Chapitre 16 : Exemples d'exercices corrigés

Enoncé, Exercice 16.1

Montrer que \mathbb{Z} est dénombrable.

Correction

Considérons l'application f de $\mathbb Z$ dans $\mathbb N$ définie par $\forall n \in \mathbb Z$ $f(n) = \begin{cases} 2n & \text{si } n \geq 0 \\ -2n-1 & \text{si } n < 0 \end{cases}$ On a bien f de $\mathbb Z$ dans $\mathbb N$ car si n < 0 alors $-2n \geq 2$ et donc $-2n-1 \geq 1$

Injectivité : Soit $(n,n') \in \mathbb{Z}^2$ tel que f(n) = f(n') Alors f(n) = f(n') ont même parité.

Cas 1:
$$f(n) = f(n')$$
 pair
Alors $f(n) = f(n') \Rightarrow 2n = 2n' \Rightarrow n = n'$

Cas 2:
$$f(n) = f(n')$$
 impair
Alors $f(n) = f(n') \Rightarrow -2n - 1 = -2n' - 1 \Rightarrow n = n'$

Dans tout les cas n = n' et donc f est injective.

Surjectivité : Soit $k \in \mathbb{N}$

Cas 1 :
$$k$$
 pair
Alors $\frac{k}{2} \in \mathbb{Z}^+$ et $f(\frac{k}{2}) = 2\frac{k}{2} = k$

Cas 1 :
$$k$$
 impair Alors $\frac{-1-k}{2} \in \mathbb{Z}^-$ et $f(\frac{-1-k}{2}) = -2\frac{-1-k}{2} - 1 = 1 + k - 1 = k$

Donc $\forall k \in \mathbb{N} \ n \in \mathbb{Z}$, f(n) = k et donc f est surjective.

On a donc f qui est une bijection de \mathbb{Z} dans \mathbb{N} et donc \mathbb{Z} est dénombrable.

Enoncé, Exercice 16.2

On admet que
$$\sum\limits_{k=1}^{+\infty}\frac{1}{k^2}=\frac{\pi^2}{6}$$
 Calculer $\sum\limits_{(p,q)\in\mathbb{N}^2}\frac{1}{(p+q+1)^3}$

Correction

On fait une sommation par paquet en réindéxant la somme :

$$\sum_{(p,q)\in\mathbb{N}^2} \frac{1}{(p+q+1)^3} = \sum_{n=0}^{+\infty} \sum_{p+q=n}^{+\infty} \frac{1}{(p+q+1)^3} = \sum_{n=0}^{+\infty} \sum_{p=0}^{n} \frac{1}{(n+1)^3} = \sum_{n=0}^{+\infty} \frac{1}{(n+1)^2} = \sum_{k=1}^{+\infty} \frac{1}{k^2}$$

Avec le résultat admis on a : $\boxed{\sum_{(p,q)\in\mathbb{N}^2}\frac{1}{(p+q+1)^3}=\frac{\pi^2}{6}}$

Enoncé, Exercice 16.3

Soit \mathscr{A} et \mathscr{A}' deux tribus sur Ω . On pose $\mathscr{A}'' = \mathscr{A} \cap \mathscr{A}''$

Montrer que \mathscr{A}'' est un tribu. $\mathscr{A} \cup \mathscr{A}'$ est-elle une tribu?

Correction

- $\mathscr A$ est une tribu donc $\Omega \in \mathscr A$, de même $\mathscr A'$ est une tribu donc $\Omega \in \mathscr A'$, donc $\Omega \in \mathscr A \cap \mathscr A' = \mathscr A''$
- Soit $A \in \mathscr{A}''$.

Alors $A \in \mathscr{A}$ et comme \mathscr{A} est une tribu alors $\overline{A} \in \mathscr{A}$

De même, $A \in \mathscr{A}$ et comme \mathscr{A} est une tribu alors $\overline{A} \in \mathscr{A}'$ et on a donc $\overline{A} \in \mathscr{A}''$

• Soit $(A_n)_{n\in\mathbb{N}}$ une famille d'éléments de \mathscr{A}'' .

Alors $(A_n)_{n\in\mathbb{N}}$ est aussi une famille de \mathscr{A} et comme \mathscr{A} est une tribu alors $\bigcup_{n\in\mathbb{N}} A_n \in \mathscr{A}$

De même on a $\bigcup_{n\in\mathbb{N}} A_n \in \mathscr{A}'$ et finalement $\bigcup_{n\in\mathbb{N}} A_n \in \mathscr{A}''$

• On a donc $\Omega \in \mathscr{A}''$, qui est stable par complémentaire et par union dénombrable. On a donc \mathscr{A}'' qui est une tribu.

L'intersection de deux tribus est une tribu.

Posons $\Omega = \mathbb{N}$. Alors $\mathscr{A} = \{\emptyset, \Omega, \{0\}, \mathbb{N}^*\}$ est une tribu car de la forme $\{\emptyset, \Omega, A, \overline{A}\}$ De même $\mathscr{A}' = \{\emptyset, \Omega, \{1\}, \mathbb{N} \setminus \{1\}\}$ est une tribu.

Mais $\mathscr{A}'' = \mathscr{A} \cup \mathscr{A}'$ n'est pas une tribu, par exemple parce que $\{0\} \cup \{1\} = \{0,1\} \notin \mathscr{A}''$.

L'union de deux tribus n'est pas forcément une tribu.

Remarque : l'union de deux tribus peut, dans certain cas, être une tribu.

Enoncé, Exercice 16.4

Une usine fabrique des stylos à bille. Une étude statistique a montré que 90% de la production ne présente pas de défaut.

Chaque stylo est soumis à un contrôle de fabrication. Ce contrôle refuse 94% des stylos avec défaut et accepte 92% des stylos sans défaut.

On choisit au hasard un stylo avant son passage au contrôle. On désigne par D l'événement "le stylo à un défaut" et par A l'événement "le stylo est accepté à l'issue du contrôle".

- 1) Calculer la probabilité pour que le stylo soit accepté.
- 2) Le contrôle permet-il d'affirmer que moins de 1% des stylos acceptés présentent un défaut?
- 3) Les stylos acceptés à l'issue du contrôle se vendent par paquet de 4. Calculer la probabilité p pour que au moins un stylo du paquet présente un défaut.

Correction

Traduisons les donnes de l'énoncé : $P(\overline{D})=0,9,\,P(\overline{A}|D)=0,94$ et $P(A|\overline{D})=0,92$

1) Par la formule des probabilités totales sur le système complet d'événements (D, \overline{D}) :

$$P(A) = P(A|D)P(D) + P(A|\overline{D})P(\overline{D})$$

On trouve $P(A|D) = 1 - P(\overline{A}|D) = 1 - 0.94 = 0.06$, $P(D) = 1 - P(\overline{D}) = 1 - 0.9 = 0.1$ et on en déduit $P(A) = 0.06 \times 0.1 + 0.92 \times 0.9 = 0.834$

La probabilité que le stylo soit accepté est donc de 0,834

2) Il faut calculer P(D|A) et comparer à 0,01.

Par la formule de Bayes on a : $P(D|A) = \frac{P(A|D)P(D)}{P(A)}$

Donc
$$P(D|A) = \frac{0.06 \times 0.1}{0.834} = 0.007194244604 < 0.01$$

Le contrôle permet donc d'affirmer que moins de 1% des stylos acceptés présentent un défaut.

3) On cherche tout d'abord la probabilité 1-p qu'aucun stylo ne présente un défaut. Comme on suppose que les choix des stylos sont indépendants (grand nombre de stylos) on a :

$$1 - p = P(\overline{D}|A)^4 \Rightarrow p = 1 - P(\overline{D}|A)^4 = 1 - (1 - P(D|A))^4$$

Application numérique : $p = 1 - (1 - 0,007194244604)^4 = 0.0284679222$

La probabilité que au moins un stylo du paquet présente un défaut vaut 0.0284679222

Enoncé, Exercice 16.5

On pose $\Omega = \mathbb{N}^*$ et on pose $\forall k \in \mathbb{N}^*$ $\mathbb{P}(\{k\}) = \frac{1}{2^k}$ Montrer que : \mathbb{P} définit une probabilité sur Ω .

Correction

On sait d'après le cours que :
$$\forall x \in]-1;1[\frac{1}{1-x}=\sum_{k=0}^{+\infty}x^k]$$

En particulier en $x=\frac{1}{2}$ on a $\sum_{k=0}^{+\infty}\frac{1}{1}=\frac{1}{2}=2$ Donc $\sum_{k=0}^{+\infty}\frac{1}{1}=\sum_{k=0}^{+\infty}\frac{1}{1}=1=2$

En particulier en
$$x = \frac{1}{2}$$
 on a $\sum_{k=0}^{+\infty} \frac{1}{2^k} = \frac{1}{1-\frac{1}{2}} = 2$ Donc $\sum_{k=1}^{+\infty} \frac{1}{2^k} = \sum_{k=0}^{+\infty} \frac{1}{2^k} - 1 = 2 - 1 = 1$

Par le théorème sur les germes de probabilités on a donc $\mathbb P$ définit une probabilité sur Ω

Enoncé, Exercice 16.6

On effectue une infinité de lancers indépendants d'une pièce pour laquelle la probabilité d'obtenir « Pile » est $p \in]0;1[$.

- 1) Quelle est la probabilité de n'obtenir que des piles au cours des n premiers lancers?
- 2) En déduire que l'événement obtenir au moins un « face » est presque sûr.

Correction

1) Si on note P_n l'événement obtenir Pile au n-ième lancer alors $\mathbb{P}(P_n)=p$ Si on note QdP_n l'événement n'obtenir que des piles au cours des n premiers lancers alors : $QdP_n=\bigcap_{k=1}^n P_k$

Mais comme les
$$P_k$$
 sont indépendants alors $\mathbb{P}(QdP_n) = \prod_{k=1}^n \mathbb{P}(P_k) = p^n$

La probabilité de n'obtenir que des piles au cours des n premiers lancers vaut p^n

2) Si on note F l'événement obtenir au moins un face alors : $\overline{F} = \bigcup_{n \in \mathbb{N}^*} QdP_n$

Mais (QdP_n) est une suite croissante d'événement, donc par le théorème de continuité croissante :

4

$$\mathbb{P}(F) = \lim_{n \to +\infty} \mathbb{P}(QdP_n) = \lim_{n \to +\infty} p^n = 0 \text{ car } p \in]0;1[$$

Donc
$$\mathbb{P}(F) = 1 - \mathbb{P}(\overline{F}) = 1 - 0 = 1$$

l'événement obtenir au moins un « face » est donc presque sûr.