DMS 3 - PSI* — 2025-2026

Dans tout le sujet, n désigne un entier naturel non nul et E un \mathbb{C} -espace vectoriel de dimension finie n.

Si $u \in \mathcal{L}(E)$ et si F est un sous-espace vectoriel de E stable par f, on note $f_{\parallel F}$ l'endomorphisme induit par f sur F.

Si M est une matrice de $\mathcal{M}_n(\mathbb{C})$, on définit la suite des puissances de M par $M^0 = I_n$ et, pour tout entier naturel k, par la relation $M^{k+1} = M M^k$. De même, si u est un endomorphisme de E, on définit la suite des puissances de u par $u^0 = \mathrm{id}_E$ et, pour tout entier naturel k, par la relation $u^{k+1} = u \circ u^k$.

Une matrice M est dite nilpotente s'il existe un entier naturel $k \ge 1$ tel que $M^k = 0_{\mathscr{M}_n(\mathbb{C})}$. Dans ce cas, le plus petit entier naturel $k \ge 1$ tel que $M^k = 0_{\mathscr{M}_n(\mathbb{C})}$ s'appelle l' indice de nilpotence de M. De même, un endomorphisme u de E est nilpotent s'il existe un entier naturel $k \ge 1$ tel que $u^k = 0_{\mathscr{L}(E)}$ et son indice de nilpotence est le plus petit entier naturel $k \ge 1$ tel que u^k soit l'endomorphisme nul.

Si $A \in \mathcal{M}_n(\mathbb{C})$, on appelle classe de similitude de A l'ensemble des matrices de $\mathcal{M}_n(\mathbb{C})$ semblables à A.

On pose
$$J_1=(0)$$
 et, pour un entier $\alpha\geqslant 2,\ J_{\alpha}=\begin{pmatrix} 0&\cdots&\cdots&0\\ 1&\ddots&&&\vdots\\ 0&\ddots&\ddots&&\vdots\\ \vdots&\ddots&\ddots&\ddots&\vdots\\ 0&\cdots&0&1&0 \end{pmatrix}\in\mathscr{M}_{\alpha}(\mathbb{C}).$

Si $A_1 \in \mathcal{M}_{n_1}(\mathbb{C}), A_2 \in \mathcal{M}_{n_2}(\mathbb{C}), \cdots, A_k \in \mathcal{M}_{n_k}(\mathbb{C}),$ on note

$$Diag(A_1, A_2, ..., A_k) = \begin{pmatrix} A_1 & 0 & ... & 0 \\ 0 & A_2 & & \vdots \\ \vdots & & \ddots & 0 \\ 0 & \cdots & 0 & A_k \end{pmatrix} \in \mathcal{M}_{n_1 + n_2 + \dots + n_k}(\mathbb{C}).$$

I. Premiers résultats

I.A — Réduction des endomorphismes nilpotents en dimension 2

On suppose dans cette sous-partie que n=2. Soit $u\in \mathcal{L}(E)$ un endomorphisme nilpotent d'indice p.

Q1. Que peut-on dire si p = 1?

On suppose dans les questions Q2 à Q5 que $p \ge 2$.

- **Q 2.** Montrer qu'il existe un vecteur x de E tel que $u^{p-1}(x) \neq 0$.
- ${\bf Q}$ 3. Vérifier que la famille $\left(u^k(x)\right)_{0\leqslant k\leqslant p-1}$ est libre. En déduire que p=2.
- **Q4.** Montrer que Ker(u) = Im(u).
- **Q 5.** Construire une base de E dans laquelle la matrice de u est égale à J_2 .
- \mathbf{Q} 6. En déduire que les endomorphismes nilpotents de E sont exactement ceux de trace et de déterminant nuls.

I.B — Réduction des endomorphismes nilpotents d'indice 2 en dimension n

On suppose dans cette sous-partie que $n \ge 3$. Soit $u \in \mathcal{L}(E)$ nilpotent d'indice 2. On pose r = rg(u).

- **Q7.** Montrer que $\text{Im}(u) \subset \text{Ker}(u)$ et que $2r \leq n$.
- **Q 8.** On suppose que Im(u) = Ker(u). Montrer qu'il existe des vecteurs e_1, e_2, \ldots, e_r de E tels que la famille $(e_1, u(e_1), e_2, u(e_2), \ldots, e_r, u(e_r))$ soit une base de E et donner la matrice de u dans cette base.
- **Q9.** On suppose maintenant que $\text{Im}(u) \neq \text{Ker}(u)$. Montrer qu'il existe des vecteurs e_1, e_2, \ldots, e_r de E et des vecteurs $v_1, v_2, \ldots, v_{n-2r}$ appartenant à Ker(u) tels que $(e_1, u(e_1), e_2, u(e_2), \ldots, e_r, u(e_r), v_1, v_2, \ldots, v_{n-2r})$ soit une base de E. Quelle est la matrice de u dans cette base?

I.C — Valeurs propres, polynôme caractéristique, polynômes annulateurs d'une matrice nilpotente

Dans cette sous-partie, $A \in \mathcal{M}_n(\mathbb{C})$ avec $n \geq 1$.

Q 10. Montrer que

$$A \text{ est nilpotente} \iff \operatorname{Sp}(A) = \{0\} \iff \chi_A = X^n.$$

- **Q 11.** Quelles sont les matrices de $\mathcal{M}_n(\mathbb{C})$ à la fois nilpotentes et diagonalisables?
- \mathbf{Q} 12. Montrer que A est nilpotente si, et seulement si, elle est semblable à une matrice triangulaire inférieure à diagonale nulle.

Dans les trois questions suivantes, A est nilpotente d'indice p.

- **Q 13.** Montrer que tout polynôme de $\mathbb{C}[X]$ multiple de X^p est un polynôme annulateur de A.
- **Q 14.** Réciproquement, soit P est un polynôme annulateur de A. Montrer qu'il existe un unique entier m non nul et un polynôme Q tel que $P = X^m Q$ avec $Q(0) \neq 0$. Montrer que Q(A) est inversible.
- \mathbf{Q} 15. En déduire l'ensemble des polynômes annulateurs de A.

I.D — Racines carrées de matrices nilpotentes

Pour une matrice $V \in \mathcal{M}_n(\mathbb{C})$ donnée, on dit qu'une matrice $R \in \mathcal{M}_n(\mathbb{C})$ est une racine carrée de V si $R^2 = V$.

Q 16. Soit $R \in \mathcal{M}_3(\mathbb{C})$ telle que $R^2 = J_3$. Déterminer R^4 et R^6 , puis l'ensemble des racines carrées de J_3 .

En général, soit $V \in \mathcal{M}_n(\mathbb{C})$ une matrice nilpotente d'indice p. On se propose d'étudier l'existence de raines carrées de V.

- **Q 17.** Montrer que si V admet au moins une racine carrée, alors si $p \leqslant \left\lfloor \frac{n+1}{2} \right\rfloor$.
- **Q18.** Pour $n \in \mathbb{N}^*$, déterminer les puissances de J_n et son indice de nilpotence. En déduire une matrice $V \in \mathcal{M}_n(\mathbb{C})$, nilpotente d'indice $\left|\frac{n+1}{2}\right|$ et admettant au moins une racine carrée.

II. Réduction de Jordan des endomorphismes nilpotents, partitions

II.A — Réduction des matrices nilpotentes

Soit $u \in \mathcal{L}(E)$ nilpotent. Pour $x \in E$, on note $C_u(x) = \text{Vect}(u^k(x); k \in \mathbb{N})$.

Q 19. Montrer que $C_u(x)$ est stable par u et qu'une base de $C_u(x)$ est donnée par $(x, u(x), \dots, u^{s(x)-1}(x))$, où s(x) (dont on justifiera en particulier l'existence) est le plus petit entier tel que $u^{s(x)}(x) = 0$. Déterminer, dans cette base, la matrice de l'endomorphisme induit par u sur $C_u(x)$.

L'objectif de cette sous-partie est de démontrer la propriété

 (\mathcal{H}_p) : « Pour tout \mathbb{C} -e.v. E de dimension finie non nulle et tout endomorphisme u de E nilpotent d'indice p, il existe un entier $k \geqslant 1$ et des vecteurs non nulls a_1, a_2, \ldots, a_k de E tels que $E = \bigoplus_{i=1}^k C_u(a_i)$. »

- **Q 20.** Montrer (\mathcal{H}_1) . En utilisant les résultats de la partie I.B., montrer (\mathcal{H}_2) .
- **Q21.** Montrer que u induit sur Im(u) un endomorphisme nilpotent et déterminer son indice de nilpotence en fonction de celui de u.
- **Q 22.** Démontrer (\mathcal{H}_p) par récurrence sur p. Pour cette question difficile, on pourra présenter dans un premier temps la construction, avant de démontrer point par point ce qui doit l'être.
- **Q 23.** Donner la matrice de u dans une base adaptée à la décomposition $E = \bigoplus_{i=1}^k C_u(a_i)$.

II.B — Partitions d'entiers

Si $A \in \mathcal{M}_n(\mathbb{C})$, on appelle classe de similitude de A l'ensemble des matrices semblables à A. On s'intéresse ici au nombre de classes de similitude de matrices nilpotentes dans $\mathcal{M}_n(\mathbb{C})$.

En théorie des nombres, on appelle partition de l'entier $n \in \mathbb{N}^*$ toute suite finie $(\alpha_1, \alpha_2, \dots, \alpha_k) \in (\mathbb{N}^*)^k$ avec $k \geqslant 1$ telle que

$$\alpha_1 \geqslant \alpha_2 \geqslant \cdots \geqslant \alpha_k$$
 & $\alpha_1 + \alpha_2 + \cdots + \alpha_k = n$.

On note Γ_n l'ensemble des partitions de l'entier n. Ainsi, $\Gamma_1 = \{(1)\}$, $\Gamma_2 = \{(2), (1,1)\}$, $\Gamma_3 = \{(3), (2,1), (1,1,1)\}$.

Enfin, pour tout partition $\sigma = (\alpha_1, \alpha_2, \dots, \alpha_k) \in \Gamma_n$, on note $N_{\sigma} = \text{Diag}(J_{\alpha_1}, J_{\alpha_2}, \dots, J_{\alpha_k})$.

Soit $A \in \mathcal{M}_n(\mathbb{C})$ une matrice nilpotente.

Q 24. À l'aide de la partie II.A, montrer qu'il existe une partition $\sigma \in \Gamma_n$ telle que A soit semblable à la matrice N_{σ} .

Dans la suite, on fixe une telle partition $\sigma = (\alpha_1, \alpha_2, \dots, \alpha_k)$. Pour $j \in \mathbb{N}$, on note $r_j = \operatorname{rg}(A^j)$ et m_j le nombre de termes de la partition σ égaux à j.

- **Q 25.** Pour tout $j \in \mathbb{N}$, montrer que $r_j = \sum_{i=1}^k \max(0, \alpha_i j)$.
- **Q 26.** En déduire, pour $j \ge 1$, une interprétation de $r_{j-1} r_j$ en termes de la partition σ . Exprimer alors m_j en fonction de la suite $(r_i)_i$.
- **Q27.** Montrer qu'il existe une unique partition $\sigma \in \Gamma_n$ telle que A soit semblable à N_{σ} . Que peut-on en déduire quant au nombre de classes de similitudes de matrices nilpotentes dans $\mathcal{M}_n(\mathbb{C})$?

II.C — Deux applications

Q 28. Soit
$$A = \begin{pmatrix} 0 & -1 & 2 & -2 & -1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & -1 & 1 & 0 \end{pmatrix}$$
. Déterminer la partition σ de l'entier 5 telle que A soit semblable à N_{σ} .

Q 29. Pour toute matrice nilpotente $A \in \mathcal{M}_n(\mathbb{C})$, montrer que M, 2M et M^{T} sont semblables. À l'aide de la partie I.C, montrer que si M et 2M sont semblables, alors M est nilpotente.

II.D — Un algorithme de calcul du nombre de partitions de n

Q 30. Déterminer Γ_4 et Γ_5 . Calculer les $y_{n,j}$ pour $1 \leq j \leq n \leq 5$ en présentant les résultats sous la forme d'une tableau à double entrée. On ne donnera aucune justification.

Pour n et j entiers naturels non nuls, on note $Y_{n,j}$ l'ensemble des partitions de n dont le premier terme α_1 est inférieur ou égal à j et $y_{n,j}$ le cardinal de cet ensemble. Par convention, on pose $y_{0,0} = 1$ et $y_{n,0} = 0$ pour tout $n \ge 1$.

Q 31. Calculer $y_{n,1}$.

On se propose de montrer que, pour $2 \leqslant j \leqslant n$, alors $y_{n,j} = y_{n,j-1} + y_{n-j,\min(j,n-j)}$.

- **Q 32.** Démontrer que cette égalité est vraie pour j = n.
- **Q 33.** Pour j < n, vérifier que $y_{n,j} = y_{n,j-1} + y_{n-j,j}$. Conclure.
- Q 34. (Question hors barème à traiter chez soi) Écrire une fonction Python qui prend en argument un entier $n \ge 1$ et qui renvoie $y_{n,n}$.

III. Vecteurs propres généralisés, réduction de Jordan générale

Soit $f \in \mathcal{L}(E)$. Pour une valeur propre λ de f et $k \in \mathbb{N}$, on note $G_{\lambda}^{(k)}(f) = \operatorname{Ker}(f - \lambda \operatorname{id}_E)^k$ et $G_{\lambda}(f) = \bigcup_{k=0}^{\infty} G_{\lambda}^{(k)}(f)$.

On appelle vecteur propre généralisé de f associé à λ l'ensemble des vecteurs non nuls de $G_{\lambda}(f)$. Les espaces $G_{\lambda}(f)$ sont appelés sous-espaces caractéristiques de f.

- **Q 35.** À λ fixé, montrer que la suite $(G_{\lambda}^{(k)}(f))_{k\in\mathbb{N}}$ est monotone et stationnaire à partir du premier indice p tel que $G_{\lambda}^{(p)}(f) = G_{\lambda}^{(p+1)}(f)$. En déduire qu'il existe un plus petit entier $p(\lambda)$ tel que $G_{\lambda}(f) = G_{\lambda}^{(p(\lambda))}(f)$ et que $G_{\lambda}(f)$ est un espace vectoriel de dimension au moins égale à 1 contenant l'espace propre $E_{\lambda}(f)$.
- **Q 36.** Soient $\lambda \in \operatorname{Sp}(f)$ et $G_{\lambda} = \operatorname{Ker}(f \lambda \operatorname{id}_{E})^{p(\lambda)}$. Montrer que $E = G_{\lambda}(f) \oplus \operatorname{Im}(f \lambda \operatorname{id}_{E})^{p(\lambda)}$.
- Q 37. Soient $\lambda_1, \lambda_2, \ldots, \lambda_p$ des valeurs propres de f deux à deux distinctes. Soit $(x_i)_{1 \leq i \leq p} \in \prod_{i=1}^p G_{\lambda_i}(f)$ une famille de vecteurs telle que $x_1 + x_2 + \cdots + x_p = 0_E$. On suppose que $x_i \neq 0_E$ pour un certain $i \in [1, p]$. Justifier l'existence d'un entier m tel que $w_i = (f \lambda_i \operatorname{id}_E)^{m-1}(x_i)$ soit un vecteur propre de f. En calculant $P(f)(x_1 + x_2 + \cdots + x_p)$ de deux manières différentes pour un polynôme P bien choisi, montrer que $w_i = 0$. En déduire que les sous-espaces caractéristiques de f sont en somme directe.
- **Q 38.** On peut maintenant établir la décomposition en sous-espaces caractéristiques. En raisonnant par récurrence sur n, montrer que $E = \bigoplus_{\lambda \in \operatorname{Sp}(f)} G_{\lambda}(f)$.
- ${\bf Q}$ 39. Donner une expression de χ_f en fonction des $G_{\lambda_i}(f)$ n'utilisant pas le déterminant.
- Q40. Déduire des questions précédentes une preuve du théorème de Cayley-Hamilton dans le cas d'un e.v. complexe.
- **Q 41.** Énoncer et démontrer un théorème améliorant la trigonalisation sur \mathbb{C} . Dans quelle mesure s'étend-il à \mathbb{R} ?