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Problème 2, Centrale-Supélec 2019, PSI, modifié

On pose J1 = (0) ∈M1(C) et, pour un entier α > 2, Jα =
α−1∑
i=1

Ei+1,i ∈ T −α (C).

I. Premiers résultats

I.A — Réduction des endomorphismes nilpotents en dimension 2

Dans cette sous-partie, E est un plan vectoriel complexe. Soit u ∈ L (E) un endomorphisme nilpotent d’indice p.

Q1. Si p = 1, cela signifie par définition que u1 = u = 0L (E). On suppose désormais que p > 2.

Q2. Par minimalité de p, up−1 6= 0L (E), donc il existe un vecteur x de E tel que up−1(x) 6= 0E .

Q3. Soit (αk)06k6p−1 ∈ Cp \ {0Cp} tel que
p−1∑
k=0

αku
k(x) = 0. Notons r = min

{
k ∈ J0, p− 1K ; αk 6= 0C

}
. Ce minimum

existe, puisque l’ensemble considéré est non vide par hypothèse. En composant
p−1∑
k=0

αku
k(x) =

p−1∑
k=r

αku
k(x) par up−1−r

et en tenant compte de ce que um(x) = 0E pour tout m > p, il vient
p−1∑
k=r

αku
p−1−r+k(x) = αru

p−1(x) +

p−1∑
k=r+1

αku
p−1−r+k(x) = αru

p−1(x) +

p−1∑
k=r+1

0E = αru
p−1(x) = 0E ,

d’où αr = 0C, puisque up−1(x) 6= 0E . On obtient ainsi une contradiction avec le fait que les αk ne sont pas tous nuls,
ce qui montre que la famille

(
uk(x)

)
06k6p−1, qui est de cardinal p, est libre. En dimension 2, une famille libre est de

cardinal au plus 2, donc p 6 2. Comme on a supposé que p > 2, il vient p = 2.

Q4. D’après la question précédente, on a u2 = 0L (E). Or,

u2 = 0L (E) ⇐⇒ ∀x ∈ E : u(u(x)) = 0E ⇐⇒ Im(u) ⊂ Ker(u) ∴ dim Im(u) 6 dim Ker(u).

Par ailleurs, le théorème du rang donne dim Ker(u) + dim Im(u) = dimE = 2 et p = 2 montre que Ker(u) 6= E, soit
dim Ker(u) 6 1. La seule possibilité est dim Ker(u) = dim Im(u) = 1, ce qui, associé à l’inclusion Im(u) ⊂ Ker(u),
assure l’égalité, soit Ker(u) = Im(u).

On peut aussi se passer du théorème du rang et utiliser la question précédente, qui donne une base de E de la forme
(x, u(x)) : soit E 3 y = αx+ βu(x). Si y ∈ Ker(u), on a u(y) = αu(x) + βu2(x) = αu(x) = 0E , d’où α = 0C, puisque
u(x) 6= 0E . Ainsi, y = u(βx) ∈ Im(u), ce qui donne l’inclusion inverse Ker(u) ⊂ Im(u) et donc l’égalité.

Q 5. La question 3 donne une base de la forme B =
(
x, u(x)

)
. Dans cette base, matB(u) = J2. Ce qui donne, en

passant, une démonstration très efficace de 4 (bon, il faut intervertir les questions).

Q6. On calcule χ
J2

= X2 (cas p = 2), qui est aussi le polynôme caractéristique de l’endomorphisme nul (cas p = 1).
Or, E étant de dimension 2, on a χu = X2 − tr(u)X + det(u) pour tout u ∈ L (E), d’où tr(u) = det(u) = 0.

Réciproquement, si χu = X2, le théorème de Cayley-Hamilton donne u2 = 0L (E), donc u est nilpotent. En dimen-
sion 2, les endomorphismes nilpotents de E sont donc exactement ceux de trace et de déterminant nuls.
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I.B — Réduction des endomorphismes nilpotents d’indice 2 en dimension n

On suppose dans cette sous-partie que n > 3. Soit u ∈ L (E) nilpotent d’indice 2. On pose r = rg(u).

Q7. On a déjà fait la remarque à la question 4 : u2 = 0L (E) équivaut à Im(u) ⊂ Ker(u), et c’est indépendant de la di-
mension. Par ailleurs, le théorème du rang donne ici dim Ker(u) = n−r et l’inclusion entraîne dim Im(u) 6 dim Ker(u),
soit r 6 n− r et, donc, 2r 6 n.

Q 8. Soit (f1, f2, . . . , fr) une base de Im(u) = Ker(u), qui est par hypothèse de dimension r, ce qui entraîne par le
théorème du rang que n = 2r. Pour k ∈ J1, rK, soit ek tel que u(ek) = fk et G = Vect(e1, e2, . . . , er). L’image de
(ek)16k6r par u étant une famille libre, (ek)16k6r est libre. De plus, u|G est un application injective car

∀(α1, α2, . . . , αr) ∈ Cr : u

( r∑
i=1

αiei

)
=

r∑
i=1

αifi = 0E ⇐⇒ α1 = α2 = · · · = αr = 0C ⇐⇒
r∑
i=1

αiei = 0E .

Ainsi, G ∩ Ker(u) = {0E}, ce qui montre que G et Ker(u) sont en somme directe et supplémentaires par dimension.
On a montré que

(
e1, u(e1), e2, u(e2), . . . , er, u(er)

)
est une base de E. Il est clair que la matrice de u dans cette base

est Diag(J2, J2, . . . , J2).

On peut aussi construire la base de manière un peu différente : par hypothèse, Im(u) = Ker(u) et le théorème du
rang donne n = 2r. Soit F un supplémentaire de Ker(u) = Im(u) dans E. La forme géométrique du théorème du rang
assure que u induit par restriction un isomorphisme de F sur Im(u). Soit alors (e1, e2, . . . , er) une base de F . Alors,(
u(e1), u(e2), . . . , u(er)

)
est une base de Im(u) et, comme E = F ⊕ Im(u), la concaténation des deux familles donne

une base de E, qu’il est loisible de permuter pour obtenir
(
e1, u(e1), e2, u(e2), . . . , er, u(er)

)
.

Q 9. On suppose maintenant que Im(u) 6= Ker(u), soit en fait Im(u) ( Ker(u) d’après la question 7. On commence
par reprendre la construction de la question 8 avec (f1, f2, . . . , fr) une base de Im(u) et G = Vect(e1, e2, . . . , er) avec
u(ek) = fk pour tout k ∈ J1, rK ; la famille (e1, e2, . . . , er) est libre et les sous-espaces G et Ker(u) sont en somme directe.

En notant que le théorème du rang donne dim Ker(u) = n − r, on a E = G ⊕ Ker(u) et l’on peut compléter
(f1, f2, . . . , fr) en une base (f1, f2, . . . , fr, v1, v2, . . . , vn−2r) de Ker(u), ce qui donne une base de E, adaptée à cette
décomposition en somme directe, de la forme(

e1, u(e1), e2, u(e2), . . . , er, u(er), v1, v2, . . . , vn−2r
)
,

dans laquelle la matrice de u est

Diag(J2, J2, . . . , J2, 0n−2r) = Diag(J2, . . . , J2︸ ︷︷ ︸
#r

, J1, . . . , J1︸ ︷︷ ︸
#n−2r

).

On peut également reprendre la construction alternative, avec F un supplémentaire de Ker(u) ⊃ Im(u). Alors, u induit
à nouveau un isomorphisme de F sur Im(u), qui envoie une base de F , (e1, e2, . . . , er), sur

(
u(e1), u(e2), . . . , u(er)

)
, base

de Im(u), que l’on peut compléter en
(
u(e1), u(e2), . . . , u(er), v1, . . . , vn−2r

)
, base de Ker(f), puisque dim Ker(u) =

n− r. Il suffit de réordonner la base pour obtenir(
e1, u(e1), e2, u(e2), . . . , er, u(er), v1, v2, . . . , vn−2r

)
,

I.C — Valeurs propres, polynôme caractéristique, polynômes annulateurs d’une matrice nilpotente

Dans cette sous-partie, A ∈Mn(C) avec n > 1.

Q10. Notons, dans l’ordre, (i), (ii) et (iii) les trois propositions.

Les racines du polynôme caractéristique de A étant exactement l’ensemble de ses valeurs propres complexes, (iii)
est équivalente à (ii) (sur R, ce qui est ici hors sujet, on n’a que (iii) ⇒ (ii) car les valeurs propres non réelles de A
figurent comme racines de son polynôme caractéristique).

Par ailleurs, le théorème de Cayley-Hamilton montre que si χ
A

= Xn, alors An = 0, donc A est nilpotente. Sup-
posons enfin A nilpotente. Alors, A admet un polynôme annulateur de la forme Xp, dont 0 est l’unique racine, d’où



Sp(A) ⊂ {0C}. Comme Sp(A) 6= ∅ (A est complexe), on a donc Sp(A) = {0}.

Q11. Une matrice de Mn(C) à la fois nilpotente et diagonalisable est semblable à la matrice diagonale dont tous les
coefficients diagonaux sont nuls par la question 10, donc à la matrice nulle. La classe de similitude de la matrice nulle
étant réduite à elle même, celle-ci est la seule matrice à la fois nilpotente et diagonalisable.

Q 12. Si A est nilpotente, elle est trigonalisable et donc semblable à une matrice triangulaire inférieure ayant les
valeurs propres de A, donc des zéros, sur la diagonale. Réciproquement, une matrice triangulaire de diagonale nulle
admet Xn pour polynôme caractéristique et est donc nilpotente d’après la question 10.

Dans les trois questions suivantes, A est nilpotente d’indice p.

Q13. Comme A est nilpotente d’indice p, Xp est un polynôme annulateur de A. Corrélativement, pour tout Q ∈ C[X],
(XpQ)(A) = ApQ(A) = 0, donc tout polynôme de C[X] multiple de Xp est un polynôme annulateur de A.

Q14. Réciproquement, soit P un polynôme annulateur de A. Comme 0 est valeur propre de A, 0 est racine de P . No-

tonsm son ordre de multiplicité. Par définition, P = XmQ avec Q(0) 6= 0. Pour Q =

s∏
i=1

(X−αi), Q(A) =

s∏
i=1

(A−αiIn)

est le produit (commutatif) de s matrices inversibles, puisque, les αi étant non nuls, aucun n’est valeur propre de A.
Ainsi, Q(A) est inversible.

Q15. Poursuivons le raisonnement de la question précédente : on écrit AmQ(A) = 0 et l’on multiplie par Q(A)−1, ce
qui donne Am = 0, d’où m > p par minimalité de l’indice de nilpotence, d’où P = Xp(Xm−pQ). On peut conclure :
les polynômes annulateurs de A sont les multiples de Xp. Autrement dit, Ann(A) = XpC[X].

I.D — Racines carrées de matrices nilpotentes

Pour une matrice V ∈Mn(C) donnée, on dit qu’une matrice R ∈Mn(C) est une racine carrée de V si R2 = V .

Q16. Soit R ∈M3(C) telle que R2 = J3. On calcule R4 = J2
3 = E3,1 et R6 = R4×R2 = E3,1(E2,1 +E3,2) = 0. Ainsi,

R est nilpotente, donc R3 = 0 d’après la question 10, ce qui contredit le calcul de R4. Aussi la matrice J3 n’admet-elle
pas de racine carrée.

En général, soit V ∈Mn(C) une matrice nilpotente d’indice p et R ∈Mn(C) telle que R2 = V .

Q 17. Par hypothèse, V p = R2p = 0, donc R est nilpotente. Comme V p−1 = R2p−2 6= 0, l’indice de nilpotence de R

vaut au moins 2p − 1, ce qui n’est possible que si 2p − 1 6 n en vertu de la question 10, soit p 6

⌊
n+ 1

2

⌋
, p étant

évidemment entier.

Q18. On note dans cette question un l’endomorphisme de Cn canoniquement associé à Jn et (e1, e2, . . . , en) la base
canonique de Cn. On a ainsi un(ei) = ei+1 pour 1 6 i 6 n − 1 et un(en) = 0. En itérant, il vient ukn(ei) = ei+k pour

1 6 i 6 n − k et ukn(ei) = 0 pour n − k + 1 6 i 6 n. Autrement dit, Jkn =

n−k∑
i=1

Ei+k,i. Il s’ensuit que l’indice de

nilpotence de Jn est n.

Corrélativement, J2
n est d’indice de nilpotence

⌈n
2

⌉
=

⌊
n+ 1

2

⌋
.



II. Réduction de Jordan des endomorphismes nilpotents, partitions

II.A — Réduction des matrices nilpotentes

Soit u ∈ L (E) nilpotent. Pour x ∈ E, on note Cu(x) = Vect
(
uk(x) ; k ∈ N

)
.

Q19. Soit u ∈ L (E) nilpotent d’indice p. Pour tout k ∈ N, u
(
uk(x)

)
= uk+1(x) ∈ Cu(x), donc Cu(x) est stable par

u. Comme up(x) = 0E , l’ensemble {k ∈ N∗ ; sk(x) = 0E} est non vide et admet donc un plus petit élément, noté
s(x). D’après la preuve de la question 3 (qui n’utilise pas au début le fait que l’espace est de dimension 2), la famille(
x, u(x), . . . , us(x)−1(x)

)
est libre et c’est donc une base de Cu(x), puisque uk(x) = 0E pour tout k > s(x). Enfin, dans

cette base, la matrice de u‖Cu(x) est Js(x).

L’objectif de cette sous-partie est de démontrer la propriété(
Hp

)
: « Pour tout C-e.v. E de dimension finie et tout endomorphisme u de E nilpotent d’indice p, il existe des

vecteurs non nuls a1, a2, . . . , ak de E tels que E =
k⊕
i=1

Cu(ai). »

Q20. Si u est d’indice de nilpotence 1, u est l’endomorphisme nul, comme on la vu à la question 1. Alors, pour tout
x 6= 0E , on a Cu(x) = Vect(x). Ainsi, si (a1, a2, . . . , an) est une base de E, on a E = Cu(a1)⊕Cu(a2)⊕ · · · ⊕Cu(an),
ce qui montre

(
H1

)
.

Les questions 8 et 9 montrent qu’il existe une base deE de la forme
(
e1, u(e1), e2, u(e2), . . . , er, u(er), v1, v2, . . . , vn−2r

)
avec (v1, v2, . . . , vn−2r) ∈

(
Ker(u)

)n−2r, la question 8 correspondant au cas n = 2r (et, donc, à l’absence de vecteurs
vi dans la base ci-dessus). Comme u est d’indice de nilpotence 2, on a Cu(ei) = Vect

(
ei, u(ei)

)
pour i ∈ J1, rK et l’on

a par ailleurs Cu(vi) = Vect(vi) pour i ∈ J1, n − 2rK. Ainsi, en posant k = n − r, ai = ei pour i ∈ J1, rK et ai = vr−i

pour i ∈ Jr + 1, n− rK, on a bien E =
k⊕
i=0

Cu(ai).

Q 21. C’est un fait général que tout endomorphisme, ici, u, induit sur Im(u) un endomorphisme. Pour tout vecteur
y = u(x) ∈ Im(u), on a up−1(y) = up(x) = 0E , ce qui montre que u‖ Im(u) est nilpotent, d’indice de nilpotence q 6 p−1.
Enfin, il existe un vecteur x0 tel que up−1(x0) 6= 0E , soit up−2(u(x0)) 6= 0E , d’où q > p − 2. Finalement, u‖ Im(u) est
nilpotent, d’indice de nilpotence p− 1.

Q 22. La récurrence a été initialisée à la question 20. La question 21 incite à effectuer une récurrence simple et
à appliquer

(
Hp−1

)
à u‖ Im(u). Dans le cas du passage de

(
H1

)
à
(
H2

)
, cela suit la première des deux approches

proposées aux questions 8 et 9). On avait alors choisi une base de Im(u) (les vecteurs fk du corrigé), 2) pris des images
réciproques des vecteurs de cette base (les vecteurs ek, 3) montré que leur concaténation formait une famille libre, 4)
justifié que l’on pouvait compléter ces 2 rg(u) vecteurs en une base de E avec des vecteurs de Ker(u). Cela suggère la
démonstration ci-dessous.

(1) L’hypothèse de récurrence permet de décomposer l’image de u sous la forme Im(u) =

k⊕
i=1

Cu(bi).

(2) Pour tout i ∈ J1, kK, comme bi ∈ Im(u), il existe un vecteur ai tels que u(ai) = bi. On a alors s(ai) = s(bi) + 1
et Cu(ai) = Vect(ai)⊕ Cu(bi) d’après la question 20.

(3) Soit (x1, x2, . . . , xk) ∈
k∏
i=1

Cu(ai) tel que
k∑
i=1

xi = 0. En composant par u, il vient
k∑
i=1

u(xi) = 0 et, comme

u(xi) ∈ Cu(bi) et que ces espaces sont en somme directe par hypothèse, u(xi) = 0 pour tout i ∈ J1, kK. Ainsi,
xi ∈ Vect(us(bi)−1) ∈ Cu(bi) et, en utilisant à nouveau le caractère directe de la somme de Cu(bi), il vient xi = 0.

Ainsi, la somme
k∑
i=1

Cu(ai) est directe.



(4) Posons F =

k⊕
i=1

Cu(ai). D’après ce qui précède, dimF = rg(u) + k. De plus, F ∩ Ker(u) = Vect
(
us(ai)−1(ai)

)
est de dimension k, donc la formule de Graßmann donne

dim(F + Ker(u)) = dimF + dim Ker(u)− dim(F ∩Ker(u)) = (rg(u) + k) + (n− rg(u))− k = n,

ce qui montre que E = F + Ker(u).

On peut ainsi compléter F en un supplémentaire G de E formé de vecteurs de Ker(u) et l’on peut appliquer
(
H1

)
à

u‖G, ce qui complète la démonstration de
(
Hp

)
.

Q 23. Dans une base adaptée à la décomposition E =
k⊕
i=1

Cu(ai), la matrice de u est diagonale par blocs, les blocs

diagonaux étant les matrices de u‖Cu(ai). Si l’on choisit de plus une base de Cu(ai) de la forme
(
x, u(x), . . . , us(x)−1(x)

)
,

alors la matrice de u dans cette base sera Diag(Js(a1), Js(a2), . . . , Js(ak)
)
.

II.B — Partitions d’entiers

Si A ∈ Mn(C), on appelle classe de similitude de A l’ensemble des matrices semblables à A. On s’intéresse ici au
nombre de classes de similitude de matrices nilpotentes dans Mn(C).

En théorie des nombres, on appelle partition de l’entier n ∈ N∗ toute suite finie (α1, α2, . . . , αk) ∈ (N∗)k avec k > 1
telle que

α1 > α2 > · · · > αk & α1 + α2 + · · ·+ αk = n.

On note Γn l’ensemble des partitions de l’entier n. Ainsi, Γ1 = {(1)}, Γ2 = {(2), (1, 1)}, Γ3 = {(3), (2, 1), (1, 1, 1)}.

Enfin, pour tout partition σ = (α1, α2, . . . , αk) ∈ Γn, on note Nσ = Diag
(
Jα1 , Jα2 , . . . , Jαk

)
.

Soit A ∈Mn(C) une matrice nilpotente.

Q24. La question 23 montre qu’il existe une base dans laquelle la matrice de φA, l’endomorphisme de Cn canonique-
ment associé à A, est Diag(Js(a1), Js(a2), . . . , Js(ak)

)
. En ordonnant (ai)16i6k par ordre décroissant de (s(ai))16i6k, on

obtient bien une partition σ ∈ Γn telle que A soit semblable à la matrice Nσ.

Dans la suite, on fixe une telle partition σ = (α1, α2, . . . , αk). Pour j ∈ N, on note rj = rg(Aj). On note enfin mj

le nombre de termes de la partition σ égaux à j.

Q 25. On a montré à la question 18 qu’avec Jq =

q−1∑
i=1

Ei+1,i ∈ Mq(C), Jmq =

q−m∑
i=1

Ei+m,i, qui est clairement de rang

q −m si m 6 q et de rang nul si m > q. Autrement dit, rg(Jkq ) = max(0, q − k).

Comme Nσ = Diag
(
Jα1 , Jα2 , . . . , Jαk

)
, N j

σ = Diag
(
J jα1

, J jα2
, . . . , J jαk

)
et, le rang d’une matrice diagonale par blocs

étant la somme des rangs de ses blocs diagonaux, rj =

k∑
i=1

max(0, αi − j) pour tout j ∈ N.

Q 26. On a montré à la question précédente que rg(J jq ) = max(0, q − j). Corrélativement, le passage de J j−1q à J jq
diminue le degré de 1 si rg(J j−1q ) > 0 et ne le modifie pas sinon. Autrement dit, rg(J j−1q )− rg(J jq ) vaut 1 si j 6 q et
0 si j > q. En sommant,

rj−1 − rj =

k∑
i=1

[
rg(J j−1αi )− rg(J jαi)

]
=
∑

16i6k
j6αi

1 = #
{
i ∈ J1, kK ; αi > j

}



compte le nombre d’entiers de la partition σ au moins égaux à j. Il s’ensuit

mj = #
{
i ∈ J1, kK ; αi = j

}
= #

{
i ∈ J1, kK ; αi > j

}
−#

{
i ∈ J1, kK ; αi > j + 1

}
= (rj−1 − rj)− (rj − rj+1) = rj+1 − 2rj + rj−1.

Q27. L’existence de la partition σ ∈ Γn a été établie à la question 25. Dans la mesure où une partition est entièrement
décrite par la suite (mj)j>1 et que ces valeurs sont des fonctions du rang des puissances de A, il y a unicité.

Par ailleurs, le nombre de partitions d’un entier n est fini (il est trivialement majoré par nn, puisque tant sa longueur
que ses éléments sont compris entre 1 et n). Aussi le nombre de classes de similitude de matrices nilpotentes dans
Mn(C) est-il fini, égal au nombre de partitions de n.

Ce nombre de partitions a été largement étudié. Hardy et Ramanujan ont notamment montré que le nombre de

partitions de n, classiquement noté p(n), vérifie p(n) ∼ 1

4n
√

3
exp

(
π

√
2n

3

)
.

II.C — Deux applications

Q28. Soit A =


0 −1 2 −2 −1

0 0 0 0 0

0 1 0 0 0

0 1 0 0 0

0 1 −1 1 0

. On note que L2(A) = 0 et que L3(A) = L4(A). Par ailleurs, il est immédiat

que
(
L1(A), L3(A), L5(A)

)
est libre, ce qui montre que r1 = rg(A) = 3. On note ensuite que C1(A

2) = C5(A
2) = 0,

C2(A
2) = −C1(A) + C3(A) + C4(A) + C5(A) = C5(A) et Ck(A2) = ±C5(A) pour k ∈ {3, 4}, ce qui assure que

r2 = rg(A2) = 1 et que A est nilpotente d’indice 3. Ainsi, (r0, r1, r2, r3, r4, r5) = (5, 3, 1, 0, 0), d’où m1 = 0 et
m2 = m3 = 1, ce qui donne σ = (3, 2) et montre que A est semblable à Diag(J3, J2). Notons au passage que le résultat
est raisonnable, vu que 2 + 3 = 5...

Cela n’était pas demandé, mais on peut calculer la matrice de passage (c’est intéressant si l’on veut bien comprendre
le fonctionnement de la réduction de Jordan des endomorphismes nilpotents). Pour ce faire, on revient aux résultats
de la partie II.A et, plus précisément, à la construction de la question 22. On pose u = φA l’endomorphisme de
C5 canoniquement associé à A. On note (Ei)16i65 la base canonique de C5. Les calculs ci-dessus donnent Im(A) =

Vect(E1, E5, E3 + E4) et Im(A2) = Vect(E1). On peut donc écrire Im(A2) = Vect(E1) = Cu(E1).
On a vu ensuite que u(−E5) = E1 et l’on constate que Im(A) ∩Ker(A) = Vect(E3 + E4), soit

Im(A) = Vect(−E5, E1)⊕Vect(E3 + E4) = Cu(−E5)⊕ Cu(E3 + E4).

Enfin, u(2E5 − E4) = −E5 et u(E2 − E4 + E5) = E3 + E4 donnent

C5 = Vect(2E5 − E4,−E5, E1)⊕Vect(E2 − E4 + E5, E3 + E4)

= Cu(2E5 − E4)⊕ Cu(E2 − E4 + E5)
∴ P =


0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

−1 0 0 −1 1

2 −1 0 1 0

 .

Un peu de code pour vérifier (utile pour l’oral de Centrale). La matrice J est la matrice Diag(J3, J2).

import numpy as np
A = np.zeros((5, 5))
A[0, :] = [0, -1, 2, -2, -1]
A[4, 1:4] = [1, -1, 1]
A[2:4, 1] = [1, 1]

P = np.zeros((5, 5))
P[0, 2] = P[1, 3] = P[2, 4] = 1
P[3, :] = [-1, 0, 0, -1, 1]
P[4, :] = [2, -1, 0, 1, 0]

J = np.linalg.inv(P).dot(A).dot(P)



Q 29. Soit A ∈ Mn(C) une matrice nilpotente. Comme rg(Aj) = rg(2jAj) = rg
(
(AT)

j)
, les trois matrices sont

semblables à la même réduite de Jordan Nσ et donc semblables.

Comme AX = λX ⇐⇒ (2A)X = (2λ)X, l’application x 7→ 2x réalise une bijection de Sp(A) sur Sp(2A). Si
A et 2A sont semblables, elles ont même spectre, ce qui implique que si λ ∈ Sp(A), alors 2λ et, par une récurrence
immédiate, 2mλ est valeur propre de A pour tout m. Ainsi, si A possédait une valeur propre non nulle, son spectre
serait infini, ce qui n’est pas possible. On a ainsi montré que Sp(A) ⊂ {0C}, donc que Sp(A) = {0C}, donc que A est
nilpotente par la question 10.

II.D — Un algorithme de calcul du nombre de partitions de n

Q30. On calcule

Γ4 = {(4), (3, 1), (2, 2), (2, 1, 1), (1, 1, 1, 1)} & Γ5 = {(5), (4, 1), (3, 2), (3, 1, 1), (2, 2, 1), (2, 1, 1, 1, 1), (1, 1, 1, 1, 1)}.

n = 1 n = 2 n = 3 n = 4 n = 5

j = 1 1 1 1 1 1

j = 2 0 2 2 3 3

j = 3 0 0 3 4 5

j = 4 0 0 0 5 6

j = 5 0 0 0 0 7

Pour n et j entiers naturels non nuls, on note Yn,j l’ensemble des partitions de n dont le premier terme α1 est
inférieur ou égal à j et yn,j le cardinal de cet ensemble. Par convention, on pose y0,0 = 1 et yn,0 = 0 pour tout n > 1.

Q31. Par définition, Yn,1 = {(1, 1, . . . , 1)}, d’où yn,1 = 1.

On se propose de montrer que, pour 2 6 j 6 n, alors yn,j = yn,j−1 + yn−j,min(j,n−j).

Q32. Pour j = n, l’identité à prouver est yn,n = yn,n−1 + y0,0 = yn,n−1 + 1, qui vient de Γn = Yn,n = {(n)} ] Yn,n−1.

Q 33. Pour 2 6 j < n, l’ensemble Yn,j est la réunion disjointe de Yn,j−1 et des partitions de n de la forme
σ = (j, α2, . . . , αk), à qui l’on peut associer bijectivement les partitions (α2, . . . , αk) de n − j vérifiant α2 6 j,
soit l’ensemble Yn−j,j . On en déduit que yn,j = yn,j−1 + yn−j,j .

De plus, il est clair que si σ = (α1, α2, . . . , αk) est une partition de n, alors α1 6 n, ce qui s’écrit Yn,k = Yn,min(n,k).
En particulier, Yn−j,j = Yn−j,min(n−j,j), d’où yn−j,j = yn−j,min(n−j,j), ce qui termine la démonstration de la formule.

Q 34. Une première version, naïve, consiste à programmer simplement la récurrence. On utilise quand même une
sous-fonction, vu que la fonction englobante n’a qu’un paramètre alors que la relation de récurrence est à deux termes.
Cette version est d’une complexité catastrophique (on pourra la tester pour n = 10, 50, puis 100).
def partitions_moisies(n):

def y(n, j):
if n == j == 0:

return 1
elif n == 0:

return 0
elif j == 1:

return 1
return y(n, j-1) + y(n - j, min(j, n-j))

return y(n, n)

La relation de récurrence indique clairement qu’une programmation dynamique par mémoïsation est ici pertinente.
La forme du programme est standard, avec sa sous-fonction récursive remplissant un dictionnaire en mode top-down.



def partitions_dyn(n):
d = {(0, 0): 1}
for k in range(1, n+1):

d[(k, 0)], d[(k, 1)] = 0, 1
def y(n, j):

if (n, j) not in d:
d[(n, j)] = y(n, j-1) + y(n - j, min(j, n-j))

return d[(n, j)]
return y(n, n)

III. Vecteurs propres généralisés, réduction de Jordan générale

Cette partie ne figurait pas dans le problème de Centrale. Elle est essentiellement tirée du chapitre 8 de Sheldon Axler,
Linear Algebra done right, Springer.

Soit f ∈ L (E). Pour une valeur propre λ de f et k ∈ N, on note G(k)
λ (f) = Ker(f −λ idE)k et Gλ(f) =

∞⋃
k=0

G
(k)
λ (f).

On appelle vecteur propre généralisé de f associé à λ l’ensemble des vecteurs non nuls de Gλ(f). Les espaces Gλ(f)
sont appelés sous-espaces caractéristiques de f .

Q35. Soit g ∈ L(E). Pour k ∈ N et x ∈ Ker(gk), on a gk+1(x) = g
(
gk(x)

)
= g(0E) = 0E , ce qui montre que la suite

des espaces
(

Ker(gk)
)
k>0

est croissante au sens de l’inclusion. Corrélativement, la suite
(

dim Ker(gk)
)
k>0

est une
suite croissante d’entiers. Comme elle est majorée par n = dimE, il existe donc un entier k telle que dim Ker(gk+1) =

dim Ker(gk), d’où Ker(gk+1) = Ker(gk) du fait de l’inclusion Ker(gk+1) ⊃ Ker(gk).
Montrons qu’alors, Ker(gk+2) = Ker(gk+1). Comme Ker(gk+1) ⊂ Ker(gk+2), il suffit de montrer l’inclusion réci-

proque. Soit x ∈ Ker(gk+2). Alors, g(x) ∈ Ker(gk+1) = Ker(gk), donc x ∈ Ker(gk+1).

Bilan : il existe un plus petit entier p tel que Ker(gp) = Ker(gp+1) et l’on a alors Ker(gp+k) = Ker(gp) pour tout

k ∈ N. Enfin,
∞⋃
k=0

Ker(gk) est une réunion croissante de s.e.v. de E égale à Ker(gp) et est donc un sous-espace vectoriel

de E.

Soit maintenant λ ∈ Sp(f). On applique ce qui précède à g = f − λ idE , ce qui donne (presque) le résultat. Il suffit
de mentionner encore que {0E} 6= Eλ(f) ⊂ Gλ(f) pour en déduire que Gλ(f) est un espace vectoriel de dimension au
moins égale à 1 contenant l’espace propre Eλ(f).

Q36. On reprend le fil de la question précédente pour g ∈ L (E). Soit y ∈ Ker(g(p))∩ Im(g(p)). Comme y ∈ Im(g(p)),
il existe x ∈ E tel que gp(x) = y. Alors, g2p(x) = gp(y) = 0E . Ainsi, x ∈ Ker(g2p) = Ker(gp), soit y = 0. Il s’ensuit
que Ker(gp) et Im(gp) sont en somme directe, donc supplémentaires par dimension en vertu du théorème du rang.

En appliquant, comme dans la question précédente, ce résultat à g = f − λ idE , il vient

E = Ker(f − λ idE)p(λ) ⊕ Im(f − λ idE)p(λ) = Gλ(f)⊕ Im(f − λ idE)p(λ).

Q37. Soient λ1, λ2, . . . , λp des valeurs propres de f deux à deux distinctes. Soit (xi)16i6p ∈
p∏
i=1

Gλi(f) une famille de

vecteurs telle que x1 + x2 + · · · + xp = 0E . On suppose qu’il existe i ∈ J1, pK tel que xi 6= 0. Comme xi ∈ Gλi(f), on
peut poser m = min

{
k ∈ N∗ ; xj ∈ Ker(f − λi idE)k

}
. Par construction, wi = (f − λi idE)m−1(xi) ∈ Eλi(f) \ {0E}.



Soit alors P = (X − λi)m−1
∏

16j6p
j 6=i

(X − λj)p(λj). Pour j ∈ J1, pK \ {i}, la commutation des éléments de C[f ] donne

P (f)(xj) = (f − λi idE)m−1 ◦

(
©

16r6p
r 6∈{i,j}

(f − λr idE)p(λr)

)
◦ (f − λj idE)p(λj)(xj)

=

(f − λi idE)m−1 ◦

(
©

16r6p
r 6∈{i,j}

(f − λr idE)p(λr)

) (0E) = 0E .

Par ailleurs, l’expression de wi introduite ci-dessus donne

P (f)(xi) =

(
©

16r6p
r 6=i

(f − λr idE)p(λr)

)
(wi) =

∏
16r6p
r 6=i

(λi − λr)p(λr)wi ∴

x1 + x2 + · · ·+ xp = 0E =⇒ P (f)(x1 + x2 + · · ·+ xp) = P (f)(xi) =

6=0C︷ ︸︸ ︷∏
16r6p
r 6=i

(λi − λr)p(λr)wi = P (f)(0E) = 0E .

Le produit étant non nul, il vient wi = 0E , en contradiction avec le fait que wi soit un vecteur propre. On a donc
xi = 0E pour tout i ∈ J1, pK. Ainsi, les sous-espaces caractéristiques sont en somme directe.

Q38. On raisonne par récurrence forte sur n = dimE. En dimension 1, f ∈ L (E) admet une unique valeur propre,
disons λ, et l’on a E = Gλ(f) = Eλ(f).

Supposons la propriété vraie en dimension strictement inférieure à n et considérons un espace E de dimension n et
f ∈ L (E). Comme E est un espace vectoriel complexe, f admet une valeur propre, disons λ1, et la question 36 montre
que E = Gλ1(f)⊕ F avec F = Im(f − λ1 idE)p(λ1). Comme (f − λ1 idE)p(λ1)(f) commute avec f , F est stable par f
et on peut lui appliquer l’hypothèse de récurrence, puisque, d’après la question 35, Gλ1(f) ⊃ Eλ1(f) est de dimension

strictement positive. On a donc à ce stade E = Gλ1(f)⊕

( ⊕
λ∈Sp(f‖f )

Gλ(f‖F )

)
.

Il est immédiat que Sp(f‖F ) ⊂ Sp(f) et que Gλ(f‖F ) ⊂ Gλ(f). Soit réciproquement x ∈ Gλ(f). D’après la décom-
position de E ci-dessus, on peut écrire x = x1 +

∑
λ∈Sp(f‖F )

xλ avec x1 ∈ Gλ1(f) et xλ ∈ Gλ(f‖F ) ⊂ Gλ(f). D’après la

question 37, les Gλ(f) sont en somme directe, donc x1 = xµ = 0E pour tout µ ∈ Sp(f‖F ) \ {λ} et l’on a donc bien

Gλ(f‖F ) ⊃ Gλ(f), d’où Gλ(f‖F ) = Gλ(f) et E = Gλ1(f)⊕

( ⊕
λ∈Sp(f‖f )

Gλ(f)

)
. En particulier, Sp(f) = {λ1}]Sp(f‖f ),

réunion disjointe. In fine, E =
⊕

λ∈Sp(f)

Gλ(f).

Q39. On tire de la question précédente que Sp
(
f‖Gλ(f)

)
= {λ}, d’où χ

f
=

∏
λ∈Sp(f)

(X − λ)dimGλ(f).

Q 40. D’après la question 38 et la stabilité des sous-espaces caractéristiques de f par f , il suffit de montrer que
(X − λ)dimGλ(f) est annulateur de f‖Gλ(f). Par construction, f − λ idE induit sur Gλ(f) un endomorphisme nilpotent
d’indice p(λ). D’après la question 35, la suite

(
dim(f − λ idE)k

)
06k6p(λ) est strictement croissante. Sa longueur ne peut

donc excéder dimGλ(f)+1, soit p(λ) 6 dimGλ(f), ce qui montre le théorème de Cayley-Hamilton sur ces sous-espaces.

Q 41. Pour f ∈ L (E), la question 38 donne la décomposition en somme directe de sous-espaces caractéristiques
E =

⊕
λ∈Sp(f)

Gλ(f), les Gλ(f) étant stables par f . On a vu dans cette même question que Sp
(
f‖Gλ(f)

)
= {λ}, d’où

Sp
(
f‖Gλ(f) − λ idGλ(f)

)
= {0}. D’après la question 10, f‖Gλ(f) − λ idGλ(f) est donc nilpotent et on peut lui appliquer



à sa matrice dans une base quelconque la question 25. Pour toute valeur propre λ de f , il existe donc une partition
σ(λ) et une base de Gλ(f) dans laquelle la matrice de f‖Gλ(f)− λ idGλ(f) est Nσ(λ). Dans cette même base, la matrice
de f‖Gλ(f) est donc λIdimGλ(f) +Nσ(λ). On peut conclure :

Théorème. Si u est un endomorphisme d’un C-espace vectoriel E de dimension finie, de polynôme caractéristique∏
λ∈Sp(u)

(X − λ)nλ, il existe des vecteurs
(
a
(λ)
i

)
λ∈Sp(f)
16i6k(λ)

avec a(λ)i ∈ Gλ(u) tels que E =
⊕

λ∈Sp(f)

k(λ)⊕
i=1

Cu−λ idE
(
a
(λ)
i

)
.

Matriciellement, il existe une base de E et des partitions σ(λ) ∈ Γ(nλ) dans laquelle la matrice de u est diagonale
par blocs de la forme λIn(λ) +Nσ(λ) (et donc, sans la précision des partitions, diagonale par blocs de la forme λIq +Jq
avec au moins un q par valeur propre). Cette forme est unique à permutation des blocs près.

Dans tout le problème, on n’a utilisé de C que la propriété de d’Alembert-Gauß. Ainsi, la réduction de Jordan est
valable pour tout endomorphisme trigonalisable.


