
Prolégomènes aux probabilités

Ce petit chapitre, en marge du programme, a pour but d’introduire les notions d’ensemble dénombrable et de som-
mation de suites réelles ou complexes sur de tels ensembles.

1. Parties de N

Théorème 1. Si A ⊂ N, alors ou bien A est en bijection avec un unique segment initial de N, i.e. un intervalle entier
de la forme J0, n− 1K, ou bien A est en bijection avec N. Dans le premier cas, on dit que A est fini et l’on appelle n
son cardinal. Dans le second cas, on dit que A est dénombrable et l’on note ℵ0 son cardinal.

Notations pour le cardinal : |A|, Card(A), #A.

Rappelons quelques dénombrements finis classiques. Pour A et B deux ensembles finis :

— AB =
¶
f : B −→ A

©
, #AB = (#B)#A.

— #(A ∪B) = #A+#B −#(A ∩B).
— Pour Sn l’ensemble des permutations de In (bijections de In dans lui-même), #Sn = n!.

— #
¶
A ⊂ B ; #A = p

©
=

Ç
#B

p

å
. Par ailleurs,

Ç
n

k

å
=

n!

k! (n− k)!
si 0 6 k 6 n et 0 sinon.

— #
¶
(a1, a2, . . . , ap) ∈ Ap deux à deux distincts

©
=

(#A)!

(#A− p)!
.

— Principe des tiroirs : si X =
n⊎
i=1

Ai (réunion disjointe) et #X > n, il existe i ∈ [[1, n]] tel que #Ai > 2.

2. Ensembles dénombrables

Définition 1. Un ensemble est dit dénombrable s’il est en bijection avec N. Il est dit au plus dénombrable s’il est en
bijection avec une partie de N.

Un ensemble E est au plus dénombrable et l’on a donc #E 6 ℵ0 si, et seulement s’il est fini ou dénombrable.

Il est souvent difficile d’exhiber une bijection explicite entre un ensemble et N, même si elle existe. C’est pourquoi
la proposition suivante est bien utile :

Proposition 1. Un ensemble A est au plus dénombrable si, et seulement s’il existe une application injective A ↪→ N,
si, et seulement s’il existe une application surjective N� A.

Il découle de la définition qu’un ensemble au plus dénombrable peut s’écrire sous la forme {x0, x1, x2, . . . , , xn−1}
s’il est fini et {x0, x1, x2, . . . , , xn−1, . . .} s’il est dénombrable. On parle d’écriture en extension. En pratique, on utilise
souvent une telle énumération, notamment pour l’écriture de sommes sur un ensemble dénombrable, que l’on indicie
ainsi sur N. Un ensemble au plus dénombrable est donc un ensemble que l’on peut énumérer, complètement s’il est fini,
avec des points de suspensions ou par une formule s’il est dénombrable. La notion d’infini potentiel (celui des points
de suspension) est connue et théorisée depuis Aristote, et opposée à l’infini en acte (totalité achevée). Toutefois, la
définition formelle de N est inconnue d’Euclide qui conçoit le nombre comme « collection d’unités » et ne l’axiomatise
pas, contrairement à la géométrie. Une définition axiomatique cohérente (HP) remonte à Peano, à la fin du XIXè
siècle :

i) Il existe un entier appelé zéro et noté 0.
ii) Tout entier admet un unique successeur.
iii) Aucun entier n’admet 0 comme successeur.
iv) Deux entiers distincts n’ont pas le même successeur.
v) Si A ⊂ N contient 0 et le successeur de chacun de ses éléments, alors A = N (axiome de récurrence).
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Les ensembles (au plus) dénombrables vérifient des propriétés de stabilité :
— tout sous-ensemble d’un ensemble au plus dénombrable est au plus dénombrable ;
— une réunion au plus dénombrable d’ensembles au plus dénombrables est au plus dénombrable ;
— une réunion au plus dénombrable d’ensembles dénombrables est dénombrable ;
— un produit d’ensemble non vides est fini si, et seulement si, tous les ensembles du produit sont finis ;
— un produit fini d’ensembles dénombrables est dénombrable ;

Parmi les ensembles courants :
— N, ensemble des entiers naturels, Z, ensemble des entiers relatifs, D, ensemble des nombres décimaux, Q,

ensemble des nombres rationnels, Nk, pour tout entier non nul k, Q[X], l’ensemble des polynômes à coefficients
rationnels, sont dénombrables.

— P(N), l’ensemble des parties de N, {0, 1}N l’ensemble des suites binaires, R et tout intervalle de longueur non
nulle de R, RN, l’ensemble des suites réelles, C

Ä
[0, 1],R

ä
, l’ensemble des fonctions continues définies sur [0, 1],

sont infinis non dénombrables.

La première preuve de non dénombrabilité est due à Cantor et porte le nom d’argument diagonal. Voici comment l’on
montre par cet argument que {0, 1}N est non dénombrable.

Soit une application φ : N→ {0, 1}N ; on note φ(n) = (ωi,n)i>0. On pose, pour tout n ∈ N, τn = 1−ωn,n. Alors, par
construction, {0, 1}N 3 (τn)n>0 6= φ(k) pour tout entier k, puisque leurs élément d’indice k diffèrent. Donc φ n’est pas
surjective. Il n’existe donc pas de bijection de N sur {0, 1}N.

3. Extension aux ensembles généraux (HP)

Il existe une théorie des cardinaux infinis (on parle de nombres transfinis), qu’il n’est pas question de développer
ici. Toutefois, on peut jeter quelques idées de base.

Définition 2. Deux ensembles sont dits équipotents ou de même cardinal s’il existe une bijection de l’un sur l’autre.

La relation d’équipotence est une relation d’équivalence.

Intuitivement, un ensemble F est « plus gros » qu’un ensemble E si F contient une « copie » de E, donc s’il existe
une application injective de E dans F , ce qui permet d’identifier bijectivement E à son image dans F . Intuitivement
toujours (définition 2), deux ensembles ont même cardinal (sans préciser le sens donné à ce terme) s’ils sont en bi-
jection. Contrairement au cas des ensembles finis, un ensemble infini peut être en bijection avec l’une de ses parties
strictes : ainsi, n 7→ 2n définit une bijection entre N et l’ensemble des nombres pairs. De même, la fonction arctangente
définit une bijection de R sur l’intervalle borné ]−π/2, π/2[. On obtient même ainsi une caractérisation des ensembles
infinis : un ensemble est infini si, et seulement s’il est en bijection avec l’une de ses parties strictes.

Théorème 2. Soient E et F deux ensembles.
1. Il existe une application injective de E dans F si, et seulement s’il existe une application surjective de F sur E.
2. Il existe une application injective de E dans F ou il existe une application injective de F dans E.
3. Théorème de Cantor-Bernstein. S’il existe une application injective de E dans F et une application injective de F
dans E, alors il existe une bijection entre E et F .

Il existe une infinité d’infinis distincts, comme on peut le déduire de la proposition suivante.

Proposition 2. Un ensemble E n’est jamais en bijection avec l’ensemble P(E) de ses parties.

Il existe toutefois un « plus petit infini », celui de N et un ensemble E est infini si, et seulement s’il existe une injection
de N dans E.
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4. Convergence commutative

On s’intéresse dans la deuxième partie de ce chapitre à des compléments sur les séries. Soient I un ensemble
dénombrable et (ui)i∈I une famille réelle ou complexe indiciée par I. D’après ce qui précède, il existe une bijection
ϕ : N ∼−→ I et l’on peut considérer la série

∑
uϕ(n). Pour donner un sens à la somme d’une telle série, il faut que la

somme obtenue ne dépende pas de ϕ, ce qui revient à montrer que la somme de la série est indépendante de ϕ. Le
problème est que c’est faux en général... Dans la suite, on note SN l’ensemble des bijections de N sur N, appelées aussi
permutations de N.

Exemple 1 (Réarrangement de Laurent). On sait que la série
∑ (−1)n

n+ 1
est semi-convergente et que

∞∑
n=0

(−1)n

n+ 1
= ln 2.

Alors,

1− 1

2
− 1

4
+

1

3
− 1

6
− 1

8
+

1

5
− 1

10
− 1

12
+ · · · = ln 2

2
.

Pour le montrer, on réécrit la somme partielle
n∑
k=0

Å
1

2n+ 1
− 1

4n+ 2
− 1

4n+ 4

ã
=

n∑
k=0

1

2n+ 1
− 1

2

n∑
k=0

Å
1

2n+ 1
− 1

2n+ 2

ã
=

1

2

n∑
k=0

Å
1

2n+ 1
− 1

2n+ 2

ã
=

4n+2∑
k=0

(−1)k

k + 1
.

Proposition 3. Soit (un)n une suite (réelle, complexe, à valeurs dans un e.v.n...) Alors, la propriété « limun = ` »est
invariante par permutation en ce sens que si limun = `, alors, pour toute permutation σ ∈ SN, on a limuσ(n) = `.

Ce résultat, peut-être un peu étonnant de prime abord, se justifie par le fait que l’on peut réécrire la définition de
la limite d’une suite sous la forme suivante :

limun = ` ⇐⇒ ∀ε > 0: #
¶
n ∈ N ; |un − `| > ε

©
< ℵ0.

Il a pour conséquence que la divergence grossière d’une série est elle aussi invariante par permutation : si ¬(limun = 0),
i.e. si la série

∑
un diverge grossièrement, alors, pour toute permutation σ ∈ S(N),

∑
uσ(n) diverge grossièrement.

Définition 3. Soit (un)n>0 une suite réelle. On dit que la série
∑

un est commutativement convergente si, pour toute

permutation σ ∈ S(N), la série
∑

uσ(n) est convergente et que Sσ =
∞∑
n=0

uσ(n) ne dépend pas de σ.

Théorème 3. Soit (un)n>0 une suite réelle ou complexe.
1. La série

∑
un est commutativement convergente si, et seulement si, elle est absolument convergente.

2. De plus, si
∑

un est semi-convergente, i.e. convergente, mais pas absolument convergente, alors, pour tout ` ∈

R = [−∞,+∞], il existe une permutation σ ∈ S(N) telle que lim
N→∞

N∑
n=0

uσ(n) = `. Il existe aussi σ ∈ Sn telle que

N 7−→
N∑
n=0

uσ(n) n’ait pas de limite.

La deuxième partie du théorème est amusante, mais anecdotique. Ce qu’il faut retenir, c’est que toute série abso-
lument convergente est commutativement convergente. Du coup, on peut maintenant poser une définition.

Théorème et définition 1. Soient I un ensemble dénombrable et (ui)i∈I une famille réelle ou complexe indiciée
par I. Soit ϕ : N ∼→ I une bijection. Si la série

∑
uϕ(n) est absolument convergente, on dit que la famille

∑
ui est

sommable et l’on note S =
∞∑
n=0

uϕ(n). L’hypothèse de convergence absolue ne dépend pas de ϕ et la somme S non plus.

Si (ui)i∈I ∈ RI+ et si la famille
∑

ui n’est pas sommable, on peut affecter à la somme la valeur +∞.
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Pour faire simple, si une famille est sommable, on peut se permettre de la manipuler comme une somme finie. C’est
ce qu’illustre le théorème ci-dessous.

Théorème 4. Soient I et J des ensembles dénombrables.
1. Sommes doubles (théorème de Fubini-Tonelli). La famille (ui,j)(i,j)∈I×J est sommable si, et seulement si, les familles

(ui,j)j∈J et i 7→
∑
j∈J
|ui,j | sont sommables et l’on a alors

∞∑
i∈I

∞∑
j∈J

ui,j =
∞∑
j∈J

∞∑
i∈I

ui,j =
∑

(i,j)∈I×J
ui,j .

En particulier, si (ui)i∈I et (vj)j∈J sont sommables, alors (uivj)(i,j)∈I×J est sommable et
∑

(i,j)∈I×J
uivj =

∑
i∈I

ui×
∑
j∈J

vj.

2. Sommation par paquets. Si (ui)i∈I est sommable et si I =
⊎
j∈J

Kj, alors (um)m∈Kj
est sommable pour tout j ∈ J ;

pour Sj =
∑
m∈Kj

um, la famille (Sj)j∈J est sommable et
∑
j∈J

∑
m∈Kj

um =
∑
i∈I

ui.

Le deuxième item se déduit du premier. Si I et J sont finis, le théorème résulte de l’associativité et la commutativité
de l’addition dans K. Si l’un des deux ensembles est fini et l’autre, dénombrable, il se réduit à la linéarité de la limite.
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