DMS 3 - PSI* — 2025-2026 — Corrigé
Probléme 2, Centrale-Supélec 2019, PSI, modifié

a—1
On pose J; = (0) € #:1(C) et, pour un entier a > 2, J, = Z Eit1, €7, (C).
i=1

I. Premiers résultats

I.A — Réduction des endomorphismes nilpotents en dimension 2

Dans cette sous-partie, E est un plan vectoriel complexe. Soit u € .Z(F) un endomorphisme nilpotent d’indice p.
Q1. Sip =1, cela signifie par définition que u! =u = 0.4 (g)- On suppose désormais que p > 2.

Q 2. Par minimalité de p, uP~! 0.4 (p), donc il existe un vecteur = de E tel que uP~(z) # 0p.

p—1
Q3. Soit (ak)gckep—1 € CP\{0cr} tel que Zakuk(az) = 0. Notons r = min {k € [0,p — 1] ; oy # Oc }. Ce minimum
k=0
p—1 p—1
existe, puisque ’ensemble considéré est non vide par hypothése. En composant Z apuf (x) = Z akuk(x) par uP~17"
k=0 k=r

et en tenant compte de ce que v (x) = O pour tout m > p, il vient

p—1 p—1 p—1
Zakup*k”k(x) = a,uP ™ (z) + Z P TR (1) = apuP T (z) + Z 0p = apuP ™ (z) = 0,
k=r k=r+1 k=r+1

d’ott o = O¢, puisque up_l(:c) # 0g. On obtient ainsi une contradiction avec le fait que les aj ne sont pas tous nuls,

ce qui montre que la famille (uk(x)) 4> qui est de cardinal p, est libre. En dimension 2, une famille libre est de

0<k<p
cardinal au plus 2, donc p < 2. Comme on a supposé que p = 2, il vient p = 2.

Q4. D’apreés la question précédente, on a u? = 0¢(g)- Or,
u? = 0gp) == Vz € E:u(u(r)) =0p <= Im(u) C Ker(u) dim Im(u) < dim Ker(u).

Par ailleurs, le théoréme du rang donne dim Ker(u) + dimIm(u) = dim E' = 2 et p = 2 montre que Ker(u) # E, soit
dim Ker(u) < 1. La seule possibilité est dim Ker(u) = dimIm(u) = 1, ce qui, associé a 'inclusion Im(u) C Ker(u),
assure 1'égalité, soit Ker(u) = Im(u).

On peut aussi se passer du théoréme du rang et utiliser la question précédente, qui donne une base de E de la forme
(z,u(z)) : soit £ 3y = azx+ Bu(z). Siy € Ker(u), on a u(y) = au(z) + fu*(x) = au(z) = 0g, d'ott o = O¢, puisque
u(z) # 0g. Ainsi, y = u(fx) € Im(u), ce qui donne l'inclusion inverse Ker(u) C Im(u) et donc 1'égalité.

Q 5. La question 3 donne une base de la forme % = (x,u(m)) Dans cette base, matp(u) = Jo. Ce qui donne, en
passant, une démonstration trés efficace de 4 (bon, il faut intervertir les questions).

Q6. On calcule x 5= X2 (cas p = 2), qui est aussi le polynome caractéristique de I’endomorphisme nul (cas p = 1).
Or, E étant de dimension 2, on a x,, = X2 — tr(u)X + det(u) pour tout u € Z(E), d'ot tr(u) = det(u) = 0.

Réciproquement, si x, = X 2 le théoreme de Cayley-Hamilton donne u? = 0 #(E), donc u est nilpotent. En dimen-
sion 2, les endomorphismes nilpotents de E sont donc exactement ceux de trace et de déterminant nuls.
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I.B — Réduction des endomorphismes nilpotents d’indice 2 en dimension n

On suppose dans cette sous-partie que n > 3. Soit u € Z(E) nilpotent d’indice 2. On pose r = rg(u).

Q7. On a déja fait la remarque a la question 4 : u? = 0 2(E) équivaut & Im(u) C Ker(u), et c’est indépendant de la di-
mension. Par ailleurs, le théoréme du rang donne ici dim Ker(u) = n—r et I'inclusion entraine dim Im(u) < dim Ker(u),
soit r < n —r et, donc, 2r < n.

Q 8. Soit (f1, f2,..., fr) une base de Im(u) = Ker(u), qui est par hypothése de dimension 7, ce qui entraine par le
théoréme du rang que n = 2r. Pour k € [1,r], soit e tel que u(ex) = fr et G = Vect(ey,e2,...,e,). L'image de
(ek)1<h<, Par u étant une famille libre, (ex); <, est libre. De plus, u|g est un application injective car

T T r
Vo, ag,...,qp) € C: u<Zai€i> = Zaifi =0 < ao1=ay=--=a, =0c < Zaiei =0g.
i=1 i=1 i=1
Ainsi, G NKer(u) = {Og}, ce qui montre que G et Ker(u) sont en somme directe et supplémentaires par dimension.
On a montré que (61, u(er), ez, u(ea),...,er, u(er)) est une base de E. Il est clair que la matrice de v dans cette base
est Diag(Ja, Jo, ..., J2).

On peut aussi construire la base de maniére un peu différente : par hypothése, Im(u) = Ker(u) et le théoréme du
rang donne n = 2r. Soit F' un supplémentaire de Ker(u) = Im(u) dans E. La forme géométrique du théoréme du rang
assure que u induit par restriction un isomorphisme de F' sur Im(u). Soit alors (e1,es,...,e,) une base de F. Alors,
(u(er),u(ez), ..., u(e;)) est une base de Im(u) et, comme E = F & Im(u), la concaténation des deux familles donne
une base de E, qu'il est loisible de permuter pour obtenir (61, u(er), ez, u(ea), ..., er, u(er)).

Q9. On suppose maintenant que Im(u) # Ker(u), soit en fait Im(u) € Ker(u) d’aprés la question 7. On commence
par reprendre la construction de la question 8 avec (f1, fo,..., fr) une base de Im(u) et G = Vect(ey,ea,...,e,) avec
u(ex) = fr pour tout k € [1,7]; la famille (ej, e, ..., e,) est libre et les sous-espaces G et Ker(u) sont en somme directe.

En notant que le théoréme du rang donne dimKer(u) = n —r, on a E = G @& Ker(u) et 'on peut compléter
(f1, f2y-- ., fr) en une base (fi, fo,..., fr,v1,02,...,0n—2,) de Ker(u), ce qui donne une base de F, adaptée a cette
décomposition en somme directe, de la forme

(617u(€1)7 €2, u(e2)7 SRR €r,u(€7~),?}1,1}2, LR Unf2r)>

dans laquelle la matrice de u est

Diag(JQ, JQ, ey JQ, On_gr) = Diag(JQ, ceey JQ, Jl, “eey Jl)
—_———— ——
#r #n—2r

On peut également reprendre la construction alternative, avec F' un supplémentaire de Ker(u) D Im(u). Alors, v induit
a nouveau un isomorphisme de F' sur Im(u), qui envoie une base de F, (e1, €2, ..., e,), sur (u(el), u(ea), ..., u(er)), base
de Im(u), que on peut compléter en (u(el),u(eg), coouler), v, .. ,Un_gr), base de Ker(f), puisque dim Ker(u) =
n — r. Il suffit de réordonner la base pour obtenir

(61) U(@l), €2, U(GQ), ce ey Epy U(Br), UV1,02,..., ’U’n*ZT‘)v
I.C — Valeurs propres, polynéme caractéristique, polynémes annulateurs d’une matrice nilpotente

Dans cette sous-partie, A € ., (C) avec n > 1.
Q 10. Notons, dans 'ordre, (7), (i7) et (iii) les trois propositions.

Les racines du polynéme caractéristique de A étant exactement l’ensemble de ses valeurs propres complexes, (i77)
est équivalente & (i7) (sur R, ce qui est ici hors sujet, on n’a que (¢ii) = (i7) car les valeurs propres non réelles de A

figurent comme racines de son polynéme caractéristique).

Par ailleurs, le théoréeme de Cayley-Hamilton montre que si x , = X " alors A" = 0, donc A est nilpotente. Sup-
posons enfin A nilpotente. Alors, A admet un polynéme annulateur de la forme X?, dont 0 est I'unique racine, d’ou



Sp(A4) C {0c}. Comme Sp(A) # @ (A est complexe), on a donc Sp(A) = {0}.

Q11. Une matrice de ., (C) a la fois nilpotente et diagonalisable est semblable & la matrice diagonale dont tous les
coefficients diagonaux sont nuls par la question 10, donc & la matrice nulle. La classe de similitude de la matrice nulle
étant réduite a elle méme, celle-ci est la seule matrice a la fois nilpotente et diagonalisable.

Q 12. Si A est nilpotente, elle est trigonalisable et donc semblable & une matrice triangulaire inférieure ayant les
valeurs propres de A, donc des zéros, sur la diagonale. Réciproquement, une matrice triangulaire de diagonale nulle
admet X" pour polynéme caractéristique et est donc nilpotente d’aprés la question 10.

Dans les trois questions suivantes, A est nilpotente d’indice p.

Q13. Comme A est nilpotente d’indice p, X? est un polynéme annulateur de A. Corrélativement, pour tout @ € C[X],
(XPQ)(A) = APQ(A) = 0, donc tout polynome de C[X]| multiple de X* est un polynéme annulateur de A.

Q 14. Réciproquement, soit P un polynéme annulateur de A. Comme 0 est valeur propre de A, 0 est racine de P. No-
S S

tons m son ordre de multiplicité. Par définition, P = X Q avec Q(0) # 0. Pour () = H(X—ai), Q(A) = H(A—aiIn)
i=1 i=1
est le produit (commutatif) de s matrices inversibles, puisque, les a; étant non nuls, aucun n’est valeur propre de A.

Ainsi, Q(A) est inversible.

Q 15. Poursuivons le raisonnement de la question précédente : on écrit A™Q(A) = 0 et I'on multiplie par Q(A)™?, ce

qui donne A™ = 0, d’ott m > p par minimalité de I'indice de nilpotence, d’ou P = XP(X"™PQ). On peut conclure :
les polynémes annulateurs de A sont les multiples de X”. Autrement dit, Ann(A) = XPC[X].

I.D — Racines carrées de matrices nilpotentes

Pour une matrice V € .#,(C) donnée, on dit qu'une matrice R € .#,(C) est une racine carrée de V si R* = V.

Q16. Soit R € .#3(C) telle que R? = J5. On calcule R* = J§ =FE37 et RS =R*x R%?= Es31(E21+ Es2) = 0. Ainsi,
R est nilpotente, donc R? = 0 d’aprés la question 10, ce qui contredit le calcul de R*. Aussi la matrice J3 n’admet-elle
pas de racine carrée.

En général, soit V € .#,(C) une matrice nilpotente d’indice p et R € .#,(C) telle que R?> = V.

Q 17. Par hypothése, VP = R?’ = 0, donc R est nilpotente. Comme VP! = R?P=2 £ 0, Iindice de nilpotence de R
n+1
vaut au moins 2p — 1, ce qui n’est possible que si 2p — 1 < n en vertu de la question 10, soit p < {;J, p étant

évidemment entier.

Q 18. On note dans cette question u, I’endomorphisme de C" canoniquement associé a J,, et (e, es,...,¢e,) la base

canonique de C". On a ainsi up(e;) = e;41 pour 1 <i < n—1et uy(e,) = 0. En itérant, il vient qu(ei) = e;1 ) pour
n—k

1<i<n—ketul(e) =0pourn—k+1<i<n Autrement dit, J& = ZEZH” Il s’ensuit que 'indice de
i=1

nilpotence de J,, est n.

1
Corrélativement, Jg est d’indice de nilpotence {g—‘ = {n;— J



II. Réduction de Jordan des endomorphismes nilpotents, partitions

II.A — Reéduction des matrices nilpotentes

Soit u € Z(F) nilpotent. Pour 2 € E, on note C,(z) = Vect (uk(aj) ; keN).

Q19. Soit u € Z(F) nilpotent d’indice p. Pour tout k € N, u(uk(x)) = v+ (z) € Cy(x), done Cy(z) est stable par
u. Comme u”(z) = Og, 'ensemble {k € N*; sF(x) = Og} est non vide et admet donc un plus petit élément, noté
s(x). D’apres la preuve de la question 3 (qui n’utilise pas au début le fait que I'espace est de dimension 2), la famille
(a:, u(z),. .. ,us(x)_l(w)) est libre et c’est donc une base de Cy,(z), puisque uk(x) = Og pour tout k > s(z). Enfin, dans
cette base, la matrice de u|c, (2) €St Jy(z)-

L’objectif de cette sous-partie est de démontrer la propriété

(%) : « Pour tout C-e.v. FE de dimension finie et tout endomorphisme u de E nilpotent d’indice p, il existe des

k
vecteurs non nuls a1, as,...,ar de E tels que F = @ Cula;). »
i=1
Q 20. Si u est d’indice de nilpotence 1, u est 'endomorphisme nul, comme on la vu a la question 1. Alors, pour tout
x # 0p, on a Cy(x) = Vect(z). Ainsi, si (a1, as,...,a,) est une base de E, on a E = Cy(a1) ® Cylaz) ® -+ @& Cyulan),
ce qui montre (,%”1)

Les questions 8 et 9 montrent qu’il existe une base de E de la forme (e, u(er), e2,u(e2), ..., ey, u(er), v1,va, .. ., Vp—27)

avec (V1,02,...,Up—9y) € (Ker(u))n_%, la question 8 correspondant au cas n = 2r (et, donc, a 'absence de vecteurs

v; dans la base ci-dessus). Comme u est d’indice de nilpotence 2, on a Cy(e;) = Vect (e;, u(e;)) pour i € [1,7] et 'on

a par ailleurs C,(v;) = Vect(v;) pour i € [1,n — 2r]. Ainsi, en posant k =n —r, a; = ¢; pour i € [1,7] et a; = v,_;
k

pour i € [r+1,n —r], on a bien F = @Cu(ai).
1=0

Q 21. C’est un fait général que tout endomorphisme, ici, u, induit sur Im(u) un endomorphisme. Pour tout vecteur
y = u(z) € Im(u), on a uP~1(y) = uP(x) = 0, ce qui montre que || 1m(u) €st nilpotent, d’indice de nilpotence ¢ < p—1.
Enfin, il existe un vecteur zg tel que uP~*(zq) # 0g, soit u?~2(u(xg)) # O, d’ott ¢ > p — 2. Finalement, U| Tm(w) €St
nilpotent, d’indice de nilpotence p — 1.

Q 22. La récurrence a été initialisée a la question 20. La question 21 incite a effectuer une récurrence simple et
a appliquer (%_1) & U||1m(u)- Dans le cas du passage de (%”1) a (%”2), cela suit la premiére des deux approches
proposées aux questions 8 et 9). On avait alors choisi une base de Im(u) (les vecteurs fi du corrigé), 2) pris des images
réciproques des vecteurs de cette base (les vecteurs ey, 3) montré que leur concaténation formait une famille libre, 4)
justifié que 'on pouvait compléter ces 2rg(u) vecteurs en une base de E avec des vecteurs de Ker(u). Cela suggeére la
démonstration ci-dessous.
k
(1) L’hypothése de récurrence permet de décomposer I'image de u sous la forme Im(u) = EB Cu(b;).
i=1
(2) Pour tout ¢ € [1, k], comme b; € Im(u), il existe un vecteur a; tels que u(a;) = b;. On a alors s(a;) = s(b;) + 1
et Cy(a;) = Vect(a;) & Cy(b;) d’aprés la question 20.

k k k

(3) Soit (x1,x2,...,2k) € HC’u(ai) tel que le = 0. En composant par u, il vient Zu(xl) = 0 et, comme
i=1 i=1 i=1

u(z;) € Cy(b;) et que ces espaces sont en somme directe par hypothése, u(z;) = 0 pour tout 7 € [1,k]. Ainsi,

z; € Vect(u®®) 1) € €, (b;) et, en utilisant & nouveau le caractére directe de la somme de Cy,(b;), il vient z; = 0.
k

Ainsi, la somme Z Cy(a;) est directe.
i=1



k
(4) Posons F = @C’u(ai). D’aprés ce qui précéde, dim F' = rg(u) + k. De plus, F' N Ker(u) = Vect (us(“i)*l(ai))
i=1
est de dimension k, donc la formule de Grafmann donne

dim(F + Ker(u)) = dim F 4+ dim Ker(u) — dim(F N Ker(u)) = (rg(u) + k) + (n — rg(u)) — k = n,
ce qui montre que £ = F + Ker(u).

On peut ainsi compléter F' en un supplémentaire G de E formé de vecteurs de Ker(u) et I'on peut appliquer (%”1) a
U, ce qui complete la démonstration de (%)

k
Q 23. Dans une base adaptée a la décomposition E = @ Cu(a;), la matrice de u est diagonale par blocs, les blocs

i=1
diagonaux étant les matrices de u ¢, (q;)- Sil'on choisit de plus une base de Cy(a;) de la forme (z,u(z),.. ., us(m)_l(x)),
alors la matrice de u dans cette base sera Diag(JS(al), Tsaz)s -« s Js(ak)).

II.B — Partitions d’entiers

Si A € #,(C), on appelle classe de similitude de A 'ensemble des matrices semblables & A. On s’intéresse ici au
nombre de classes de similitude de matrices nilpotentes dans ., (C).

En théorie des nombres, on appelle partition de ’entier n € N* toute suite finie (g, ag,...,ax) € (N*)k avec k > 1
telle que

== z2a & aptag+--+ap=n.
On note I',, 'ensemble des partitions de lentier n. Ainsi, I'1 = {(1)}, T'2 = {(2),(1, 1)}, I's = {(3),(2,1),(1,1,1)}.

Enfin, pour tout partition o = (a1, ag,...,ax) € I'y, on note N, = Diag (Jal, Jogs vy Jak).
Soit A € #,,(C) une matrice nilpotente.
Q 24. La question 23 montre qu’il existe une base dans laquelle la matrice de ¢4, ’endomorphisme de C" canonique-

ment associé a A, est Diag(Jy(a,) Js(az)s - - - » Is(ay)) - En ordonnant (a;), ;) par ordre décroissant de (s(a;));<;<z, On
obtient bien une partition o € I';, telle que A soit semblable & la matrice N, .

Dans la suite, on fixe une telle partition o = (a1, a2, ..., ). Pour j € N, on note r; = rg(A’). On note enfin m;
le nombre de termes de la partition o égaux a j.

q—1 qg—m
Q 25. On a montré a la question 18 qu’avec J, = ZEH-M € My(C), J" = Z Eitm,, qui est clairement de rang
i=1 i=1

g —m si m < q et de rang nul si m > ¢q. Autrement dit, rg(J(f) =max(0,q — k).

Comme N, = Diag (Jal, Jogs s Jak), Ng = Diag (Jg;l, JgZ, ce Jék) et, le rang d’une matrice diagonale par blocs
k
étant la somme des rangs de ses blocs diagonaux, r; = Zmax(o, a; — j) pour tout j € N.
i=1

Q 26. On a montré a la question précédente que rg(.]g) = max(0,q — j). Corrélativement, le passage de Jg_l a Jg
diminue le degré de 1 si rg(Jgfl) > 0 et ne le modifie pas sinon. Autrement dit, rg(Jgfl) — rg(Jg) vaut 1sij < qet
0 si 7 > q. En sommant,
k
ricu == [ —rg()] = Y 1=#{i € [LA]: ai >}

i=1 1<i<k
JSay



compte le nombre d’entiers de la partition o au moins égaux a j. Il s’ensuit

mj=#{i € [Lk]; oy =j} =#{i € [Lk]; i 2 j} —#{i € [Lk]; s > j + 1}
= (rj1 —7j) = (rj = rjp1) = rjp1 = 2rj + 71

. L’existence de la partition o € I'j, a été établie a la question 25. Dans la mesure ol une partition est entiéremen
27. Lexistence de la partiti T, a été établie a la question 25. Dans 1 il une partition est entie t
décrite par la suite (mj)j>1 et que ces valeurs sont des fonctions du rang des puissances de A, il y a unicité.

Par ailleurs, le nombre de partitions d’un entier n est fini (il est trivialement majoré par n", puisque tant sa longueur
que ses éléments sont compris entre 1 et n). Aussi le nombre de classes de similitude de matrices nilpotentes dans

M (C) est-il fini, égal au nombre de partitions de n.

Ce nombre de partitions a été largement étudié. Hardy et Ramanujan ont notamment montré que le nombre de

titions de n, classi t noté p(n), vérifie p(n) ~ — 2n
artitions de n, classiquement noté p(n), vérifie p(n) ~ ——=exp | T/ — |.
p q p p A3 p 3
I1.C — Deux applications
o -1 2 -2 -1
0o 0 0 0 O
Q28. Soit A=10 1 0 0 0 |.Onnoteque Ly(A)=0etque L3(A) = Ls(A). Par ailleurs, il est immédiat
0 1 0 0 O
0 1 -1 1 0

que (L1(A), L3(A), L5(A)) est libre, ce qui montre que r; = rg(A) = 3. On note ensuite que C1(A%) = C5(A%) =0,
Cy(A?) = —C1(A) 4+ C3(A) + C4(A) + C5(A) = C5(A) et Cr(A?) = +£C5(A) pour k € {3,4}, ce qui assure que
ry = 1g(A?) = 1 et que A est nilpotente d’indice 3. Ainsi, (ro,71,72,73,74,75) = (5,3,1,0,0), d’ott m; = 0 et
mg = mg = 1, ce qui donne o = (3,2) et montre que A est semblable a Diag(.Js, J2). Notons au passage que le résultat
est raisonnable, vu que 2+ 3 = 5...

Cela n’était pas demandé, mais on peut calculer la matrice de passage (c’est intéressant si I'on veut bien comprendre
le fonctionnement de la réduction de Jordan des endomorphismes nilpotents). Pour ce faire, on revient aux résultats
de la partie II.A et, plus précisément, & la construction de la question 22. On pose u = ¢4 I'endomorphisme de
C® canoniquement associé a A. On note (Ei)1<ics la base canonique de C®. Les calculs ci-dessus donnent Im(A) =
Vect(Ey, Es, B3 + Ey) et Im(A?) = Vect(E1). On peut donc écrire Im(A?) = Vect(Ey) = Cy(F}).

On a vu ensuite que u(—E5) = Ej et 'on constate que Im(A) N Ker(A) = Vect(Es + Ej), soit

Im(A) = Vect(—E5, El) D VeCt(Eg + E4) = Cu(—Eg,) D Cu(Eg + E4)
Enfin, u(2E5 — E4) = —FE5 et u(E2 — Eq + E5) = E3 + E4 donnent

0 0O 1 0 O

. 0O 0 0 1 o0

C :Vect(2E5—E4,—E5,E1)EBVect(E2—E4+E5,E3+E4) P 0 0 0 0 1
— C,(2E5 — E Ey— B+ F a

Cu(2E5 — Ey) ® Cy(Ey — E4 + Es) 1 0 0 -1 1

2 -1 0 1 O

Un peu de code pour vérifier (utile pour l'oral de Centrale). La matrice J est la matrice Diag(Js, J2).

import numpy as np P = np.zeros((5, 5))

A = np.zeros((5, 5)) P[0, 2] = P[1, 3] =P[2, 4] =1
Afo, :1 = [0, -1, 2, -2, -1] P[3, :1 = [-1, 0, O, -1, 1]
A4, 1:4] = [1, -1, 1] P[4, :1 = [2, -1, 0, 1, 0]
Al2:4, 11 = [1, 1]

J = np.linalg.inv(P).dot(A).dot(P)



Q 29. Soit A € .#,(C) une matrice nilpotente. Comme rg(A4’) = rg(2/ A7) = g ((AT)j), les trois matrices sont
semblables & la méme réduite de Jordan N, et donc semblables.

Comme AX = AX <<= (24)X = (2)\)X, lapplication = +— 2z réalise une bijection de Sp(A4) sur Sp(24). Si
A et 2A sont semblables, elles ont méme spectre, ce qui implique que si A € Sp(A4), alors 2\ et, par une récurrence
immédiate, 2™\ est valeur propre de A pour tout m. Ainsi, si A possédait une valeur propre non nulle, son spectre
serait infini, ce qui n’est pas possible. On a ainsi montré que Sp(A) C {Oc}, donc que Sp(A4) = {0¢c}, donc que A est
nilpotente par la question 10.

II.D — Un algorithme de calcul du nombre de partitions de n

Q 30. On calcule
ry={4),(3,1),(2,2),(21,1),(1,1,1,1)} & T5={(5),4,1),(3,2),(3,1,1),(2,2,1),(2,1,1,1,1),(1,1,1,1,1)}.

n=1n=2|n=3|n=4|n=
j=1 1 1 1 1 1
] =2 0 2 2 3 3
j=3 0 0 3 4 5
j=4 0 0 0 ) 6
7=25 0 0 0 0 7

Pour n et j entiers naturels non nuls, on note Y, ; 'ensemble des partitions de n dont le premier terme «q est
inférieur ou égal a j et y, ; le cardinal de cet ensemble. Par convention, on pose yo0 = 1 et y,,0 = 0 pour tout n > 1.

Q 31. Par définition, Y,,; = {(1,1,...,1)}, d’ott y, 1 = 1.

On se propose de montrer que, pour 2 < j < n, alors Ynj = Yn,j—1 + Yn—j, min(j,n—j)-
Q 32. Pour j = n, I'identité a prouver est Ynn = Ynn—1 + Y0,0 = Ynn—1 + 1, qui vient de I'y, =Y, , = {(n)} WY, 1.

Q 33. Pour 2 < j < n, l'ensemble Y, ; est la réunion disjointe de Y, ;_1 et des partitions de n de la forme
o = (j,aa,...,ax), & qui Pon peut associer bijectivement les partitions (ao,...,ax) de n — j vérifiant as < 7,
soit I’ensemble Y;,_; ;. On en déduit que y, ; = Yn j—1 + Yn—j,;-

De plus, il est clair que si 0 = (a1, a2, ..., a;) est une partition de n, alors oy < n, ce qui s’écrit Yy, , = Yo min(n,k)-
En particulier, Y,—j; = Y, min(n—j,j)> 400 Yn—j.j = Yn—j, min(n—j,j)» €€ qui termine la démonstration de la formule.

Q 34. Une premiére version, naive, consiste & programmer simplement la récurrence. On utilise quand méme une
sous-fonction, vu que la fonction englobante n’a qu’un paramétre alors que la relation de récurrence est & deux termes.
Cette version est d’une complexité catastrophique (on pourra la tester pour n = 10, 50, puis 100).
def partitions_moisies(n):
def y(n, j):
if n == j ==
return 1
elif n ==
return 0
elif j ==
return 1
return y(n, j-1) + y(n - j, min(j, n-j))
return y(n, n)

La relation de récurrence indique clairement qu’une programmation dynamique par mémoisation est ici pertinente.
La forme du programme est standard, avec sa sous-fonction récursive remplissant un dictionnaire en mode top-down.



def partitions_dyn(n):
d = {(0, 0): 1}
for k in range(l, n+1):
dl(k, 0)], dl(k, 1)] =0, 1
def y(n, j):
if (n, j) not in d:
dl(m, D1 =y, j-1) + y@ - j, min(j, n-j))
return d[(n, j)]
return y(n, n)

III. Vecteurs propres généralisés, réduction de Jordan générale

Cette partie ne figurait pas dans le probléme de Centrale. Elle est essentiellement tirée du chapitre 8 de Sheldon Axler,
Linear Algebra done right, Springer.

Soit f € Z(E). Pour une valeur propre A de f et k € N, on note G§” () = Ker(f — Aidp)* et Gx(f) = | GV (/).
k=0
On appelle vecteur propre généralisé de f associé a X\ I'ensemble des vecteurs non nuls de G)\(f). Les espaces G(f)
sont appelés sous-espaces caractéristiques de f.

Q 35. Soit g € L(E). Pour k € N et x € Ker(g"), on a g**!(z) = g(gk(m)) = ¢g(0g) = Op, ce qui montre que la suite

des espaces (Ker(gk)) est croissante au sens de linclusion. Corrélativement, la suite (dim Ker(gk)) est une

k>0 k>0
suite croissante d’entiers. Comme elle est majorée par n = dim F, il existe donc un entier k telle que dim Ker(gk+1)
dim Ker(g¥), d’ott Ker(g"™) = Ker(g"*) du fait de l'inclusion Ker(g"™) > Ker(g").

Montrons qu’alors, Ker(¢**?) = Ker(gF*1). Comme Ker(g"™!) c Ker(¢**?), il suffit de montrer I'inclusion réci-
proque. Soit € Ker(g"*2). Alors, g(z) € Ker(¢**!) = Ker(¢*), donc = € Ker(g"*!).

Bilan : il existe un plus petit entier p tel que Ker(g?) = Ker(¢P*1) et on a alors Ker(¢g?**) = Ker(¢?) pour tout

o0
k € N. Enfin, U Ker(g") est une réunion croissante de s.e.v. de F égale a Ker(gP) et est donc un sous-espace vectoriel

k=0
de E.

Soit maintenant A € Sp(f). On applique ce qui précéde a g = f — Nidg, ce qui donne (presque) le résultat. Il suffit
de mentionner encore que {0g} # Ex(f) C Gx(f) pour en déduire que G»(f) est un espace vectoriel de dimension au
moins égale & 1 contenant I’espace propre E)(f).

Q 36. On reprend le fil de la question précédente pour g € £ (FE). Soit y € Ker(g(p)) N Im(g(p)). Comme y € Im(g(p)),
il existe = € E tel que gP(z) = y. Alors, g?"(z) = gP(y) = Op. Ainsi, z € Ker(¢??) = Ker(gP), soit y = 0. Il s’ensuit
que Ker(g”) et Im(g”) sont en somme directe, donc supplémentaires par dimension en vertu du théoréme du rang.

En appliquant, comme dans la question précédente, ce résultat & g = f — Aidg, il vient

E = Ker(f — Midg)*™ @ Im(f — A idg)?™ = Gy (f) & Im(f — Aidg)PW.

P
Q37. Soient A1, g, ..., A, des valeurs propres de f deux & deux distinctes. Soit (xi)lgigp € H G, (f) une famille de

i=1
vecteurs telle que z1 + 22 + - -+ + 2, = Op. On suppose qu’il existe i € [1,p] tel que z; # 0. Comme z; € Gy,(f), on
peut poser m = min {k € N*; z; € Ker(f — \; idE)k}. Par construction, w; = (f — A\;idg)™ *(x;) € Ex,(f) \ {0g}.



Soit alors P = (X — \;)™! H (X — )\j)p()‘]'). Pour j € [1,p] \ {7}, la commutation des éléments de C[f] donne

1<gsp
J#i

1<r<p

P(f)(zj) = (f = Niidg)™ o < O (f=A idE)*’“”) o (f = Xjidp)PM)(z;)
ré{i.j}

= [(f = Niidg)" "o ( O (f=n idE>p<Ar>> (05) = 0p.
Sr<p

r#{i,j}

Par ailleurs, ’expression de w; introduite ci-dessus donne

P(f)(:) = ( O (f=A id@“*”)(wi) = T =A™y

1<r<p

) 1<r<
r# T#ip
#0c
14Tt @y = 0p = P(f)(@r +on+ -+ ap) = P(N@) = [] (v = APO)w; = P(f)(05) = Op.
1<r<p
r#i

Le produit étant non nul, il vient w; = Og, en contradiction avec le fait que w; soit un vecteur propre. On a donc
x; = Og pour tout i € [1,p]. Ainsi, les sous-espaces caractéristiques sont en somme directe.

Q 38. On raisonne par récurrence forte sur n = dim E. En dimension 1, f € Z(F) admet une unique valeur propre,
disons A, et 'on a E = G\(f) = Ex(f).

Supposons la propriété vraie en dimension strictement inférieure a n et considérons un espace F de dimension n et
f € Z(F). Comme FE est un espace vectoriel complexe, f admet une valeur propre, disons A1, et la question 36 montre
que E = Gy, (f) ® F avec F = Im(f — Ay idg)?™). Comme (f — A idg)?™) (f) commute avec f, F est stable par f
et on peut lui appliquer ’hypothése de récurrence, puisque, d’aprés la question 35, Gy, (f) D E\,(f) est de dimension

strictement positive. On a donc a ce stade E = G, (f) ® @ GA(fiF) |-
AESP(fi 1)
Il est immédiat que Sp(f|r) C Sp(f) et que GA(f|r) C Ga(f). Soit réciproquement x € G\(f). D’aprés la décom-
position de E ci-dessus, on peut écrire x = 1 + Z Ty avec 11 € Gy, (f) et zx € GA(fjr) C GA(f). D’apres la

AESP(fy )
question 37, les G\(f) sont en somme directe, donc x1 = x, = Op pour tout p € Sp(fjr) \ {\} et 'on a donc bien

GaA(fir) 2 GA(f), Aot GA(fir) = GA(f) et E =G\, (f)® ( @ GA(f) |- En particulier, Sp(f) = { A\ }WSp(fjs),
AESP(J)i5)
réunion disjointe. In fine, £ = @ GA(f).
AESP(f)

Q39. On tire de la question précédente que Sp (f”GA(f)) = {A}, d’ou X; = H (X — )\)dimGA(f).
AESp(f)

Q 40. D’apreés la question 38 et la stabilité des sous-espaces caractéristiques de f par f, il suffit de montrer que
(X — A)ImEA) st annulateur de filca(s)- Par construction, f — Aidg induit sur Gz(f) un endomorphisme nilpotent
d’indice p(\). D’aprés la question 35, la suite (dim(f - idE)k)nggp(/\)
donc excéder dim G (f)+1, soit p(A) < dim G (f), ce qui montre le théoréme de Cayley-Hamilton sur ces sous-espaces.

est strictement croissante. Sa longueur ne peut

Q 41. Pour f € Z(F), la question 38 donne la décomposition en somme directe de sous-espaces caractéristiques
E = @ GA(f), les GA(f) étant stables par f. On a vu dans cette méme question que Sp (f||GA(f)) = {\}, don

AE€SP(f)
Sp (fHG)\(f) — )\idGA(f)) = {0}. D’aprés la question 10, fg,(s) — Aidg,(f) est donc nilpotent et on peut lui appliquer



& sa matrice dans une base quelconque la question 25. Pour toute valeur propre A de f, il existe donc une partition
o(A) et une base de G\(f) dans laquelle la matrice de fyq,(r) — Aidg, (5) est Ny(n). Dans cette méme base, la matrice
de fia, () est donc Mgim g, (f) + No(r)- On peut conclure :

Théoréme. Si u est un endomorphisme d’un C-espace vectoriel E de dimension finie, de polyndme caractéristique

k()
H (X — X\)™, il existe des vecteurs (ag)‘)) AeSp(f) avec ag)‘) € Gy(u) tels que E = @ EBCU_,\idE (az(-)‘)).
AESp(u) 1<i<k(N) AeS(f) im1
Matriciellement, il existe une base de E et des partitions o(X) € I'(ny) dans laquelle la matrice de u est diagonale
par blocs de la forme M\ + Ny () (et donc, sans la précision des partitions, diagonale par blocs de la forme A+ Jy
avec au moins un q par valeur propre). Cette forme est unique a permutation des blocs pres.

Dans tout le probléme, on n’a utilisé de C que la propriété de d’Alembert-Gauf. Ainsi, la réduction de Jordan est
valable pour tout endomorphisme trigonalisable.



