Chapitre 13 : Eléments propres

Dans ce chapitre $K = \mathbb{R}$ ou $K = \mathbb{C}$.

1 Eléments propres pour un endomorphisme

Dans ce paragraphe : E désigne un K espace vectoriel de dimension quelconque.

Introduction: droite stable 1.1

Soit u un endomorphisme de E et D une droite stable de E.

Alors on peut écrire D = Vect(x) avec $x \neq 0_E$

D stable par u donne $u(x) \in D$ et donc $\exists \lambda \in K$, $u(x) = \lambda x$

Réciproquement si il existe $x \neq 0_E$ tel que $u(x) = \lambda x$ alors D = Vect(x) est stable par u.

On a donc :

Lemme. (Préliminaire)

Soit $u \in L(E)$ et $x \in E$ tel que $x \neq 0_E$: Vect(x) stable par $u \Leftrightarrow \exists \lambda \in K$, $u(x) = \lambda x$

Remarque. On sera donc amené à considéré l'équation

 $u(x) = \lambda x \mid et \ a \ poser \ les \ définitions \ du \ paragraphe suivant.$

Valeur et vecteur propre 1.2

Définitions. Soit $u \in L(E)$ un endomorphisme de E. Alors, on dit que :

- $\lambda \in K$ est une valeur propre de u si et seulement si $\exists x \in E$ tel que $\begin{cases} u(x) = \lambda x \\ x \neq 0 \\ E \end{cases}$ $x \in E$ est un vecteur propre de u si et seulement si $\exists \lambda \in K$ tel que $\begin{cases} u(x) = \lambda x \\ x \neq 0 \\ E \end{cases}$

Remarques. Attention un vecteur propre n'est jamais nul.

Par contre 0 peut très bien être valeur propre de u.

La relation a retenir est $u(x) = \lambda x$ (appelée "équation aux éléments propres").

Si on a cette relation et que $x \neq \overrightarrow{0_E}$ alors on dit que x et λ sont valeur et vecteur propre associés.

1.3 Autres éléments propres

Définitions. Soit $u \in L(E)$. Alors on note sp(u) et on appelle spectre de u l'ensemble des valeurs propres de u. Pour $\lambda \in sp(u)$ on pose $E_{\lambda}(u) = ker(u - \lambda Id_E)$.

 $E_{\lambda}(u)$ est appelé sous espace propre de u associé à la valeur propre λ .

Propriétés immédiates

1.4.1 Structure

Lemme. Avec les notations précédents : E_{λ} est un sous espace vectoriel de E

Remarque. E_{λ} est l'ensemble des vecteurs propres de u associé à la valeur propre λ auquel on rajoute le vecteur nul.

1.4.2 Valeur propre 0 et noyau

Lemme. Avec les notations précédents, si 0 est valeur propre alors le sous espace propre associé est ker(u)On a donc u injective $\Leftrightarrow 0 \notin sp(u)$

preuve:

1.4.3 Intérêt

Lemme. Si $B = (e_1, e_2, ..., e_n)$ est une base de vecteurs propres de u alors $M_B(u)$ est une matrice diagonale. preuve:

1.4.4 Exemple

```
Soit E = \mathbb{R}_2[X] et f \in L(E) défini par f(P) = X^2 P''.
```

1.5 Caractérisation des valeurs propres

```
Lemme. Soit u \in L(E). Alors : \lambda \in sp(u)

\Leftrightarrow \exists x \in E \ tel \ que : x \neq \overrightarrow{0_E} \ et \ u(x) = \lambda x

\Leftrightarrow ker(u - \lambda Id_E) \neq \{\overrightarrow{0_E}\}

\Leftrightarrow u - \lambda Id_E \ n'est \ pas \ injectif
```

Remarque. Si de plus E est de dimension finie alors :

```
\begin{array}{l} \lambda \in sp(u) \\ \Leftrightarrow u - \lambda Id_E \ n'est \ pas \ surjectif \\ \Leftrightarrow u - \lambda Id_E \ n'est \ pas \ bijectif \\ \Leftrightarrow rg(u - \lambda Id_E) \neq dim(E) \Leftrightarrow det(u - \lambda Id_E) = 0 \end{array}
```

Cette dernière caractérisation est la plus pratique, on la développera au paragraphe suivant puisque l'on travaillera surtout en dimension finie.

1.6 Théorèmes importants

1.6.1 Somme directe

Théorème . Une somme finie de sous espaces propres associés à des valeurs propres distinctes est directe.

Corollaire. Toute famille de vecteurs propres associés à des valeurs propres distinctes est libre.

preuve:

1.6.2 Valeur propre et polynôme

Théorème . Soit $u \in L(E)$, $\lambda \in sp(u)$ et $x \in E_{\lambda}$ un vecteur propre de u associé à la valeur propre λ $Alors: \begin{cases} \forall k \in \mathbb{N} \ , \ \mathbf{u^k(x)} = \lambda^k \mathbf{x} \\ \forall P \in K[X] \ , \ \mathbf{P(u)(x)} = \mathbf{P(\lambda)x} \\ Si \ \lambda \ est \ valeur \ propre \ de \ u \\ alors \ P(\lambda) \ est \ valeur \ propre \ de \ P(u) \end{cases}$

Corollaire. Si P est polynôme annulateur de u alors le spectre de u est inclus dans l'ensemble des racines de P.

preuve :

Exemple. Si u est nilpotent (c'est-à-dire qu'il existe $k \in \mathbb{N}^*$ tel que $u^k = 0_{L(E)}$) alors 0 est la seule valeur propre de u.

1.7 Stabilité

```
Lemme. Soit u \in L(E) et \lambda \in K alors E_{\lambda} est stable par u.

preuve:
```

```
Lemme. Soit (u, v) \in L(E)^2 tel que u et v commutent. Alors les sous espaces propres de u sont stables par v. preuve
```

2 Cas particulier de la dimension finie : Polynôme caractéristique

Dans ce paragraphe E est dimension finie. et on pose n = dim(E).

2.1 Définition

```
Définition. Soit u \in L(E). Alors on pose \chi_u(X) = \det(XId_E - u). \chi_u est appelé polynôme caractéristique de u.
```

Remarque. On a parfois $\chi_u(X) = det(u - XId_E)$ (ancien programme), ne change que le signe ...

Exemple. Polynôme caractéristique d'une symétrie.

2.2 Propriété

```
Propriété. \chi_u est un polynôme unitaire de degré n.

Le terme constant de \chi_u vaut \chi_u(0) = (-1)^n det(u).

Le terme de degré n-1 vaut -tr(u)

preuve :
```

2.3 Lien avec sp(u)

```
Lemme. Si u \in L(E) alors : \lambda \in sp(u) \Leftrightarrow \chi_u(\lambda) = 0.
```

Remarque. sp(u) est donc l'ensemble des racines de χ_u .

```
Corollaire. sp(u) possède au plus n éléments. 
Si K = \mathbb{C} alors u admet au moins une valeur propre. 
preuve :
```

2.4 Ordre de multiplicité

2.4.1 Définition

Soit $u \in L(E)$ et $\lambda \in sp(u)$. Alors on appelle ordre de multiplicité de λ comme valeur propre de u l'ordre de multiplicité de λ comme racine de χ_u .

2.4.2 Théorème

```
Soit u \in L(E) et \lambda \in sp(u). On note k l'ordre de multiplicité de la valeur propre \lambda. Alors : 1 \leq dim(E_{\lambda}(u)) \leq k.

Corollaire. Si \lambda est valeur propre simple alors dim(E_{\lambda}(u)) = 1
```

preuve:

2.5 Théorème de Hamilton-Cayley

```
Théorème . Si u \in L(E) alors \chi_u(u) = 0_{L(E)}
```

 ${\bf Remarque.}\ \ Autrement\ dit,\ le\ polyn\^ome\ caract\'eristique\ de\ u\ est\ un\ polyn\^ome\ annulateur\ de\ u.$

```
preuve : (non exigible)
```

3 Généralisation pour une matrice

On va généraliser à $A \in M_n(K)$ les notions précédentes. On ne perdra pas de vue que A est la matrice relativement à la base canonique de $M_{n,1}(K)$ d'un endomorphisme u de $L(M_{n,1}(K))$.

3.1 Eléments propres pour une matrice

Définitions. Soit $A \in M_n(K)$. Alors :

- $\lambda \in K$ est valeur propre de A
 - si et seulement si $\exists X \in M_{n,1}(K)$ tel que $\begin{cases} AX = \lambda X \\ X \neq 0 \end{cases}$
- $X \in M_{n,1}(K)$ est un vecteur propre de Asi et seulement si $\exists \lambda \in K$ tel que : $\begin{cases} AX = \lambda X \\ X \neq 0 \end{cases}$
- On note sp(A) et on appelle spectre de A l'ensemble des valeurs propres de A.
- Si $\lambda \in sp(A)$ alors on pose $E_{\lambda}(A) = ker(A \lambda I_n)$. Cet ensemble est appelé sous espace propre de A associé à la valeur propre λ .

Remarques. On note parfois $sp_K(A)$ le spectre de A pour bien spécifiée dans quel corps on travaille. En particulier si $A \in M_n(\mathbb{R})$ alors il faut bien faire la différence entre $sp_{\mathbb{R}}(A)$ et $sp_{\mathbb{C}}(A)$ qui peuvent être différent.

3.2 Caractérisation des valeurs propres

Lemme. Soit $A \in M_n(K)$. Soit $\lambda \in K$. Alors: $\lambda \in sp(A)$ $\Leftrightarrow ker(A - \lambda I_n) \neq \{\overrightarrow{0_E}\}$ $\Leftrightarrow rg(A - \lambda I_n) \neq n$ $\Leftrightarrow det(A - \lambda I_n) = 0$

3.3 Polynôme caractéristique

3.3.1 Définition

Définition. Soit $A \in M_n(K)$. Alors on pose $\chi_A(X) = det(XI_n - A)$. χ_A est appelé polynôme caractéristique de A.

3.3.2 Propriété

Lemme. χ_A est un polynôme de degré n qui s'écrit sous la forme : $\chi_A(X) = X^n - tr(A)X^{n-1} + ... + (-1)^n det(A)$ Les valeurs propres de A sont les racines de χ_A Le spectre de A est l'ensemble des racines de χ_A .

Définitions. L'ordre de multiplicité d'une valeur propre λ de A est défini comme étant l'ordre de multiplicité de λ en tant que racine de χ_A .

Exemple. Valeurs propres de $A = \begin{pmatrix} 1 & -1 \\ 1 & 3 \end{pmatrix}$

3.4 Cas particulier

Lemme. Si A est une matrice triangulaire alors ses valeurs propres sont les termes de la diagonale preuve :

3.5 Théorèmes

Théorème. Soit $A \in M_n(K)$ et $\lambda \in sp(A)$. On note k l'ordre de multiplicité de la valeur propre λ . $Alors: 1 \leq dim(ker(A - \lambda I_n)) \leq k$

Corollaire. Si λ est valeur propre simple de A alors $dim(ker(A - \lambda I_n)) = 1$

Théorème. Une somme finie de sous espaces propres associés à des valeurs propres distinctes est directe.

Théorème . Théorème de Hamilton-Cayley Si $A \in M_n(K)$ alors $\chi_A(A) = 0_{M_n(K)}$

Remarque. Autrement dit, le polynôme caractéristique de A est un polynôme annulateur de A.

preuve: (non exigible)

3.6 Lien avec les endomorphismes

Lemme. Soit A une matrice de $M_n(K)$ et u un endomorphisme d'un espace vectoriel E de dimension n admettant A comme matrice relativement à une base B de E. Alors:

- i) $\lambda \in sp(A) \Leftrightarrow \lambda \in sp(u)$
- ii) $\chi_u = \chi_A$
- iii) x vecteur propre de $u \Leftrightarrow M_B(x)$ vecteur propre de A
- iv) L'ordre de multiplicité est le même comme valeur propre de A et comme valeur propre de u.

3.7 Matrices semblables

Lemme. Deux matrices semblables ont même rang, même trace, même déterminant, même spectre et même polynôme caractéristique.

Remarques. Attention!! il n'y a pas de réciproque!!!

Attention, les sous-espaces propres sont différents!!

On a de même que : A et A^T ont même rang, même déterminant, même trace, même spectre et même polynôme caractéristique.

Sommaire