Devoir à la maison n°8 de Mathématiques

Exercice 1

- a) Déterminer le rayon de convergence de le série entière $\sum cos(ln(1+\frac{1}{n}))\frac{2^n+n^2+n}{8^n}z^{2n+3}$
- b) Déterminer le rayon de convergence de le série entière $\sum {2n \choose n} z^n$
- c) Déterminer, suivant la valeur du réel a, le rayon de convergence de la série entière $\sum \frac{a^n+n}{n+1}z^n$

Exercice 2

On pose
$$\forall x \in \mathbb{R}$$
 $f(x) = \begin{cases} \frac{1 - \cos(x^2)}{x^4} & \text{si } x \neq 0 \\ \lambda & \text{si } x = 0 \end{cases}$ avec $\lambda \in \mathbb{R}$

- 1°) Quelle valeur donner à λ pour que f soit continue en 0?
- 2°) On suppose que λ prend la valeur donnée au 1°). Montrer alors que f est de classe C^{∞} sur \mathbb{R} .

Problème : Centrale PC mathématiques 2, 2022

Problème (ccINP⁺) : Autour de la fonction Zéta alternée de Riemann

Objectifs : On note F la fonction zeta alternée de Riemann, définie par

$$F(x) = \sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n^x},$$

et ζ la fonction zeta de Riemann, définie sur $]1, +\infty[$ par

$$\zeta(x) = \sum_{n=1}^{+\infty} \frac{1}{n^x}.$$

Ce problème propose une étude croisée de quelques propriétés de F et $\zeta.$

I. Généralités

- 1°) Déterminer l'ensemble de définition de F.
- 2°) On admet que $\sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{n} = \ln(2)$ (voir cours ou exercice) Déterminer F(1).
- 3°) Démontrer que la série de fonctions $\sum_{n\geq 1} \frac{(-1)^{n-1}}{n^x}$ converge normalement sur $[2,+\infty[$. En déduire la limite de F en $+\infty$.
 - 4°) Dérivabilité de F
- a) Soit x > 0. Étudier les variations sur $]0, +\infty[$ de la fonction $t \mapsto \frac{\ln(t)}{t^x}$ et en déduire que la suite $\left(\frac{\ln(n)}{n^x}\right)_{n\geq 1}$ est monotone à partir d'un certain rang (dépendant de x) que l'on précisera.
 - b) Pour $n \ge 1$, on pose $f_n : x \mapsto \frac{(-1)^{n-1}}{n^x}$.

Si a est un réel strictement positif, démontrer que la série des dérivées $\sum_{n\geq 1} f'_n$ converge uniformément sur $[a,+\infty[$.

En déduire que F est une fonction de classe C^1 sur $]0, +\infty[$.

5°) Lien avec ζ

Calculer, pour x > 1, $F(x) - \zeta(x)$ en fonction de x et de $\zeta(x)$. En déduire que :

$$F(x) = (1 - 2^{1-x})\zeta(x).$$

Puis en déduire la limite de ζ en $+\infty$.

II. Produit de Cauchy de la série alternée par elle-même

On rappelle que le produit de Cauchy de deux séries $\sum_{n\geq 1} a_n$ et $\sum_{n\geq 1} b_n$ est la série $\sum_{n\geq 2} c_n$,

où $c_n = \sum_{k=1}^{n-1} a_k b_{n-k}$. Dans cette partie, on veut déterminer la nature, selon la valeur de x, de la série $\sum_{n\geq 2} c_n(x)$, produit de Cauchy de $\sum_{n\geq 1} \frac{(-1)^{n-1}}{n^x}$ par elle-même.

Cette étude va illustrer le fait que le produit de Cauchy de deux séries convergentes n'est pas nécessairement une série convergente.

2

Dans toute cette partie, n désigne un entier supérieur ou égal à 2 et x un réel strictement positif.

- 6°) Étude de la convergence
- a) Indiquer sans aucun calcul la nature et la somme, en fonction de F, de la série produit $\sum_{n\geq 2} c_n(x)$ lorsque x>1.
- b) Démontrer que, pour x > 0, $|c_n(x)| \ge \frac{4^x(n-1)}{n^{2x}}$

En déduire, pour $0 < x \le \frac{1}{2}$, la nature de la série $\sum_{n \ge 2} c_n(x)$

 7°) Cas où x=1

On suppose, dans cette question, que x = 1.

a) Décomposer en éléments simples la fraction rationnelle $\frac{1}{X(n-X)}$

En déduire une expression de $c_n(x)$ en fonction de $\frac{H_{n-1}}{n}$, où $H_n = 1 + \frac{1}{2} + \cdots + \frac{1}{n}$ (somme partielle de la série harmonique).

- b) Déterminer la monotonie de la suite $\left(\frac{H_{n-1}}{n}\right)_{n\geq 2}$
- c) En déduire la nature de la série $\sum_{n\geq 2} c_n(x)$

III. Calcul de la somme d'une série à l'aide d'une étude de ζ au voisinage de 1

- 8°) Développement asymptotique en 1
- a) Écrire en fonction de $\ln(2)$ et de F'(1) le développement limité à l'ordre 1 et au voisinage de 1 de la fonction F.
 - b) Déterminer le développement limité à l'ordre 2 et au voisinage de 1 de la fonction $x \mapsto 1 2^{1-x}$.
- c) En déduire deux réels a et b, qui s'écrivent éventuellement à l'aide de $\ln(2)$ et F'(1), tels que l'on ait, pour x au voisinage de 1^+ :

$$\zeta(x) = \frac{a}{x-1} + b + o(1).$$

9°) Développement asymptotique en 1 (bis)

On considère la série de fonctions $\sum_{n\geq 1} v_n,$ où v_n est définie sur [1,2] par

$$v_n(x) = \frac{1}{n^x} - \int_n^{n+1} \frac{\mathrm{d}t}{t^x}.$$

a) Justifier que, pour $n \ge 1$ et $x \in [1, 2]$, on a :

$$0 \le v_n(x) \le \frac{1}{n^x} - \frac{1}{(n+1)^x}.$$

3

b) Justifier que, pour $x \in [1, 2]$, la série $\sum_{n \geq 1} v_n(x)$ converge.

On note alors $\gamma = \sum_{n=1}^{+\infty} v_n(1)$ (appelée constante d'Euler).

- c) Exprimer, pour $x \in]1,2]$, la somme $\sum_{n=1}^{+\infty} v_n(x)$ à l'aide de $\zeta(x)$ et 1-x.
- d) Démontrer que la série $\sum_{n\geq 1} v_n$ converge uniformément sur [1,2] (on pourra utiliser le reste de la série).
 - e) En déduire que l'on a, pour x au voisinage de 1^+ :

$$\zeta(x) = \frac{1}{x-1} + \gamma + o(1).$$

10°) Application

Déduire des résultats de précédent une expression, à l'aide de $\ln(2)$ et γ , de la somme

$$\sum_{n=1}^{+\infty} \frac{(-1)^{n-1} \ln(n)}{n}.$$