Lycée J.B. Say PSI* année 2025-2026

Chapitre I - TD

Espaces vectoriels et applications linéaires

Les basiques

Exercice 1. Fonctions affines par morceaux (CCP)

Soit $0 = x_0 < x_1 < \ldots < x_n = 1$ une subdivision de $[\,0\,;1\,]$ et E l'ensemble des fonctions $f:[\,0\,;1\,]\to\mathbb{R}$ continues et affines sur chacun des intervalles $[x_k; x_{k+1}]$.

- 1. Montrer que E est de dimension finie.
- 2. Montrer que les fonctions $f_k: t \longmapsto |t-x_k|$ sont élément de E et forment une famille libre. Conclure qu'elles forment une base de E.

Exercice 2. Fonctions trigonométriques (CCP) Soit
$$f_k: \left\{ \begin{array}{l} \mathbb{R} \longrightarrow \mathbb{R} \\ x \longmapsto \cos(kx) \end{array} \right.$$
 et $g_k: \left\{ \begin{array}{l} \mathbb{R} \longrightarrow \mathbb{R} \\ x \longmapsto \cos^k(x) \end{array} \right.$, pour tout $k \in \mathbb{N}$.

Soit $n \in \mathbb{N}$. Montrer que Vect $(f_k)_{0 \le k \le n} =$ Vect $(g_k)_{0 \le k \le n}$.

Montrer que $(g_k)_{0 \le k \le n}$ est libre et en déduire que $(f_k)_{0 \le k \le n}$ également.

Exercice 3. Une base de $\mathbb{C}_n[X]$ (Mines)

Soient $n \in \mathbb{N}^*$ et $(z_k)_{0 \leqslant k \leqslant n}$ une famille de nombres complexes deux à deux distincts. Montrer que la famille ((X - $(z_k)^n$)_{0 \leq k \leq n} est une base de $\mathbb{C}_n[X]$.

Exercice 4. Une base de $\mathbb{K}_n[X]$ (CCP)

Soit $n \in \mathbb{N}$. Pour tout $k \in [0; n]$, soit $P_k =$ $X^{k} (1-X)^{n-k}$. Montrer que (P_0, \dots, P_n) est une base de $\mathbb{K}_n[X]$. Exprimer dans cette base les polynômes de la base canonique (on pourra calculer la somme $\sum_{k=0}^{n} {n \choose k} P_k$, et généraliser).

Exercice 5. Intersection et supplémentaires

Soit $E = E_1 \oplus E_2 \oplus \ldots \oplus E_n$ et F un sous-espace vectoriel de E. Pour tout $i \in [1; n]$, soit $F_i = F \cap E_i$.

Montrer que la somme $F_1 + F_2 + ... + F_n$ est directe, la comparer à F.

Exercice 6. Projecteurs de même noyau

Soit E un \mathbb{K} -ev et $f, g \in \mathcal{L}$ (E). Montrer que $f \circ g = f$ et $g \circ f = g$ ssi f et g sont des projecteurs de même noyau.

Exercice 7. Somme de deux projecteurs

Soit E un \mathbb{K} -ev et $p, q \in \mathcal{L}$ (E) deux projecteurs.

- 1. Montrer que p + q est un projecteur si et seulement si $p \circ q = q \circ p = 0.$
- 2. Si tel est le cas, montrer que $\operatorname{Ker}(p+q) = \operatorname{Ker} p \cap \operatorname{Ker} q$ et $\operatorname{Im}(p+q) = \operatorname{Im} p \oplus \operatorname{Im} q$.

Exercice 8. Pseudo-inverse

Soient $f, g \in \mathcal{L}(E)$ tels que $f \circ g \circ f = f$ et $g \circ f \circ g = g$.

- 1. Montrer que $E = \text{Ker } f \oplus \text{Im } g$.
- 2. Montrer que $f(\operatorname{Im} g) = \operatorname{Im} f$.

Exercice 9. Réduction via des projecteurs

Soit E un K-ev et $f \in \mathcal{L}$ (E). On suppose trouvés $\lambda_1 \neq \lambda_2$ tels que $(f - \lambda_1 Id_E) \circ (f - \lambda_2 Id_E) = 0$. On considère les endomorphismes

$$p = \frac{1}{\lambda_2 - \lambda_1} (f - \lambda_1 Id_E)$$
 et $q = \frac{1}{\lambda_1 - \lambda_2} (f - \lambda_2 Id_E)$

- 1. Montrer que p et q sont des projecteurs.
- 2. Expliciter p + q, $p \circ q$ et $q \circ p$.
- 3. Exprimer f en fonction de p, q, λ_1 et λ_2 . En déduire, pour tout $n \in \mathbb{N}^*$, une expression de f^n en fonction de ces mêmes paramètres.

Exercice 10. Centre de $\mathcal{L}(E)$

Soit E un K-espace vectoriel.

- 1. Soit $u \in \mathcal{L}(E)$ tel que pour tout $x \in E$, la famille (x, u(x)) est liée. Montrer que u est une homothétie.
- 2. Déterminer les endormorphimes $u \in \mathcal{L}(E)$ vérifiant la propriété : $\forall v \in \mathcal{L}(E), u \circ v = v \circ u$. (on montrera qu'un tel endomorphisme laisse stable toute droite de E).

Exercice 11. Image et noyaux (CCP)

Soient F et G deux sous-espaces vectoriels d'un espace vectoriel E de dimension finie. Donner une condition nécessaire et suffisante pour qu'il existe $f \in \mathcal{L}(E)$ tel que Im f = F et $\ker f = G$.

Exercice 12. Somme de projecteurs

Soient p_1, \ldots, p_n des projecteurs de l'espace E tels que:

$$\forall i \neq j, \ p_i \circ p_j = 0 \quad \text{et} \quad p_1 + \dots + p_n = \mathrm{Id}_{\mathrm{E}}$$

Montrer que $\mathbf{E} = \bigoplus_{1 \le i \le n} \mathrm{Im} \; p_i$ et que les p_i sont les projecteurs associés à cette décomposition de E.

Exercice 13. Sous espace stable et projecteurs

Soit E un K-espace vectoriel, F et G deux sous-espaces supplémentaires. On note p (resp. q) le projecteur sur F selon G(resp. sur G selon F). Montrer que F est stable par $f \in \mathcal{L}(E)$ si et seulement si $q \circ f \circ p = 0$.

Lycée J.B. Say PSI* année 2025-2026

Pour aller plus loin

Exercice 14. Sous-espaces en somme directe

Soit $\alpha_1 < \alpha_n < \ldots < \alpha_n \in \mathbb{R}$. Pour tout $k \in [1; n]$, on note E_k l'ensemble des fonctions de la forme $x \mapsto P(x)e^{\alpha_k x}$, où P est un polynôme.

Montrer que les E_k sont des sous-espaces vectoriels de $\mathcal{C}^{\infty}(\mathbb{R},\mathbb{R})$ et qu'ils sont en somme directe.

Exercice 15. Supplémentaire commun (Mines)

Soit F et G deux sous-espaces vectoriel d'un espace E de dimension finie. On suppose que $\dim F = \dim G$. Montrer que F et G ont un supplémentaire commun.

Exercice 16. Réunion de sous-espaces vectoriels stricts

Soit $n \geq 2$ et F_1, \ldots, F_n n sous-espaces vectoriels de E strictement inclus dans E. On suppose que n est minimal tel que $\mathbf{E} = \bigcup_{k \in \llbracket \, 1 \, ; \, n \, \rrbracket} \mathbf{F}_k$,

- 1. Montrer que $n \neq 2$.
- 2. Justifier que l'on peut choisir un élément x de F_n n'appartenant pas à $F_1 \cup ... \cup F_{n-1}$, ainsi qu'un élément y de E n'appartenant pas à F_n .
- 3. Montrer que $\forall \lambda \in \mathbb{K} \quad \lambda x + y \notin F_n$.
- 4. Montrer que pour tout entier $i \in [1; n-1]$, il existe au plus un $\lambda_i \in \mathbb{K}$ tel que $\lambda_i x + y \in \mathcal{F}_i$.
- 5. Conclure à une contradiction.

Exercice 17. Endomorphisme de polynômes (X-ESPCI)

Soit $P \in \mathbb{R}[X]$. Montrer qu'il existe un unique $Q \in \mathbb{R}[X]$ tel que Q(0) = 0 et Q(X) - Q(X - 1) = P(X).

Exercice 18. Sous-espaces stables (Mines)

Soit p un projecteur d'un \mathbb{K} -espace vectoriel \mathbb{E} .

Montrer que les sous-espaces de E stables par p sont sommes (directes) d'un sous-espace du noyau et d'un sousespace de l'image de p.

Exercice 19. Supplémentaire stable (Centrale)

Soient E un espace vectoriel, V un sous-espace vectoriel de E, p un projecteur d'image V. Soit u un endomorphisme de E $\begin{array}{l} \text{tel que } u^n = \text{Id et } u(\mathbf{V}) \subset \mathbf{V}. \\ \text{On pose } q = \frac{1}{n} \sum_{k=0}^{n-1} u^k \circ p \circ u^{n-k}. \end{array}$

- 1. Montrer que $u \circ q = q \circ u$.
- 2. Montrer que $q \circ p = p$.
- 3. Montrer que q est un projecteur.
- 4. Déterminer l'image de q. En déduire l'existence d'un supplémentaire de V stable par u.

Exercice 20. Racine cubique de l'identité

Soit $f \in \mathcal{L}(E)$ tel que $f^3 = Id$.

- 1. Montrer que $E = Ker (f Id) \oplus Im (f Id)$.
- 2. Montrer que Ker $(f Id) = Im (f^2 + f + Id)$ et $\operatorname{Im} (f - \operatorname{Id}) = \operatorname{Ker} (f^2 + f + \operatorname{Id}).$
- 3. Si $\mathbb{K} = \mathbb{C}$, montrer que $\mathbb{E} = \mathrm{Ker} (f \mathrm{Id}) \oplus \mathrm{Ker} (f$ $j \operatorname{Id}$) \oplus Ker $(f - j^2 \operatorname{Id})$, et en déduire que Ker $(f^2 + f + f)$ $\mathrm{Id}) = \mathrm{Ker}\,(f - j\mathrm{Id}) \oplus \mathrm{Ker}\,(f - j^2\mathrm{Id})$

Exercice 21. Image, noyau (Mines) Soit E un espace vectoriel de dimension finie et $u \in \mathcal{L}(E)$.

Montrer que $\operatorname{Ker} u$ et $\operatorname{Im} u$ sont supplémentaires si et seulement si $u \in \text{Vect } (u^2, u^3, \ldots)$.

Exercice 22. Rang de composées (Centrale)

Soit E un espace vectoriel de dimension finie et f, g, h trois endomorphismes de E.

- 1. Justifier l'existence d'un sous-espace F de Ker $(f \circ g \circ h)$ tel que Ker $(f \circ g \circ h) = \text{Ker } (g \circ h) \oplus F$.
- 2. Montrer que $\operatorname{rg}(g \circ h) + \operatorname{rg}(f \circ g) \leq \operatorname{rg}(f \circ g \circ h) + \operatorname{rg}(g)$. [On pourra montrer que h(F) est en somme directe avecKer g dans Ker $(f \circ g)$.]

Exercice 23. Endomorphismes cycliques

Soit E un espace vectoriel de dimension n et $f \in \mathcal{L}(E)$. On suppose qu'il existe un vecteur u (non nul) tel que la famille $(f^k(u))_{k\in\mathbb{N}}$ est génératrice.

- 1. Soit p maximal tel que la famille $(u, f(u), \dots, f^{p-1}(u))$ est libre. Montrer que cette famille est aussi génératrice.
- 2. En déduire que $(u, f(u), \ldots, f^{n-1}(u))$ est une base.
- 3. Soit q un endomorphisme qui commute avec f. Justifier qu'il existe un polynôme P tel que g(u) = (P(f))(u), puis montrer que q = P(f).
- 4. Dimension de $C(f) = \{g \in \mathcal{L}(E) \mid f \circ g = g \circ f\}$?

Exercice 24. Rang d'une composée

Soit E un K-ev de dimension finie, et $f, g \in \mathcal{L}(E)$.

- 1. Montrer que dim Ker $(g \circ f) \leq \dim \operatorname{Ker} f + \dim \operatorname{Ker} g$.
- 2. Montrer que dim (Im $f \cap \text{Ker } g$) = rg f rg ($g \circ f$).
- 3. En déduire l'encadrement $\operatorname{rg} f + \operatorname{rg} g \dim E \leq \operatorname{rg} (g \circ g)$ f) $\leq \min (\operatorname{rg} f, \operatorname{rg} g)$.

Exercice 25. Composée de nilpotents (Centrale)

Soit E un \mathbb{K} -ev de dimension n et (u_1, u_2, \dots, u_n) une famille d'endomorphismes nilpotents qui commutent deux à deux. Montrer que $u_1 \circ u_2 \circ \cdots \circ u_n = 0$.

[On pourra majorer le rang de $u_1 \circ u_2 \circ \ldots \circ u_k$, pour tout k, par récurrence.]