Chapitre 14 : Réduction des endomorphismes et des matrices carrées

Dans ce chapitre \mathbb{K} désigne \mathbb{R} ou \mathbb{C} . Soit $n \in \mathbb{N}^*$.

E désigne un \mathbb{K} espace vectoriel de dimension finie n.

On étudiera un endomorphisme u de L(E) et une matrice $A \in M_n(\mathbb{K})$.

A peut, par exemple, être la matrice de u relativement à une base B de E.

1 Généralités

1.1 Objectifs

Trouver une base B de E dans laquelle $M_B(u)$ est la plus simple possible ... en particulier diagonale ou triangulaire...

1.2 Réductabilité

Définitions. Soit $u \in L(E)$ et $A \in M_n(\mathbb{R})$, alors on dit que :

- u est diagonalisable si et seulement si il existe une base B de E telle que $M_B(u)$ soit diagonale.
- u est trigonalisable si et seulement si il existe une base B de E telle que $M_B(u)$ soit triangulaire.
- A est diagonalisable dans $M_n(\mathbb{K})$ si et seulement si $\exists P \in GL_n(\mathbb{K})$, $A = PDP^{-1}$ avec D une matrice diagonale de $M_n(\mathbb{K})$.
- A est trigonalisable dans $M_n(\mathbb{K})$ si et seulement si $\exists P \in GL_n(\mathbb{K})$, $A = PTP^{-1}$ avec T une matrice triangulaire de $M_n(\mathbb{K})$.
- Trouver une base B telle que $M_B(u)$ soit diagonale s'appelle diagonaliser u
- Trouver une base B telle que $M_B(u)$ soit trigonale s'appelle trigonaliser u
- Trouver $P \in GL_n(\mathbb{K})$ et $D \in M_n(\mathbb{K})$ diagonale telle que $A = PDP^{-1}$ s'appelle diagonaliser A
- Trouver $P \in GL_n(\mathbb{K})$ et $T \in M_n(\mathbb{K})$ trigonale telle que $A = PTP^{-1}$ s'appelle **trigonaliser** A
- Diagonaliser ou trigonaliser s'appelle **réduire**.

Remarque. Triangulaire, signifie triangulaire supérieure ou triangulaire inférieure. En général on s'intéresse plus aux matrices triangulaires supérieures.

1.3 Interprétations

Lemme. 1

Soit $u \in L(E)$ Alors:

u est diagonalisable si et seulement si E admet une base formée de vecteurs propres de u.

Lemme. 2

Soit $u \in L(E)$ Alors:

u est trigonalisable

si et seulement si E admet une base $B=(e_1,e_2,..,e_n)$ telle que : $\forall k \in [1;n]$, $Vect(e_1,e_2,..,e_k)$ est stable par u.

preuves:

2 Diagonalisation en dimension finie

2.1 Remarque préliminaire

On énonce les théorèmes suivants avec un endomorphisme, on a bien sûr les mêmes avec une matrice.

2.2 Conditions nécessaires et suffisantes

2.2.1 Conditions nécessaires et suffisantes : théorème

Soit E un K espace vectoriel de dimension n et $u \in L(E)$.

On écrit $Sp(u) = \{\mu_k, k \in [1, p]\}$ avec les μ_k dans K et $p \in \mathbb{N}$. p est le nombre de valeurs propres de u avec la convention $Sp(u) = \emptyset$ si p = 0.

On note $E_{\mu_k} = ker(u - \mu_k I d_E)$, m_k l'ordre de multiplicité de μ_k comme valeur propre de u et χ_u le polynôme caractéristique de u.

On a alors: u diagonalisable

 \Leftrightarrow il existe une base de E formée de vecteurs propres de u

$$\Leftrightarrow E = \bigoplus_{k=1}^p E_{\mu_k}$$

$$\Leftrightarrow \sum_{k=1}^p dim(E_{\mu_k}) = n = dim(E)$$

$$\Leftrightarrow \chi_u \text{ est scind\'e et } \forall k \in \llbracket 1; p \rrbracket \ , \ dim(E_{\mu_k}) = m_k$$

$$\Leftrightarrow u \text{ admet un polyn\^ome annulateur scind\'e simple}$$

$$\Leftrightarrow \prod_{k=1}^p (X - \mu_k) \text{ est un polyn\^ome annulateur de } u$$

2.2.2 preuve :

2.2.3 Autres formulations

Théorème . 1

Un endomorphisme d'un espace vectoriel E de dimension finie est diagonalisable si et seulement si la somme de ses sous espaces propres est égale à E.

Théorème . 2

Un endomorphisme d'un espace vectoriel E de dimension finie est diagonalisable si et seulement si la somme des dimensions des sous espaces propres est égale à la dimension de E.

Théorème . 3

Un endomorphisme d'un espace vectoriel E de dimension finie est diagonalisable si et seulement si son polynôme caractéristique est scindé sur $\mathbb K$ et si, pour toute valeur propre, la dimension du sous espace propre associé est égale à sa multiplicité.

Théorème . 4

Un endomorphisme d'un espace vectoriel E de dimension finie est diagonalisable si et seulement si il admet un polynôme annulateur scindé à racines simples.

Corollaire. Un endomorphisme u d'un espace vectoriel E de dimension finie est diagonalisable si et seulement si il admet $\prod_{\lambda \in sp(u)} (X - \lambda)$ comme polynôme annulateur.

2.3 Conditions suffisantes

Théorème . 5

Un endomorphisme d'un espace vectoriel E de dimension finie n admettant n valeurs propres distinctes est diagonalisable.

Théorème . 6

Une matrice symétrique réelle est diagonalisable dans une base orthonormée pour le produit scalaire canonique.

preuve : H.P. pour le théorème 6

2.4 Diagonalisabilité et polynômes annulateurs : exemples : symétrie et projection

2.5 Endomorphisme induit

Théorème. Si u est un endomorphisme diagonalisable de L(E) et si F est un sous espace vectoriel de E stable par u alors $u|_F \in L(F)$ est diagonalisable.

preuve:

2.6 Méthode générale pour diagonaliser

2.6.1 Méthode

On suit les étapes suivantes :

- 1. On calcul le polynôme caractéristique.
- 2. On en déduit le spectre.
- 3. On cherche les sous espaces propres.
- 4. Si la somme des sous espaces propres vaut l'espace totale la matrice (ou l'endomorphisme) est diagonalisable. On obtient alors une base diagonalisante par réunion des bases des sous espaces propres.

3

2.6.2 Exemple 1

Diagonalisation de
$$A = \begin{pmatrix} 2 & -3 & -4 \\ -1 & 1 & 1 \\ 2 & -3 & -4 \end{pmatrix}$$
 3 vp distinctes
$$P = \begin{pmatrix} 1 & 1 & 1 \\ -1 & 2 & 0 \\ 1 & -1 & 1 \end{pmatrix}, D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -2 \end{pmatrix}$$

2.6.3 Exemple 2

Diagonalisation de
$$A = \begin{pmatrix} 6 & -4 & -8 \\ 0 & 2 & 0 \\ 4 & -4 & -6 \end{pmatrix}$$
 1 vp double
$$P = \begin{pmatrix} 1 & 1 & 1 \\ -1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}, D = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -2 \end{pmatrix}$$

3 Trigonalisation en dimension finie

3.1 Remarque préliminaire

On énonce les théorèmes suivants avec un endomorphisme, on a bien sûr les mêmes avec une matrice. Contrairement à la diagonalisation aucune méthode de trigonalisation n'est exigible en PSI.

3.2 Le théorème

Théorème. Un endomorphisme d'un espace vectoriel E de dimension finie est trigonalisable si et seulement si son polynôme caractéristique est scindé sur K.

preuve: non exigible

Remarque. Ce qui donne pour une matrice :

 $A \in M_n(\mathbb{K})$ est trigonalisable dans $M_n(\mathbb{K})$ si et seulement si le polynôme caractéristique de A est scindé dans $\mathbb{K}[X]$.

Corollaire. Toute matrice de $M_n(\mathbb{C})$ est trigonalisable dans $M_n(\mathbb{C})$

preuve:

3.3 Un autre théorème

Théorème. Si $A \in M_n(\mathbb{K})$ est une matrice trigonalisable alors $tr(A) = \sum_{k=1}^n \lambda_k$ et $det(A) = \prod_{k=1}^n \lambda_k$ avec les λ_k qui sont les valeurs propres de A.

Remarques. Si λ_i est valeur propre d'ordre p on compte λ_i p fois.

On peut l'appliquer aux matrices de $M_n(\mathbb{C})$ et donc aussi aux matrices de $M_n(\mathbb{R}) \subset M_n(\mathbb{C})$ en considérant les valeurs propres complexes ...

preuve:

3.4 Méthode et exemples

3.4.1 Méthode

On suit les étapes suivantes :

- 1. On calcul le polynôme caractéristique. Si il est scindé on peut trigonaliser.
- 2. On en déduit le spectre.
- 3. On cherche les sous espaces propres.
- 4. Hors programme

3.4.2 Exemple

Trigonalisation de
$$A = \begin{pmatrix} 4 & -8 & 5 \\ 1 & 1 & 1 \\ -1 & 7 & -2 \end{pmatrix}$$
 1 vp double et 1 simple
$$P = \begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & 1 \\ -1 & 2 & 1 \end{pmatrix}, T = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}$$

Sommaire

1	Généralités		
	1.1	Objectifs	
	1.2	Réductabilité	
	1.3	Interprétations	
2	—O		
	2.1	Remarque préliminaire	
	2.2	Conditions nécessaires et suffisantes	
		2.2.1 Conditions nécessaires et suffisantes : théorème	
		2.2.2 preuve:	
		2.2.3 Autres formulations	
	2.3	Conditions suffisantes	
	2.4	Diagonalisabilité et polynômes annulateurs : exemples : symétrie et projection	
	2.5	Endomorphisme induit	
	2.6	Méthode générale pour diagonaliser	
		2.6.1 Méthode	
		2.6.2 Exemple 1	
		2.6.3 Exemple 2	
3	Trig	gonalisation en dimension finie	
	3.1	Remarque préliminaire	
	3.2	Le théorème	
	3.3	Un autre théorème	
	3.4	Méthode et exemples	
	0.1	3.4.1 Méthode	
		9.4.9 Evermals	