DMS 2 - $PSI^* - 2025-2026$

Problème 1

L'objet du problème est l'étude de la vitesse de convergence de suites réelles. On utilise les notations suivantes :

- $\mathbb{R}^{\mathbb{N}}$ désigne l'espace-vectoriel des suites réelles indiciées à partir de 0 ;
- E désigne le sous-ensemble de $\mathbb{R}^{\mathbb{N}}$ formé par les suites $(u_n)_{n\in\mathbb{N}}$ convergentes telles que

$$\exists N \in \mathbb{N}, \ \forall k \geqslant N \colon u_k \neq \lim_{n \to \infty} u_n;$$

- à toute suite $u=(u_n)_{n\in\mathbb{N}}$ de E, on associe sa limite $\ell(u)$ et la suite $(u_n^c)_n$ définie à partir d'un certain rang et donnée par $u_n^c=\left|\frac{u_{n+1}-\ell(u)}{u_n-\ell(u)}\right|$;
- E^c désigne l'ensemble des éléments $(u_n)_{n\in\mathbb{N}}$ de E tels que $(u_n^c)_{n\in\mathbb{N}}$ soit convergente;
- si $(u_n)_{n\in\mathbb{N}}\in E^c$ et si $c(u)=\lim u_n^c$, on dit que la vitesse de convergence de $(u_n)_{n\in\mathbb{N}}$ est
 - $lente ext{ si } c(u) = 1$;
 - géométrique de rapport c(u) si 0 < c(u) < 1;
 - rapide si c(u) = 0;
- pour $u = (u_n)_{n \in \mathbb{N}} \in E$ de limite $\ell(u)$ et r un réel strictement supérieur à 1, on dit que la vitesse de convergence de u vers $\ell(u)$ est d'ordre au moins r si la suite de terme général $\left| \frac{u_{n+1} \ell(u)}{(u_n \ell(u))^r} \right|$ est bornée;
- une suite est dite *stationnaire* si elle est constante à.p.c.r.

A. Résultats généraux

- **Q1.** Montrer que l'ensemble E^c est non vide.
- **Q 2.** L'ensemble E^c est-il un espace vectoriel?
- **Q 3.** Montrer que E^c est un sous-ensemble strict de E.
- **Q4.** Soit $(u_n)_n \in E^c$. Montrer que $c(u) \in [0,1]$.
- **Q 5.** Soient u et v deux suites de E^c . Montrer que si $\ell(u) = \ell(v) = 0$ et c(u) < c(v), alors $u_n = \mathfrak{o}(v_n)$.

B. Exemples de détermination de la vitesse de convergence

Dans cette partie, on détermine sur des exemples la vitesse de convergence, lente, géométrique de rapport c(u) ou rapide.

- **Q 6.** Soient $k \in \mathbb{N}^*$ et $q \in]0,1[$. Montrer que les suites $u = (u_n)_{n \in \mathbb{N}}$, $v = (v_n)_{n \in \mathbb{N}}$ et $w = (w_n)_{n \in \mathbb{N}}$ données respectivement par $u_n = (n+1)^{-k}$, $v_n = n^k q^n$ et $w_n = \frac{1}{n!}$ appartiennent à E^c et donner leur vitesse de convergence.
- **Q7.** On considère la suite $(I_n)_n$ donnée pour $n \in \mathbb{N}^*$ par $I_n = \int_0^{+\infty} \ln\left(1 + \frac{x}{n}\right) e^{-x} dx$.

- **a.** Montrer que la suite $(I_n)_{n\geqslant 1}$ est bien définie.
- **b.** Montrer que $u \frac{u^2}{2} \leqslant \ln(1+u) \leqslant u$ pour tout $u \in \mathbb{R}_+$.
- **c.** En déduire une constante a telle que $I_n = \frac{a}{n} + \mathcal{O}\left(\frac{1}{n^2}\right)$ quand n tend vers l'infini.
- **d.** Montrer que $(I_n)_{n\geqslant 1}\in E^c$ et donner sa vitesse de convergence.
- e. (5/2) Retrouver l'équivalent de I_n sans utiliser d'encadrement en réalisant une intégration par parties, puis en appliquant le théorème de convergence dominée.
- **Q 8.** On considère la suite $(x_n)_{n\in\mathbb{N}}$ définie par $x_n=\left(1+\frac{1}{2^n}\right)^{2^n}$. Montrer que $(x_n)_n\in E^c$ et donner sa vitesse de convergence.
- **Q 9.** Soit $\alpha > 1$. La série de Riemann $\sum_{k=1}^{\infty} \frac{1}{k^{\alpha}}$ converge; on note ℓ sa somme. On note $S_0 = 0$ et, pour $n \geqslant 1$, $S_n = \sum_{k=1}^{n} \frac{1}{k^{\alpha}}$. Montrer que $(S_n)_{n\geqslant 1} \in E^c$ et donner sa vitesse de convergence.

C. Vitesse de convergence d'ordre r

- **Q 10.** Montrer qu'une suite dont la vitesse de convergence est d'ordre au moins r > 1 est à convergence rapide.
- Q 11. Reste du développement en série entière de l'exponentielle.

Soient
$$x \in \mathbb{R}$$
 et $n \in \mathbb{N}$. On pose $S_n = \sum_{k=0}^n \frac{x^k}{k!}$ et $R_n(x) = e^x - \sum_{k=0}^n \frac{x^k}{k!}$.

- **a.** Montrer que la suite $(S_n)_{n\in\mathbb{N}}$ est un élément de E.
- **b.** Montrer que, pour tout $x \in \mathbb{R}^*$, $R_n(x) \sim \frac{x^{n+1}}{(n+1)!}$. En déduire que la vitesse de convergence de la suite $(S_n)_{n \in \mathbb{N}}$ est rapide.
- **c.** Montrer que la vitesse de convergence de la suite $(S_n)_{n\in\mathbb{N}}$ n'est d'ordre au moins r pour aucune valeur de r>1. Est-elle plus rapide ou plus lente?
- **Q 12.** Soient I un intervalle de \mathbb{R} non trivial (*i.e.* de longueur strictement positive), $f: I \to I$ et $(u_n)_{n \in \mathbb{N}}$ une suite récurrente définie par $u_0 \in I$ et, pour tout entier naturel n, $u_{n+1} = f(u_n)$. On suppose que la suite $(u_n)_{n \in \mathbb{N}}$ converge. On note ℓ sa limite et l'on suppose que f est dérivable en ℓ .
 - a. Montrer que $f(\ell) = \ell$ (on dit que ℓ est un point fixe de f).
- **b.** Montrer que si la suite $(u_n)_{n\in\mathbb{N}}$ n'est pas stationnaire, alors elle appartient à E^c . Donner sa vitesse de convergence en fonction de $f'(\ell)$.
 - **c.** Montrer que si $|f'(\ell)| > 1$, alors $(u_n)_{n \in \mathbb{N}}$ est stationnaire.
- **d.** Soit r un entier supérieur ou égal à 2. On suppose que f est de classe C^r et que $(u_n)_{n\in\mathbb{N}}$ n'est pas stationnaire. Montrer que la vitesse de convergence de $(u_n)_{n\in\mathbb{N}}$ est d'ordre au moins r si, et seulement si, pour tout $k\in[1,r-1]$, $f^{(k)}(\ell)=0$.

Problème 2

Dans tout le problème, X est un espace vectoriel de dimension $n \ge 2$ sur le corps des réels et T un endomorphisme non nul de X. On rappelle qu'une homothétie est un multiple scalaire de l'identité et qu'un projecteur est un endomorphisme P tel que $P^2 = P$. Dans $\mathcal{M}_n(\mathbb{R})$, on note I_n la matrice identité; 0 désigne la matrice nulle quelle que soit sa taille s'il n'y a pas d'ambiguïté.

A. Préliminaires

- **Q 13.** Soit P un projecteur de X. Vérifier que $X = \operatorname{Ker}(P) \oplus \operatorname{Im}(P)$ et que $\operatorname{Im}(P) = \operatorname{Ker}(P')$, où $P' = \operatorname{id}_X P$. Exprimer $\operatorname{Im}(P')$ et $\operatorname{Ker}(P')$ en fonction de $\operatorname{Im}(P)$ et de $\operatorname{Ker}(P)$.
- **Q 14.** Soit P un projecteur de X. Exprimer tr(P) en fonction de Im(P).
- **Q 15.** Soit S une somme finie de projecteurs. Montrer que $\operatorname{tr}(S) \in \mathbb{N}$ et que $\operatorname{tr}(S) \geqslant \operatorname{rg}(S)$.
- **Q 16.** Soit une matrice par blocs de la forme $M = \begin{pmatrix} A & B \\ \hline C & D \end{pmatrix}$ avec $A \in \mathcal{M}_p(\mathbb{R})$ et $D \in \mathcal{M}_{n-p}(\mathbb{R})$. Soient A' une matrice semblable à A et D' une matrice semblable à D. Montrer que M est semblable à une matrice de la forme $\begin{pmatrix} A' & B' \\ \hline C' & D' \end{pmatrix}$.

B. Endomorphismes différents d'une homothétie

On suppose dans cette partie que T n'est pas une homothétie.

Q17. Démontrer qu'il existe un vecteur $x \in X$ tel que x et T(x) ne soient pas colinéaires. En déduire qu'il existe une

base
$$\mathcal{B}$$
 de X dans laquelle $\operatorname{mat}_{\mathcal{B}}(T) = \begin{pmatrix} 0 & * & \cdots & * \\ \hline 1 & & & \\ 0 & & & \\ \vdots & & & \\ 0 & & & \end{pmatrix}$, où $A \in \mathcal{M}_{n-1}(\mathbb{R})$ (les coefficients $*$ prenant des valeurs non

précisées). En particulier, on impose ici uniquement la première colonne.

Q 18. En utilisant la question précédente, montrer en raisonnant par récurrence sur n, que toute matrice de trace nulle de $\mathcal{M}_n(\mathbb{R})$ est semblable à une matrice dont tous les coefficients diagonaux sont nuls.

Soit
$$(t_1, \ldots, t_n)$$
 une suite de n nombres réels vérifiant $\operatorname{tr}(T) = \sum_{i=1}^n t_i$.

Q 19. En dimension n=2, montrer qu'il existe une base \mathcal{B}'' dans laquelle la matrice de T a pour diagonale (t_1,t_2) .

Q20. En dimension
$$n \ge 3$$
, montrer qu'il existe une base \mathcal{C} de X telle que $\operatorname{mat}_{\mathcal{C}}(T) = \begin{pmatrix} t_1 & * & \cdots & * \\ \hline * & & & \\ \vdots & & B & \\ * & & & \end{pmatrix}$, où B n'est pas une matrice d'homothétie.

Q 21. Montrer qu'il existe une base \mathcal{B}'' de X dans laquelle la matrice de T a pour diagonale (t_1, \ldots, t_n) .

C. Décomposition en somme de projecteurs de rang 1

On suppose désormais que $T \in \mathcal{L}(X)$ vérifie $\operatorname{tr}(T) \in \mathbb{N}$ et $\operatorname{tr}(T) \geqslant \operatorname{rg}(T)$.

- **Q 22.** Montrer qu'il existe une base \mathcal{B} de X dans laquelle $\operatorname{mat}_{\mathcal{B}}(T) = \left(\begin{array}{c|c} T_1 & 0 \\ \hline T_2 & 0 \end{array}\right)$, où $T_1 \in \mathscr{M}_{\operatorname{rg}(T)}(\mathbb{R})$.
- **Q 23.** On suppose tout d'abord que T_1 n'est pas une matrice d'homothétie. En utilisant la partie précédente, montrer l'existence d'une base \mathcal{B}' de X dans laquelle $\operatorname{mat}_{\mathcal{B}'}(T) = \begin{pmatrix} T_1' & 0 \\ \hline T_2' & 0 \end{pmatrix}$, où $T_1 \in \mathscr{M}_{\operatorname{rg}(T)}(\mathbb{R})$ admet comme termes diagonaux des entiers naturels non nuls. En déduire que T est la somme d'un nombre fini de projecteurs de rang 1.
- \mathbf{Q} 24. On suppose que T_1 est une matrice d'homothétie. Montrer que T est la somme d'un nombre fini de projecteurs de rang 1.
- Q 25. Énoncer le théorème démontré.