Mathématiques : Correction du devoir à la maison n°7

EXERCICE n°1

- a) Si x = 0, alors $f_n(0) = 0$ et donc $f_n(0) \underset{n \to +\infty}{\longrightarrow} 0$
- Si $x \in]0,1]$, alors, pour $n > \frac{1}{x}$ on a $\frac{1}{n} < x$, donc $f_n(x) = 0$ et donc $f_n(x) \xrightarrow[n \to +\infty]{} 0$

Bilan : $(f_n)_{n\in\mathbb{N}^*}$ converge simplement sur [0,1] vers la fonction nulle.

b) f_n est clairement continue sur $[0, \frac{1}{n}[$ et sur $]\frac{1}{n}, 1]$. Comme $\lim_{\substack{x \to \frac{1}{n} \\ x < \frac{1}{n}}} f_n(x) = \lim_{\substack{x \to \frac{1}{n} \\ x < \frac{1}{n}}} n^2 x (1 - nx) = 0 = \lim_{\substack{x \to \frac{1}{n} \\ x > \frac{1}{n}}} f_n(x) = f_n(\frac{1}{n})$ alors f_n est continue en $\frac{1}{n}$

On a f_n dérivable sur $\left[0,\frac{1}{n}\right[$ et $\forall x\in\left[0,\frac{1}{n}\right[$, $f_n'(x)=n^2(1-nx-nx)=n^2(1-2nx)$

 $\frac{1}{2n} \in [0, \frac{1}{n}[$, on a donc le tableau de variation suivant :

`			,		,		
x	0		$\frac{1}{2n}$		$\frac{1}{n}$		1
$f'_n(x)$		+	_			0	
			$f_n(\frac{2}{n})$				
$f_n(x)$		7		V			
	0				0	\longrightarrow	0

Avec $f_n(\frac{1}{2n}) = n^2 \frac{1}{2n} (1 - \frac{1}{2}) = \frac{n}{4}$

- c) f_n est bornée sur [0,1], on peut donc justifier la définition de $||f_n||_{\infty}$. Avec les variations du b) on a même : $\forall n \in \mathbb{N}^*$, $||f_n||_{\infty} = \frac{n}{4}$
- d) Si (f_n) convergeait uniformément sur [0,1], ce serait vers la fonction nulle et on aurait alors : $\lim_{n\to+\infty}||f_n||_{\infty}=0$. Mais le c) permet d'affirmer que : $\lim_{n\to+\infty}||f_n||_{\infty}=+\infty$.

Donc $(f_n)_{n\in\mathbb{N}^*}$ ne converge pas uniformément sur [0,1].

EXERCICE n°2

- a) Si x = 0, alors $f_n(0) = 0$ et donc $f_n(0) \underset{n \to +\infty}{\longrightarrow} 0$
- Si x > 0, alors, $exp(\frac{-1}{nx}) \underset{n \to +\infty}{\longrightarrow} exp(0) = 1$ et $\frac{1}{2+nx} \underset{n \to +\infty}{\longrightarrow} 0$ donc $f_n(x) \underset{n \to +\infty}{\longrightarrow} 0$

Bilan: $(f_n)_{n\in\mathbb{N}^*}$ converge simplement sur $[0,+\infty]$ vers la fonction nulle.

b) • Si $x \in [a, +\infty[$ alors $0 \le exp(\frac{-1}{nx}) \le 1$ et $0 \le \frac{1}{2+nx} \le \frac{1}{2+na}$. Donc $\forall x \in [a, +\infty[$, $0 \le f_n(x) \le \frac{1}{2+na}$, on en déduit : $\sup_{x \in [a, +\infty[} |f_n(x)| \le \frac{1}{2+na} \xrightarrow[n \to +\infty]{} 0$

Donc $\sup_{x \in [a, +\infty[} |f_n(x)| \xrightarrow[n \to +\infty]{} 0$ et donc $[(f_n)$ converge uniformément vers la fonction nulle sur $[a, +\infty[$ $[pour \ a > 0]$

• On remarque que $f_n(\frac{1}{n}) = \frac{1}{3e}$, donc $\sup_{x \in [0,+\infty[} |f_n(x)| \ge \frac{1}{3e}$ et on ne peut pas avoir $\sup_{x \in [0,+\infty[} |f_n(x)| \xrightarrow[n \to +\infty]{} 0$ et donc $f(f_n)$ ne converge pas uniformément sur $f(f_n)$ ne converge pas uniformément

EXERCICE n°3

1.) On remarque alors que $\sum f_n(x)$ est une série alternée, comme de plus $(|f_n(x)|)_{n\in\mathbb{N}}$ est décroissante et $\lim_{n\to+\infty} |f_n(x)| = 0 \text{ (car } x \geq 1 > 0) \text{ on peut appliquer le critère des séries alternées et on obtient que : } \sum_{n\to+\infty} f_n(x)$ est convergente.

On a donc :
$$\sum_{n\geq 0} f_n \text{ converge simplement sur } J.$$

2.) On a la norme infinie sur J de f_n qui vaut : $||f_n||_{\infty,J} = \sup_{t \in J} |f_n(x)| = \frac{1}{\sqrt{1+n}} \sim \frac{1}{n^{\frac{1}{2}}} > 0$. Comme $\sum \frac{1}{n^{\frac{1}{2}}}$ est une série de Riemann divergente alors $\sum_{n \geq 0} f_n$ ne converge pas normalement sur J

3.) Toujours avec le théorème spécial sur les séries alternées on a :

$$\forall x \in J , \ \forall N \in \mathbb{N} , \ \left| \varphi(x) - \sum_{n=0}^{N} f_n(x) \right| \le |f_{N+1}(x)| \le \frac{1}{\sqrt{1 + (N+1)x}} \le \frac{1}{\sqrt{N+2}} \underset{N \to +\infty}{\longrightarrow} 0$$

Comme la majoration est indépendante de x alors $\sum_{n\geq 0} f_n$ converge uniformément sur J

4.) On cherche $\ell = \lim_{x \to +\infty} \varphi(x)$.

Avec le théorème spécial on a : $|\varphi(x) - 1| = |\varphi(x) - f_0(x)| \le |f_1(x)| \le \frac{1}{\sqrt{1+x}} \underset{x \to +\infty}{\longrightarrow} 0$

On a donc
$$\ell = \lim_{x \to +\infty} \sum_{n=0}^{+\infty} f_n(x) = \lim_{x \to +\infty} \varphi(x) = 1$$

Remarque: on peut aussi utiliser le théorème de la double limite puisqu'il y a convergence uniforme.

5.1) Par le critère des séries alternées : $\sum u_n$ est convergente.

$$5.2) \varphi(x) - \ell - \frac{a}{\sqrt{x}}$$

$$= \left[\sum_{n=0}^{+\infty} \frac{(-1)^n}{\sqrt{1+nx}} - 1\right] - \frac{\sum_{n=1}^{+\infty} \frac{(-1)^n}{\sqrt{n}}}{\sqrt{x}}$$

$$= \sum_{n=1}^{+\infty} \frac{(-1)^n}{\sqrt{1+nx}} - \left(\sum_{n=1}^{+\infty} \frac{(-1)^n}{\sqrt{n}}\right) \frac{1}{\sqrt{x}}$$

$$= \sum_{n=1}^{+\infty} \left(\frac{(-1)^n}{\sqrt{1+nx}} - \frac{(-1)^n}{\sqrt{nx}}\right)$$

$$= \sum_{n=1}^{+\infty} (-1)^n \left(\frac{1}{\sqrt{1+nx}} - \frac{1}{\sqrt{nx}}\right)$$

 $g:u\mapsto \frac{1}{\sqrt{u}}$ est de classe C^1 sur [nx;1+nx], donc par le théorème des accroissements finis : $\frac{1}{\sqrt{1+nx}}-\frac{1}{\sqrt{nx}}=g(1+nx)-g(nx)=g'(c)(1+nx-nx)=\frac{-1}{2c^{\frac{3}{2}}} \text{ avec } c\in]nx;1+nx[$

Donc
$$\left| \frac{1}{\sqrt{1+nx}} - \frac{1}{\sqrt{nx}} \right| \le \frac{1}{2(nx)^{\frac{3}{2}}}$$

Comme $\sum \frac{1}{n^{\frac{3}{2}}}$ est convergente, en notant $\xi = \sum_{n>1} \frac{1}{n^{\frac{3}{2}}}$ on a : $\left| \varphi(x) - \ell - \frac{a}{\sqrt{x}} \right| \leq \frac{\xi}{2x^{\frac{3}{2}}}$

On a donc :
$$\varphi(x) - l - \frac{a}{\sqrt{x}} = O(\frac{1}{x^{\frac{3}{2}}})$$
 et donc : $\varphi(x) = l + \frac{a}{\sqrt{x}} + O(\frac{1}{x^{\frac{3}{2}}})$

EXERCICE n°4

- Q1) Si x < 0 alors $e^{-x\sqrt{n}} \longrightarrow_{n \to +\infty} +\infty$ donc $\sum e^{-x\sqrt{n}}$ est grossièrement divergente.
- Si x=0 alors $e^{-x\sqrt{n}} \underset{n \to +\infty}{\longrightarrow} 1$ donc $\sum e^{-x\sqrt{n}}$ est grossièrement divergente.
- Si x > 0, alors par comparaison exp-puissance $n^2 e^{-x\sqrt{n}} \underset{n \to +\infty}{\longrightarrow} 0$ et donc $e^{-x\sqrt{n}} = o(\frac{1}{n^2})$. Par négligeabilité, comme $\sum \frac{1}{n^2}$ est absolument convergente, alors $\sum e^{-x\sqrt{n}}$ est convergente.
 - Bilan : $D =]0, +\infty[$
 - Q2) On pose pour tout entier n: $f_n:]0, +\infty \longrightarrow \mathbb{R}$ $\lim_{x \mapsto exp(-x\sqrt{n})} \text{ ainsi } f = \sum_{n=0}^{+\infty} f_n$
- Soit a>0. Comme $x\mapsto f_n(x)$ est décroissante et positive sur $[a,+\infty[$ on en déduit : $||f_n||_{\infty}^{[a,+\infty[}=\sup_{x\in[a,+\infty[}|f_n(x)|=e^{-a\sqrt{n}}]$ Comme $\sum e^{-a\sqrt{n}}$ est convergente (c'est f(a)) alors $\sum f_n$ converge normalement, et donc uniformément, sur

On a alors $\begin{cases} \text{les fonctions } f_n \text{ sont continues sur } [a, +\infty[\\ (\sum f_n) \text{ converge uniformément sur } [a, +\infty[\\ \end{cases}.$

On peut donc appliquer le théorème de transfert de continuité pour les séries de fonctions et on en déduit f continue sur $[a, +\infty[$

- On a $\forall a > 0 : f$ est continue sur $[a, +\infty[$. Comme $\bigcup_{a>0} [a, +\infty[=]0, +\infty[=D, \text{ on en déduit : } \boxed{f \text{ est continue sur } D}.$
- Q3) On a $f_0(x) = 1 \xrightarrow[x \to +\infty]{} 1$ et $\forall n \ge 1$, $f_n(x) = e^{-x\sqrt{n}} \xrightarrow[x \to +\infty]{} 0$

On a alors : $\begin{cases} \forall n \in \mathbb{N} , \lim_{x \to +\infty} f_n(x) \text{ existe dans } \mathbb{R} \\ (\sum f_n) \text{ converge uniformément vers } f \text{ sur } [16, +\infty[$

On peut donc utiliser le théorème de la double limite pour les séries de fonctions et on en déduit : $\sum_{n=0}^{+\infty} \lim_{x \to +\infty} f_n(x)$

converge et $\sum_{n=0}^{+\infty} \lim_{x \to +\infty} f_n(x) = \lim_{x \to +\infty} \sum_{n=0}^{+\infty} f_n(x)$ ou encore : $\lim_{x \to +\infty} f(x) = 1$

- Q4) Soit x > 0.
- $t \mapsto exp(-x\sqrt{t})$ est continue sur $[0, +\infty[$ donc $\int_{0}^{+\infty} exp(-x\sqrt{t})dt$ pose problème uniquement en $+\infty$.

Au voisinage de $+\infty: t^2 exp(-x\sqrt{t}) \underset{t \to +\infty}{\longrightarrow} 0$ car x > 0 et donc $exp(-x\sqrt{t}) = o(\frac{1}{t^2})$.

Comme $t\mapsto \frac{1}{t^2}$ est intégrable sur $[1,+\infty[$ par Riemann, alors, par négligeabilité $t\mapsto \exp(-x\sqrt{t})$ est intégrable $\operatorname{sur} [1, +\infty[\text{ puis sur } [0, +\infty[$

3

On a donc $\int_{0}^{+\infty} exp(-x\sqrt{t})dt$ convergente.

• Soit
$$n \in \mathbb{N}$$
.

$$t \in [n, n+1]$$

$$\Rightarrow n \leq t \leq n+1$$

$$\Rightarrow \sqrt{n} \leq \sqrt{t} \leq \sqrt{n+1}$$

$$\Rightarrow -\sqrt{n+1} \le -\sqrt{t} \le -\sqrt{n}$$

$$\Rightarrow -x\sqrt{n+1} \le -x\sqrt{t} \le -x\sqrt{n}$$
 on utilise la croissance de exp

$$\Rightarrow exp(-x\sqrt{n+1}) \le exp(-x\sqrt{t}) \le exp(-x\sqrt{n})$$

On intègre entre
$$t = n$$
 et $t = n + 1$ et on a : $\forall n \in \mathbb{N} : exp(-x\sqrt{n+1}) \leq \int_{x}^{n+1} exp(-x\sqrt{t})dt \leq exp(-x\sqrt{n})$

En sommant pour n variant de n=0 à $n=+\infty$, comme les séries et l'intégrale convergent et par la relation de Chasles : $\sum_{n=0}^{+\infty} exp(-x\sqrt{n+1}) \le \int_{0}^{+\infty} exp(-x\sqrt{t})dt \le \sum_{n=0}^{+\infty} exp(-x\sqrt{n})$

Donc
$$f(x) - 1 \le \int_{0}^{+\infty} exp(-x\sqrt{t})dt \le f(x)$$

En réordonnant on a :
$$\int_{0}^{+\infty} exp(-x\sqrt{t})dt \le f(x) \le 1 + \int_{0}^{+\infty} exp(-x\sqrt{t})dt$$

Q5) Par le changement de variable C^1 bijectif : $u = x\sqrt{t}$ (donc $t = \frac{u^2}{x^2}$ et $dt = \frac{2udu}{x^2}$) :

$$\int_{0}^{+\infty} exp(-x\sqrt{t})dt = \int_{0}^{+\infty} exp(-u)\frac{2udu}{x^{2}} = \frac{1}{x^{2}} \int_{0}^{+\infty} 2uexp(-u)du$$

Puis par intégrations par parties (licite car les limites aux bornes existent) :

$$\int_{0}^{+\infty} 2u exp(-u) du = \left[2u(-e^{-u})\right]_{0}^{+\infty} + \int_{0}^{+\infty} 2e^{-u} dt = 0 - 0 + \left[-2e^{-u}\right]_{0}^{+\infty} = 2$$

Donc
$$\int_{0}^{+\infty} exp(-x\sqrt{t})dt = \frac{2}{x^2}$$

En reportant dans Q4):
$$\frac{2}{x^2} \le f(x) \le \frac{2}{x^2} + 1 \Rightarrow 1 \le \frac{f(x)}{\frac{2}{x^2}} \le 1 + \frac{x^2}{2}$$

Par encadrement
$$\lim_{x\to 0} \frac{f(x)}{\frac{2}{x^2}} = 1$$
 et donc $f(x) \sim \frac{2}{x^2}$