+∞],

lim
x→b
x<b

f(x) = lim
N→∞

N∑
n=0

fn(b),

Les séries génératrices ne servent pas qu’à calculer les moments. Elles permettent aussi d’utiliser simplement l’indé-
pendance.

Proposition 9. Soient X et Y des v.a. indépendantes à valeurs dans N. Alors, GX+Y = GX×GY . Plus généralement,

si X1, X2, . . . , Xn est une famille de v.a. indépendantes, alors GX1+X2+···+Xn =
n∏
k=1

GXi .

Démonstration. Supposons que X et Y sont indépendantes. Le produit de Cauchy donne

P(X + Y = n) = P

(
n⊎
k=0

(X = k, Y = n− k)

)
=

(incomp.)

n∑
k=0

P(X = k, Y = n− k) =
(indép.)

n∑
k=0

P(X = k)P(Y = n− k)

∴

GX(x)×GY (x) =
∞∑
n=0

P(X = n)xn ×
∞∑
n=0

P(Y = n)xn

=
∞∑
n=0

(
n∑
k=0

P(X = k)P(Y = n− k)

)
xn =

∞∑
n=0

P(X + Y = n)xn.

Le cas général suit par une récurrence immédiate sur n. �

9. Lois usuelles

9.1. Lois certaine et quasi-certaine. C’est le cas X(Ω) = {a}, soit X = a pour la loi certaine et X = a p.s. pour
la loi quasi-certaine. On a évidemment E(X) = a et la loi quasi-certaine caractérise les v.a. de variance nulle.

9.2. Loi uniforme. C’est une loi d’équiprobabilité sur X(Ω), qui ne peut être dénombrable et est donc fini (mais
il existe des lois uniformes sur des domaines non dénombrables, comme des intervalles de R). Si X ∼ U(E), alors

E(X) =
1

#E

∑
x∈E

x. Si E = [[1, n]], on a GX(t) =
t(1− tn)

n(1− t)
.

9.3. Loi de Bernoulli. Une v.a. suit une loi de Bernoulli si X(Ω) = {0, 1}. Le paramètre d’une v.a. suivant une loi
de Bernouilli est P(X = 1) = E(X). On a aussi GX(x) = q+ px, avec q = 1− p et V(X) = pq. Une v.a. de Bernoulli
est une fonction indicatrice car X = 1(X=1) (X vaut 1 quand elle vaut 1 et 0 sinon).

Les fonctions indicatrices sont des outils utiles (on l’a vu par exemple pour prouver l’inégalité de Markov). En voici
quelques propriétés :

— A et B sont indépendants si, et seulement si 1A et 1B le sont ;
— 1A = 1 − 1A ;
— 1A∩B = 1A × 1B ;
— 1A∪B = 1A + 1B − 1A1B.

On peut facilement obtenir la formule du crible (c’est un exercice, la formule n’est pas exigible) en utilisant les fonctions
indicatrices :

1A1∪A2∪···∪An
= 1− 1A1∩A2∩···∩An

= 1−
n∏

i=1

(
1− 1Ai

)
=

n∑
k=1

(−1)k−1
∑

16i1<i2<···<ik6n

1Ai1∩···∩Aik
∴

P(A1 ∪A2 ∪ · · · ∪An) =
n∑

k=1

(−1)k−1
∑

16i1<i2<···<ik6n

P(Ai1 ∩ · · · ∩Aik)
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en prenant l’espérance. La proposition suivante est une conséquence immédiate de la caractérisation de l’indépendance des
événements (équation 1).

Proposition 10. Soient (Ω,A,P) un espace probabilisé et (Ai)i∈I une famille d’événements de cet espace. Alors, les événe-
ments Ai sont indépendants si, et seulement si, la famille des indicatrices 1Ai

le sont.

9.4. Loi binomiale. Si (Xi)16i6n est une suite de v.a.i.i.d. telle que X1 ∼ B(p), alors X =
n∑
i=1

Xi ∼ B(n, p), loi

binomiale. On a X(Ω) = J0, nK et P(X = k) =

Ç
n

k

å
pkqn−k pour tout k ∈ J0, nK. De plus, E(X) = np, V(X) = npq

et GX(x) = (q + px)n. La loi binomiale B(n, p) modélise le nombre de succès lors de n expériences indépendantes et
similaires, de probabilité de succès individuel p. En particulier, si X1 ∼ B(n1, p) et X2 ∼ B(n2, p) sont indépendantes,
alors X1 +X2 ∼ B(n1 + n2, p). C’est aussi immédiat en utilisant les séries génératrices.

Exemple 13. Exercice classique : conditionnement de la loi binomiale par elle-même. Si X ∼ B(n, p) et si, pour
tout k ∈ J0, nK, Y|(X=k) ∼ B(k, p′), alors Y ∼ B(n, pp′).

9.5. Loi de Poisson. C’est la loi dite des événements rares. Elle approche la loi binomiale quand la probabilité est
faible et le nombre de répétitions grand. Plus précisément :

Proposition 11. Si λ > 0 et si Xn ∼ B
Å
n,
λ

n

ã
, alors, pour tout k ∈ N, lim

n→∞
P(Xn = k) = e−λ

λk

k!
.

Définition 16. On dit que X suit une loi de Poisson de paramètre λ et l’on note X ∼ P(λ) si X(Ω) = N et si,

pour tout k ∈ N, P(X = k) = e−λ
λk

k!
.

Pour X ∼P(λ), on calcule GX(x) = eλ(x−1), V(X) = E(X) = λ. Si X ∼P(λ) et Y ∼P(µ) sont indépendantes,
alors X + Y ∼P(λ+ µ). La démonstration est immédiate si l’on utilise les séries génératrices.

Exemple 14. Exercice classique : conditionnement d’une loi de Poisson par une loi binomiale. Si N ∼ P(λ) et si,
pour tout n ∈ N, X|(N=n) ∼ B(n, p), alors X ∼P(λp) et X ⊥⊥ N −X.

9.6. Loi géométrique. La loi géométrique modélise le temps d’attente du premier succès lors d’une suite d’expé-
riences indépendantes et de même probabilité individuelle de succès. On note X ∼ G (p) si X(Ω) = N∗ et si, pour
tout k ∈ N∗, P(X = k) = qk−1p (k − 1 échecs suivis d’un succès). La série génératrice de la loi géométrique de

paramètre p est GX(x) =
px

1− qx
, on a E(X) =

1

p
et V(X) =

q

p2
. Plutôt que la valeur de P(X = k), il est souvent

pratique d’utiliser P(X > k) = qk.

Remarque 7. Si X(Ω) = N∗, X suit une loi géométrique si, et seulement si, X est sans mémoire au sens suivant :

∀(n, k) ∈ N2 : P(X > n+ k |X > n) = P(X > k).

On a alors q = P(X > 1). La condition est en effet nécessaire : par définition de la probabilité conditionnelle,

P(X > n+ k |X > n) =
P
Ä
(X > n+ k) ∩ (X > n)

ä
P(X > n)

=
P(X > n+ k)

P(X > n)
=
qn+k

qn
= qk = P(X > k).

Pour la réciproque, prenons k = 1 et posons q = P(X > 1). Alors, la relation P(X > n + 1 |X > n) =
P(X > n+ 1)

P(X > n)
= q montre que la suite

Ä
P(X > n)

ä
n
est géométrique de raison q et l’on a donc P(X > n) = qn, soit

X ∼ G (p), puisque

P(X = n) = P(X > n− 1)−P(X > n) = qn−1 − qn = qn−1p.
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10. Théorèmes limites

10.1. Loi faible des grands nombres.

Théorème 2. Soit une suite (Xn)n de v.a.i.i.d. possédant un moment d’ordre 2. On note Mn =
1

n

n∑
k=1

Xk la moyenne

des n premières v.a. Xk. Alors :
∀ε > 0: lim

n→∞
P
Ä
|Mn −E(X1)| > ε

ä
= 0.

L’inégalité de Bienaymé-Tchebychev donne une one-line proof de la loi faible et la majoration explicite

P
Ä
|Mn −E(X1)| > ε

ä
6

V(X)

nε2
.

La loi des grands nombres jette un pont entre les probabilités et les statistiques et répond notamment à la question
« comment estimer empiriquement p à partir d’un (gros) échantillon ? » Elle est valide sous l’hypothèse plus faible
de l’existence de E(X), mais ce raffinement est hors programme.

11. Convergences (HP)

En probabilités, comme en analyse, il existe de nombreux modes de convergence. On en a vu quelques uns en mode Monsieur
Jourdain, qui sont dans l’adhérence du programme et qui peuvent faire l’objet de problèmes de concours. Réservé à la préparation
X-ENS pour ceux ayant assimilé tout le reste.

Définition 17. Soient X et X1, X2, . . . , des variables aléatoires définies sur un même espace probabilisé (Ω,A,P).

1. On dit que (Xn)n converge en loi vers X si, pour tout point de continuité x ∈ R de la fonction de répartition FX ,
limFXn

(x) = FX(x). Si les v.a. sont à valeurs dans N, cela équivaut à limP(Xn = k) = P(X = k) pour tout k ∈ N. On
note Xn

L−−−−→
n→∞

X.

2. On dit que (Xn)n converge en probabilité vers X si, pour tout ε > 0, limP(|Xn −X| > ε) = 0. On note Xn
P−−−−→

n→∞
X.

3. On dit que (Xn)n converge presque sûrement vers X si l’événement {ω ∈ Ω ; limXn(ω) = X(ω)} est presque sûr. On note
Xn

p.s.−−−−→
n→∞

X, ou Xn −−−−→
n→∞

X p.s.

Propriétés. — La convergence de Xn ∼ B(n, λ/n) vers X ∼P(λ) est une convergence en loi.

— La convergence presque sûre entraîne la convergence en probabilité. C’est un bon exercice formel, mais très abstrait : on
suppose que Xn

p.s.−−−−→
n→∞

X. Notons A = {ω ∈ Ω ; limXn(ω) = X(ω)}. En écrivant la définition de la limite de manière
dénombrable, c’est-à-dire en y substituant 1/m à ε, il vient

ω ∈ A⇐⇒ ∀m ∈ N, ∃n ∈ N, ∀k > n : |Xk(ω)−X(ω)| 6 1

m
∴

A =
⋂
m>1

⋃
n>1

⋂
k>n

Å
|Xk −X| <

1

m

ã
& A =

⋃
m>1

⋂
n>1

⋃
k>n

Å
|Xk −X| >

1

m

ã
.

Par hypothèse, P(A) = 0, donc tous les événements dont A est l’union sont presque impossibles. Ainsi,

∀m ∈ N∗ : P

Ñ⋂
n>1

↓
⋃
k>n

Å
|Xk −X| >

1

m

ãé
= 0 ∴ lim

n→∞
P

Ñ⋃
k>n

Å
|Xk −X| >

1

m

ãé
= 0.

alors, l’inclusion
Å
|Xn −X| >

1

m

ã
⊂
⋃
k>n

Å
|Xk −X| >

1

m

ã
et le théorème des gendarmes assurent que l’on peut passer à la

limite dans lim
n→∞

P

Å
|Xn −X| >

1

m

ã
= 0, d’où la convergence en probabilité en prenant m = d1/εe.

— La convergence en probabilité entraîne la convergence en loi : dans le cas où toutes les v.a. prennent leurs valeurs dans N,
on a, pour tout (k, n) ∈ N2, (Xn = k)∆(X = k) ⊂

(
|X −Xn| > 1

)
, d’où

|P(X = k)−P(Xn = k)| 6 P
(
(Xn = k)∆(X = k)

)
6 P

(
|X −Xn| > 1

)
−−−−→
n→∞

0.

— La loi faible des grands nombres exprime la convergence en probabilité de (Mn)n vers la v.a. quasi-certaine E(X1).
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— La loi forte des grands nombres (s’il y a une loi faible, c’est qu’il existe aussi une loi forte...) dit que, sous l’hypothèse de
l’existence de E(X1), la suite (Mn)n converge presque sûrement vers la v.a. quasi-certaine E(X1). Elle est démontrée dans le
cas centré dans le problème CCINP, PSI, 2018.

L’erreur commise dans la loi des grands nombres est précisée par le théorème central limite : c’est une erreur en n−1/2

quantifiée par la loi de Gauß. Plus précisément,
Mn −E(Mn)

σ(Mn)

L−−−−→
n→∞

N (0, 1) i.e. ∀x ∈ R : lim
n→∞

P

Å∣∣Mn −E(X1)
∣∣ 6 x√

n

ã
=

1√
2π

∫ x

−∞
e−t

2/2 dt.


