Lycée J.B. Say

PSI* année 2025-2026

Chapitre II - TD

Matrices

Les basiques

Exercice 1. Calcul d'inverse

Inverser si possible les matrices suivantes :

- $(a_{i,j})_{1 \le i,j \le n}$ où $a_{i,j} = j i + 1$ si $j \ge i$, 0 sinon.
- $\bullet (1 \delta_{i,j})_{1 \le i,j \le n}$
- $(a_{i,j})_{0 \le i,j \le n}$ où $a_{i,j}=\binom{i-1}{j-1}$ en convenant que $\binom{i}{j}=0$ si i < j.

Exercice 2. Racines carrés matricielles

Soient
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 9 \end{pmatrix}$$
 et $B = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$.

- 1. Montrer que tout matrice qui commute avec A est diagonale. Résoudre dans \mathcal{M}_3 (\mathbb{R}) l'équation $X^2 = A$.
- Déterminer l'ensemble des matrices qui commutent avec B puis résoudre l'équation X² = B.

Exercice 3. Matrices semblables

Soient
$$A = \begin{pmatrix} -1 & 1 & 1 \\ -1 & -1 & 0 \\ 1 & 0 & -1 \end{pmatrix}$$
 et $B = \begin{pmatrix} -1 & 0 & 0 \\ 1 & -1 & 0 \\ 0 & 1 & -1 \end{pmatrix}$.

- 1. Montrer que les matrices A et B sont semblables (chercher une base de \mathbb{R}^3 dans laquelle l'endomorphisme canoniquement associé à A a pour matrice B).
- 2. En déduire un polynôme annulateur de degré 3 pour A.
- 3. Pour $n \ge 1$ calculer A^n en fonction de I_3 , A et A^2 .

Exercice 4. Équation polynômiale (CCP)

Soient A et B deux matrices réelles carrées d'ordre n telles qu'il existe un polynôme $P \in \mathbb{R}[X]$ vérifiant P(0) = 1 et AB = P(A).

Montrer que A est inversible et que A et B commutent.

Exercice 5. Équation matricielle

Résoudre dans $\mathcal{M}_n(\mathbb{K})$ l'équation matricielle X + tr(X)A = B, d'inconnue X.

Exercice 6. Matrices de transvection

Soit $n \geq 2$, on note $(E_{i,j})$ la base canonique de $\mathcal{M}_n(\mathbb{K})$.

1. Pour $i \neq j \in \llbracket 1; n \rrbracket$ et $\alpha \in \mathbb{K}$, montrer que la matrice de transvection $I_n + \alpha E_{i,j}$ est inversible.

2. Montrer que tout hyperplan de \mathcal{M}_n (\mathbb{K}) contient une matrice inversible.

Exercice 7. Centre de $\mathcal{M}_n(\mathbb{K})$

- 1. Soit $M \in \mathcal{M}_n(\mathbb{K})$. Calculer les produits $ME_{i,j}$ et $E_{i,j}M$, pour $i, j \in [1, n]$.
- 2. On suppose que M commute avec toute matrice de $\mathcal{M}_n(\mathbb{K})$. Montrer que M est une matrice scalaire.

Exercice 8. Simplification?

Soient A et B deux matrices de $\mathcal{M}_n(\mathbb{K})$ telles que :

$$\forall X \in \mathcal{M}_n(\mathbb{K}) \quad AXB = 0$$

Montrer que A = 0 ou B = 0.

Exercice 9. Matrices de rang 1

Soit M une matrice carrée de taille n et de rang 1.

- 1. Montrer que M s'écrit $M = UV^{\top}$, avec U et V deux matrices colonnes. En déduire que $M^2 = Tr(M)M$.
- 2. Lorsque $M^2=0$, montrer que la matrice M est semblable à la matrice élémentaire $E_{2,1}$.
- 3. Dans le cas contraire, montrer que M est semblable à la matrice $\operatorname{Diag}(\alpha, 0, \dots, 0)$, où $\alpha = \operatorname{Tr}(M)$.

Exercice 10. Matrices par blocs semblables (CCP)

Soient N_1 et N_2 deux matrices carrées nilpotentes de tailles respectives p_1 et p_2 , U_1 et U_2 deux matrices inversibles de tailles respectives q_1 et q_2 .

Soient
$$M_1 = \begin{pmatrix} N_1 & 0 \\ 0 & U_1 \end{pmatrix}$$
 et $M_2 = \begin{pmatrix} N_2 & 0 \\ 0 & U_2 \end{pmatrix}$.

Montrer que $\dot{M_1}$ et M_2 sont semblables si et seulement si $p_1=p_2, q_1=q_2$ et si N_1 et U_1 sont respectivement semblables à N_2 et U_2 .

Exercice 11. Diagonale dominante (Mines)

Soit $A = (a_{i,j}) \in \mathcal{M}_n(\mathbb{R})$. On note $L_i = \sum_{k \neq i} |a_{i,k}|$. Lorsque $\forall i \in \llbracket 1 ; n \rrbracket, |a_{i,i}| > L_i$, montrer que A est inversible.

Exercice 12. Matrices diagonales (Centrale)

Soient \mathcal{D}_n l'espace des matrices diagonales de $\mathcal{M}_n(\mathbb{R})$ et $D = \operatorname{Diag}(d_1, \ldots, d_n)$, où les d_i sont des réels distincts.

- 1. Montrer que (I_n, D, \dots, D^{n-1}) est une base de \mathcal{D}_n .
- 2. Soit $M \in \mathcal{M}_n(\mathbb{R})$ telle que MD = DM. Montrer que M est diagonale.

Lycée J.B. Say

PSI* année 2025-2026

Pour aller plus loin

Exercice 13. Calcul d'inverse (Mines)

On définit $\omega=e^{2i\pi/(n+1)}$ et $u: P\in \mathbb{C}_n[X]\mapsto (P(\omega^k))_{0\leqslant k\leqslant n}\in \mathbb{C}^{n+1}.$

- 1. Montrer que u est un isomorphisme et trouver la matrice U de u dans les bases canoniques.
- 2. Calculer, pour P $\in \mathbb{C}_n[\mathbf{X}]$ et $k \in [0,n]$, $\sum_{m=0}^n \mathbf{P}(\omega^m)\omega^{-km}$.
- 3. En déduire U^{-1} .

Exercice 14. Matrices de trace nulle (Mines)

Soit $n \geq 2$. Soit $H = \{M \in \mathcal{M}_n(\mathbb{R}), \operatorname{tr} M = 0\}$ et $N = \{M \in \mathcal{M}_n(\mathbb{R}), M^n = 0\}.$

Montrer que Vect(N) = H.

Exercice 15. Caractérisation de la trace (Mines)

Soit un entier $n\geq 1$ et φ une forme linéaire sur $\mathcal{M}_n\left(\mathbb{K}\right)$ telle que

$$\forall M, N \in \mathcal{M}_n(\mathbb{K}), \quad \varphi(MN) = \varphi(NM)$$

Montrer qu'il existe $\lambda \in \mathbb{K}$ tel que $\varphi = \lambda \operatorname{tr}$. [Utiliser la base canonique.]

En déduire que le sous espace de $\mathcal{M}_n(\mathbb{K})$ engendré par les matrices du type MN - NM est un hyperplan.

Exercice 16. Matrices nilpotentes

Soit $A \in \mathcal{M}_n(\mathbb{R})$. On suppose que $tr(A^k) = 0$ pour tout $k \in \mathbb{N}^*$.

- 1. Montrer que A n'est pas inversible. On pourra justifier que, si tel était le cas, on aurait $I_n \in \text{Vect }(A, A^2, \ldots)$.
- 2. En déduire que A est semblable à une matrice de la forme

$$\begin{pmatrix} 0 & \star & \dots & \star \\ 0 & & & \\ \vdots & & \mathbf{B} & \\ 0 & & & \end{pmatrix}. \text{ Que vaut } \mathrm{tr}(\mathbf{B}^k), \text{ pour } k \in \mathbb{N}^* ?$$

3. Conclure que A est semblable à une matrice triangulaire supérieure stricte et donc que A est nilpotente.

Exercice 17. Crochet de Lie (Mines)

Soient A et B dans $\mathcal{M}_n(\mathbb{R})$. On suppose que AB - BA = B.

- 1. Montrer que B n'est pas inversible.
- 2. Calculer $AB^k B^k A$ pour $k \in \mathbb{N}^*$. En déduire que B est nilpotente.

Exercice 18. Matrices magiques (Centrale)

Soit J_n la matrice dont tous les coefficients valent 1.

Pour
$$A \in \mathcal{M}_n(\mathbb{R})$$
 de coefficient $a_{i,j}$, on note $L_i = \sum_{j=1}^n a_{i,j}$

et
$$C_j = \sum_{i=1}^n a_{i,j}$$
. On dit que A est magique lorsque $\forall i, j \in [1; n]^2$, $L_i = C_j = S_n(A)$.

On note X_n l'ensemble des matrices magiques.

Montrer que X_n est l'ensemble des matrices qui commutent avec J_n . Montrer que X_n est un sous-espace stable par produit matriciel et que $S_n(AB) = S_n(A)S_n(B)$.

Calculer la dimension du sous-espace de X_n constitué des matrices A telles que $S_n(A)=0$.

Exercice 19. Nilpotentes (Mines)

Soient A, B $\in \mathcal{M}_n(\mathbb{C})$. On suppose trouvés n+1 complexes x_1, \ldots, x_{n+1} tels que $\forall i, A + x_i B$ soit nilpotente. Montrer que A et B sont nilpotentes.

Exercice 20. Matrices stochastiques (Centrale)

Soit une matrice $A \in \mathcal{M}_n(\mathbb{R})$ à coefficients strictement positifs et telle que $\forall i, \sum\limits_{j=1}^n [A]_{i,j}=1$. On note α le plus petit coefficient de A. Pour tout vecteur colonne X, on note $\min X$ et $\max X$ les plus petit et plus grand coefficients de X.

- 1. Montrer que, pour tout $Y \in \mathcal{M}_{n,1}(\mathbb{R}^+)$, $\min AY \ge \alpha \max Y$.
- 2. Montrer, pour tout $X \in \mathcal{M}_{n,1}(\mathbb{R})$, $\min AX \ge \alpha \max X + (1-\alpha) \min X$ et que $\max AX \le \alpha \min X + (1-\alpha) \max X$. Ind. Considérer $Y = X \min(X)U$ où U un vecteur propre de A bien choisi.
- 3. En déduire que la suite $(A^k)_k$ converge et préciser le rang de la limite.