Feuille d'exercices n°48 : Chapitre 18

Exercise 388. On pose $\forall (n,t) \in \mathbb{N}^* \times [0; +\infty[f_n(t) = \frac{1}{\sqrt{n}} e^{-t/n}]$

Calculer
$$\int_{0}^{+\infty} \lim_{n \to +\infty} f_n(t) dt$$
 et $\lim_{n \to +\infty} \int_{0}^{+\infty} f_n(t) dt$

Exercice 389. Déterminer $\lim_{n\to+\infty}\int_0^1\frac{dt}{1-nln(t)}$

Exercice 390. a) Montrer que : $\forall u > -1$, $ln(1+u) \leq u$

b) Déterminer
$$\lim_{n\to+\infty} \int_{0}^{+\infty} (1+\frac{x}{n})^n e^{-2x} dx$$

Exercice 391. Déterminer $\lim_{n\to+\infty} \int_0^{+\infty} \frac{n \ln(1+\frac{x}{n})}{x(1+x^2)} dx$

Exercice 392. On pose :
$$\forall n \in \mathbb{N}$$
, $I_n = \int_0^{+\infty} \frac{arctan(n+x)}{\sqrt{x}(n+x)} dx$

- a) Montrer que la suite $(I_n)_{n\in\mathbb{N}}$ est bien définie.
- b) Déterminer $\lim_{n\to+\infty}I_n$
- c) A l'aide d'un encadrement montrer que $I_n \sim \frac{\pi^2}{2\sqrt{n}}$

Exercice 393. On pose:
$$\forall n \in \mathbb{N}$$
, $A_n = \int_0^{+\infty} \frac{e^{-x}}{(x+1)^n} dx$

- a) Montrer que la suite $(A_n)_{n\in\mathbb{N}}$ est bien définie et déterminer $\lim_{n\to+\infty}A_n$
- b) Montrer que $\forall n \in \mathbb{N}$, $nA_{n+1} + A_n = 1$ et en déduire un équivalent de A_n .

On considère la série entière $S(z) = \sum_{n=0}^{+\infty} A_n z^n$

- c) Déterminer le rayon de convergence $\overset{``}{R}$ de S(z).
- d) Montrer que : $\forall z \in \mathbb{C}$ tel que |z| < R : $S(z) = \int_{0}^{+\infty} \frac{(x+1)e^{-x}}{x+1-z} dx$

Exercice 394. (*)

Dans cette exercice on admet que : $\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$ On pose $\forall t > 0$, $f(t) = \frac{1}{t} ln(\left|\frac{1-t}{1+t}\right|)$

Montrer que : $\int_{0}^{1} f(t)dt = \int_{1}^{+\infty} f(t)dt$ et calculer cette valeur commune.

 $Indication: on \ pourra \ d\'evelopper \ f \ en \ s\'erie \ enti\`ere.$

Exercice 395. (\star)

Montrer que :
$$\lim_{n \to +\infty} \int_{0}^{\sqrt{n}} (1 - \frac{t^2}{n})^n dt = \int_{0}^{+\infty} e^{-t^2} dt$$

Exercice 396. Montrer que :
$$\lim_{n\to+\infty} \int_0^{+\infty} \frac{1}{1+t^2+t^ne^{-t}} dt = \frac{\pi}{4}$$