Mathématiques : Correction du devoir à la maison n°9

EXERCICE n°1: e3a PSI 2021, Exercice 1

(1.1) On a
$$\forall x \in J$$
, $a_{-1}ln(1+x) = -\sum_{k=0}^{p} \frac{a_k}{(1+x)^k} \xrightarrow[x \to +\infty]{} -a_0$
Or si $a_{-1} \neq 0$ on a : $|a_{-1}ln(1+x)| \xrightarrow[x \to +\infty]{} +\infty$

On a donc $a_{-1} = 0$

(1.2) En utilisant (1.1) il reste :
$$\forall x \in J$$
 , $\sum_{k=0}^{p} \frac{a_k}{(1+x)^k} = 0$

donc, en multipliant par $(1+x)^p$: $\forall x \in J$, $\sum_{k=0}^p a_k (1+x)^{p-k} = 0$

En posant y = 1 + x, on a : $\forall y \in]0, +\infty[$, $\sum_{k=0}^{p} a_k y^{p-k} = 0$

Comme pour tout $k, p-k \geq 0$, on a un polynôme nul sur une infinité de valeurs et on en déduit : $\forall k \in [0;p]$, $a_k=0$

On a donc : \mathscr{B} est une famille libre.

- (1.3) Par définition, \mathscr{B} est génératrice de E. On vient de voir que c'était une famille libre. Finalement c'est une base de E donc $dim(E) = card(\mathscr{B})$ et donc dim(E) = p + 2
- $\begin{array}{l} (2.1) \; \text{Posons} \; \forall k \in \llbracket -1, p \rrbracket \; , \; g_k = u(f_k) \\ \text{Alors} \; \forall x \in J \; , \; g_{-1}(x) = (1+x)\frac{1}{1+x} = 1 = f_0(x) \; \text{donc} \; u(f_{-1}) = f_0 \\ \text{Pour} \; k \in \llbracket 0, p \rrbracket , \; \text{on a} \; : \; g_k(x) = (1+x)\frac{-k}{(1+x)^{k+1}} = \frac{-k}{(1+x)^k} \; \text{et donc} \; u(f_k) = -kf_k \end{array}$

On a donc :
$$u(f_{-1}) = f_0$$
 et $\forall k \in [0, p]$, $u(f_k) = -kf_k$

(2.2) Avec (2.1) on a $u(\mathcal{B}) \subset \mathcal{B}$ et donc par linéarité $u(E) \subset E$ Par linéarité de la dérivation, on a : $\forall (f,g,\lambda) \in E^2 \times \mathbb{R}$, $u(f+\lambda g) = u(f) + \lambda u(g)$, donc u est linéaire.

Finalement : u est un endomorphisme de E.

$$(2.3) \bullet u(f) = 0_E \Leftrightarrow \forall x \in J , (1+x)f'(x) = 0 \Leftrightarrow \forall x \in J , f'(x) = 0 \Leftrightarrow f \in Vect(f_0)$$

On a donc $ker(u) = Vect(f_0)$ et donc dim(ker(u)) = 1.

• Avec le théorème du rang on a : dim(Im(u)) = dim(E) - dim(Ker(u)) = p + 2 - 1 = p + 1De plus, avec (2.1) : $Vect(f_0, f_1, \ldots, f_p) \subset Im(u)$ car $f_0 = u(f_{-1})$ et $\forall k \in [2, p]$, $f_k = u(\frac{-f_k}{k})$

Pat égalité des dimensions $Im(u) = Vect(f_0, f_1, \dots, f_p)$

- Bilan : $ker(u) = Vect(f_0)$ et $Im(u) = Vect(f_0, f_1, \dots, f_p)$
- (2.4) Comme la famille \mathscr{B} est libre et que $Im(u) = Vect(f_0, f_1, \dots, f_p)$ alors $f_{-1} \notin Im(u)$ et donc $u^{-1}(f_{-1}) = \emptyset$

(2.5) Avec (2.1) on a :
$$M = \begin{pmatrix} A_1 & 0 \\ 0 & A_2 \end{pmatrix}$$
 avec $A_1 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ et $A_2 = diag(-1, -2, \dots, -p)$

(2.6) M est triangulaire, donc ses valeurs propres sont sur la diagonale et on en déduit que 0 est valeur propre double. Or dim(ker(u)) = 1 donc | u n'est pas diagonalisable.

$$(2.7)$$
 $M^2 = diag(0, 0, -1, -2, \dots, -p)$, donc M^2 est diagonale et donc u^2 est diagonalisable.

$$(3) (ED) \Leftrightarrow ln(1+t) = (1+t)y'(t) \Leftrightarrow y'(t) = (ln(1+t))'ln(1+t) \Leftrightarrow y(t) = \frac{(ln(1+t))^2}{2} + \alpha \text{ avec } \alpha \in \mathbb{R}$$

Les solutions de
$$(ED)$$
 s'écrivent : $\forall t \in J$, $y(t) = \frac{(\ln(1+t))^2}{2} + \alpha$ avec $\alpha \in \mathbb{R}$

(4.1) Avec (3) on déduit :
$$\forall t \in J , h_2(t) = \frac{(\ln(1+t))^2}{2}$$

$$\begin{array}{l} (4.1) \text{ Avec } (3) \text{ on d\'eduit} : \forall t \in J \text{ , } h_2(t) = \frac{(ln(1+t))^2}{2} \\ h_2(t) = (1+t)y'(t) \Leftrightarrow y'(t) = (ln(1+t))' \frac{(ln(1+t))^2}{2} \Leftrightarrow y(t) = \frac{(ln(1+t))^3}{6} + \beta \text{ avec } \beta \in \mathbb{R} \end{array}$$

Comme on veut
$$h_3(0) = 0$$
 alors : $\forall t \in J$, $h_3(t) = \frac{(\ln(1+t))^3}{3!}$

(4.2) Montrons par récurrence que :
$$\forall k \geq 2$$
 , $\forall t \in J$, $h_k(t) = \frac{(ln(1+t))^k}{k!}$

La propriété a été initialisée pour k=2 et k=3 a la question (4.1).

Hérédité : soit
$$k \geq 3$$
, on suppose que : $\forall t \in J$, $h_{k-1}(t) = \frac{(ln(1+t))^{k-1}}{(k-1)!}$
Alors : $(1+t)h_k'(t) = h_{k-1}(t) \Rightarrow h_k'(t) = (ln(1+t))'\frac{(ln(1+t))^{k-1}}{(k-1)!} \Rightarrow h_k(t) = \frac{(ln(1+t))^k}{k!} + \gamma \text{ avec } \gamma \in \mathbb{R}.$
Mais $h_k(0) = 0$ donne $\gamma = 0$ et donc $h_k(t) = \frac{(ln(1+t))^k}{k!}$

Mais
$$h_k(0) = 0$$
 donne $\gamma = 0$ et donc $h_k(t) = \frac{(\ln(1+t))^k}{k!}$

Conclusion:
$$\forall k \geq 2 , \forall t \in J , h_k(t) = \frac{(ln(1+t))^k}{k!}$$

Remarque :
$$h_k = \frac{(f_{-1})^k}{k!}$$

(5.1) Pour
$$t \in J$$
,
$$\sum_{k=2}^{+\infty} h_k(t)$$

$$= \sum_{k=2}^{+\infty} \frac{(\ln(1+t))^k}{k!}$$

$$= \sum_{k=0}^{+\infty} \frac{(\ln(1+t))^k}{k!} - \ln(1+t) - 1$$

$$= \exp(\ln(1+t)) - \ln(1+t) - 1$$

$$= t - \ln(1+t), \text{ on a reconnut la série exponentielle qui converge sur } \mathbb{R}.$$

On a donc: $\sum_{k\geq 2} h_k$ converge simplement sur J vers $H: t\mapsto t-ln(1+t)$

(5.2) Raisonnons par l'absurde : si $H \in E$

Alors $H + f_{-1} \in E$ et donc $G: t \mapsto t \in E$

Mais on remarque que les éléments de \mathcal{B} sont, au voisinage de $+\infty$, négligeable devant G, donc par linéarité, tout élément de E est négligeable devant G au voisinage de $+\infty$ et donc G = o(G)!!!! Absurde!!!

Bilan : $H \notin E$

(5.3) Avec (5.1) on a
$$\forall t \in J$$
, $H'(t) = 1 - \frac{1}{1+t} = f_0(t) - f_1(t)$ et donc $H' \in E$

EXERCICE n°2: e3a PSI 2021, Exercice 4

1. On note, pour $j \in [1, m]$, p_j le projecteur sur E_j parallèlement à $\bigoplus_{\substack{k \in [1, m] \\ k \neq j}} E_k$

Comme E_j est non vide alors p_j est non nul.

Soit \mathscr{B} une base adaptée à la somme directe $E = \bigoplus_{j=1}^{m} E_j$ et $d_j = dim(E_j)$.

Alors $M_{\mathscr{B}}(u) = diag(\lambda_1 I_{d_1}, \lambda_2 I_{d_2}, \dots, \lambda_p I_{d_p})$ et $M_{\mathscr{B}}(p_j) = diag(0_{d_1 + \dots + d_{j-1}}, I_{d_j}, 0_{d_{j+1} + \dots + d_p})$ On remarque alors que $u = \sum_{j=1}^m \lambda_j p_j$ et que : $\forall k \in \mathbb{N}$, $u^k = \sum_{j=1}^m \lambda_j^k p_j$

Il existe donc $(p_i)_{i\in [1,m]}$ une famille de projecteurs non nuls tel que : $\forall k\in\mathbb{N}$, $u^k=\sum_{j=1}^m\lambda_j^kp_j$

2.1) Si
$$P = \sum_{k=0}^{n} a_k X^k$$
 alors $P(u) = \sum_{k=0}^{n} a_k u^k = \sum_{k=0}^{n} a_k \sum_{j=1}^{m} \lambda_j^k p_j$

Les sommes sont finies donc on peut les intervertir et donc $P(u) = \sum_{k=0}^{n} a_k u^k = \sum_{i=1}^{m} [\sum_{k=0}^{n} a_k \lambda_j^k] p_j = \sum_{i=1}^{m} P(\lambda_j) p_j$

On a bien :
$$\forall P \in \mathbb{C}[X] , P(u) = \sum_{j=1}^{m} P(\lambda_j) p_j$$

2.2) Posons $Q = \prod_{i=1}^{m} (X - \lambda_j)$ qui est scindé simple.

Alors, avec (2.1):
$$Q(u) = \sum_{j=1}^{m} Q(\lambda_j) p_j = 0$$

Donc Q est un polynôme scindé simple, annulateur de u et donc |u| est diagonalisable.

2.3.1) Comme les λ_j sont distincts, on reconnaît les polynômes d'interpolation de Lagrange.

Alors, d'après le cours :
$$\forall (i,j) \in [1,m]^2$$
, $L_j(\lambda_i) = \begin{cases} 0 \text{ si } i \neq j \\ 1 \text{ si } i = j \end{cases}$

 $(2.3.2) \bullet \text{Chaque } L_j \text{ est de degré } m-1, \text{ donc } \mathscr{B} \text{ est une famille de } C_{m-1}[X].$

• Soit $(\alpha_1, \dots, \alpha_m) \in C^m$ tel que : $\sum_{i=1}^m \alpha_i L_i = 0$

Soit $i \in [1, m]$.

En évaluant la relation ci-dessus en λ_i on obtient : $\sum_{i=1}^m \alpha_i L_j(\lambda_i) = 0$, et avec la relation de 2.3.1) : $\lambda_i = 0$ On en déduit que la famille \mathscr{B} est libre.

• \mathscr{B} est une famille libre de $\mathbb{C}_{m-1}[X]$ et possède $dim(\mathbb{C}_{m-1}[X])$ vecteurs, donc $|\mathscr{B}$ est une base de $\mathbb{C}_{m-1}[X]$

2.3.3) Soit $P \in \mathbb{C}_{m-1}[X]$. Alors, comme \mathscr{B} est une base de $\mathbb{C}_{m-1}[X]$, $\exists (\alpha_1, \ldots, \alpha_m) \in \mathbb{C}^m$ tel que $P = \sum_{j=1}^{m} \alpha_j L_j$

En évaluant cette relation en λ_i et en tenant compte de 2.3.1) on obtient : $\forall i \in [1, m]$, $\alpha_i = P(\lambda_i)$

On a donc :
$$P = \sum_{j=1}^{m} P(\lambda_j) L_j$$

2.4) Si on applique 2.1) avec $P = L_j$ on obtient : $p_j = L_j(u)$

- 2.5) On sait que sp(u) est inclus dans l'ensemble des racines du polynôme annulateur Q, donc : $sp(u) \subset \{\lambda_i, j \in [1, m]\}$
- Fixons $j \in [1, m]$ et montrons que λ_j est valeur propre de u. p_i est non nul, donc $\exists x \in Im(p_i)$ que l'on écrit $x = p_i(y) = L_i(u)(y)$ avec $y \in E$, en utilisant (2.4)

Alors
$$(u - \lambda_j Id_E)(y) = [(u - \lambda_j Id_E) \circ L_j(u)](y)$$

Mais on remarque que $(X - \lambda_j)L_j(X) = \frac{1}{\prod\limits_{\substack{k \in [\![1,m]\!] \\ k \neq j}} (\lambda_j - \lambda_j)} Q(X)$ donc $(u - \lambda_j Id_E)(y) = \frac{1}{\prod\limits_{\substack{k \in [\![1,m]\!] \\ k \neq j}} (\lambda_j - \lambda_j)} Q(u)(y) = 0_E$

puisque Q est un polynôme annulateur de u.

Il reste $(u - \lambda_j Id_E)(y) = 0_E \Rightarrow u(y) = \lambda_j y$ donc y (qui est non nul car x = u(y) non nul) est un vecteur propre de u associé à la valeur propre λ_j et donc $\lambda_j \in sp(u)$.

On en déduit : $\{\lambda_j \ , \ j \in [\![1,m]\!]\} \subset sp(u)$

• Comme on a les deux inclusions alors : $|sp(u) = \{\lambda_j, j \in [1, m]\}$

Problème: ccINP PSI 2024, problème 2

I.1) On remarque que : $u_0(e_p) = 0$ et que $\forall j \in [1; p-1]$, $u_0(e_j) = e_{j+1}$ On en déduit que : $u_0^2(e_p) = u_0(e_{p-1}) = 0$ et que $\forall j \in [1; p-2]$, $u_0^2(e_j) = e_{j+2}$

et que :
$$J_0^2 = \begin{pmatrix} 0 & \dots & \dots & \dots & 0 \\ 0 & 0 & & & & \vdots \\ 1 & \ddots & \ddots & & & \vdots \\ 0 & 1 & \ddots & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & 1 & 0 & 0 \end{pmatrix}$$

De même : $J_0^{p-1} = \begin{pmatrix} 0 & \dots & 0 & 1 \\ 0 & \ddots & \vdots & 0 \\ \vdots & \ddots & 0 & \vdots \end{pmatrix}$ et donc $J_0^p = (0)$, alors J_0 est nilpotente d'indice p.

- I.2) Le polynôme caractéristique de u_{λ} et est le même que celui de J_{λ} et vaut $\chi_{u_{\lambda}}(X) = (X \lambda)^{p}$. Comme $a \in sp(u_{\lambda}) \Leftrightarrow \chi_{u_{\lambda}}(a) = 0 \text{ alors } | sp(u_{\lambda}) = {\lambda}$
- $J_{\lambda} \lambda I_{p} = J_{0}$ dont le rang est clairement p-1.

On en déduit, avec le théorème du rang que : $dim(ker(u_{\lambda} - \lambda Id_{\mathbb{R}^p})) = p - rg(J_0) = p - (p-1) = 1$ Comme en "lisant la matrice" : $u_{\lambda}(e_p) = \lambda e_p$ (et de plus $e_p \neq 0_E$) on a finalement : $ker(u_{\lambda} - \lambda Id_{\mathbb{R}^p}) = Vect(e_p)$

- I.3) V est stable par u_{λ}
- $\Leftrightarrow \forall x \in V , u_{\lambda}(x) \in V$
- $\Leftrightarrow \forall x \in V , \exists y \in V , u_{\lambda}(x) = y$
- $\Leftrightarrow \forall x \in V , \exists y \in V , \lambda x + u_0(x) = y$
- $\Leftrightarrow \forall x \in V \ , \ \exists y \in V \ , \ u_0(x) = \underbrace{y \lambda x}_{\in V} \text{ car } y \text{ et } x \text{ sont dans } V \text{ et } V \text{ est un e.v.}$
- $\Leftrightarrow \forall x \in V , \exists Y \in V , u_0(x) = Y \Leftrightarrow V \text{ est stable par } u_0$

On a donc bien : V est stable par $u_{\lambda} \Leftrightarrow V$ est stable par u_0

- I.4) En raison de la stabilité de V, la matrice de u_{λ} dans la base \mathscr{B} est de la forme : $\begin{pmatrix} A & B \\ 0_{M_{p-k,k}(\mathbb{R})} & C \end{pmatrix}$ avec $A \in M_k(\mathbb{R}), \ B \in M_{k,p-k}(\mathbb{R})$ et $C \in M_{p-k}(\mathbb{R})$
- I.5) Le polynôme caractéristique de u_{λ} est donc $\chi_{u_{\lambda}}(X) = \chi_{A}(X)\chi_{C}(X)$ On a donc $\chi_{A}(X)$ qui divise $\chi_{u_{\lambda}}(X)$, mais comme A est la matrice de v relativement à $(\vec{e_{1}}, \dots, \vec{e_{k}})$ alors χ_{A} est le polynôme caractéristique de v. On a donc que : le polynôme caractéristique de v divise celui de u_{λ}
- Mais comme $\chi_{u_{\lambda}}(X) = (X \lambda)^p$ et que χ_v divise $\chi_{u_{\lambda}}$ alors λ est racine de χ_v et donc λ est valeur propre de v. Donc $\exists X \in V$, $v(X) = \lambda X$ et $X \neq 0_E$
- $\Rightarrow \exists X \in V , \ u_{\lambda}(X) = \lambda X \text{ et } X \neq 0_{E}$ $\Rightarrow \exists X \in V , \ u_{\lambda}(X) = \lambda X \text{ et } X \neq 0_{E}$ $\Rightarrow \exists X \in V , \ X \in ker(u_{\lambda} \lambda Id) = Vect(e_{p}) \text{ et } X \neq 0_{E}$
 - On a donc $\begin{cases} X \in V \\ X \neq 0_E \\ X \in Vect(e_p) \end{cases}$ ce qui donne $e_p \in V$ On en conclut : $e_p \in V$
- I.6) Par l'absurde, si il existe une décomposition de la forme $\mathbb{R}^p = V \oplus W$ avec V et W stable par u_{λ} et non réduit au vecteur non nul alors, on peut appliquer Q34) à V et W et on a $e_p \in V \cap W$, mais $V \cap W = \{0_{\mathbb{R}^d}\}$ et $e_p \neq 0_{\mathbb{R}^d}$ absurde.

Conclusion:

il n'existe pas de décomposition de la forme $\mathbb{R}^p=V\oplus W$ avec V et W stable par u_λ et non réduit au vecteur no

- II.1) Puisque $\tilde{X}(t) = e^{\lambda t} X_0$ alors \tilde{X} est C^1 et $\tilde{X}'(t) = \lambda e^{\lambda t} X_0 = e^{\lambda t} \lambda X_0$ Mais $J_{\lambda} X_0 = \lambda X_0$ par définition de X_0 vecteur propre de J_0 associé à J_0 , donc : $\tilde{X}'(t) = e^{\lambda t} J_{\lambda} X_0 = J_{\lambda} e^{\lambda t} X_0 = J_{\lambda} \tilde{X}(t)$ et on a bien : \tilde{X} est une solution particulière de (S)
- II.2) φ est dérivable car chaque coordonnée de $\varphi(t)$ est une fonction polynomiale en t. On a : $\varphi'(t)$

$$\begin{split} &= \frac{d}{dt} \Big(\sum_{k=0}^{p-1} e^{\lambda t} \frac{t^k}{k!} J_0^k \Big) \\ &= \frac{d}{dt} \Big(e^{\lambda t} I_r + \sum_{k=1}^{p-1} e^{\lambda t} \frac{t^k}{k!} J_0^k \Big) \\ &= \lambda e^{\lambda t} I_r + \sum_{k=1}^{p-1} \left[\lambda e^{\lambda t} \frac{t^k}{k!} J_0^k + e^{\lambda t} \frac{t^{k-1}}{(k-1)!} J_0^k \right] \\ &= \lambda e^{\lambda t} I_r + \sum_{k=1}^{p-1} \lambda e^{\lambda t} \frac{t^k}{k!} J_0^k + \sum_{k=1}^{p-1} e^{\lambda t} \frac{t^{k-1}}{(k-1)!} J_0^k \\ &= \lambda e^{\lambda t} I_r + \sum_{k=1}^{p-1} \lambda e^{\lambda t} \frac{t^k}{k!} J_0^k + \sum_{k=0}^{p-2} e^{\lambda t} \frac{t^k}{k!} J_0^{k+1} \\ &= \lambda e^{\lambda t} I_r + \sum_{k=1}^{p-2} \lambda e^{\lambda t} \frac{t^k}{k!} J_0^k + \lambda e^{\lambda t} \frac{t^{p-1}}{(p-1)!} J_0^{p-1} + e^{\lambda t} J_0 + \sum_{k=0}^{p-2} e^{\lambda t} \frac{t^k}{k!} J_0^{k+1} \\ &= e^{\lambda t} (\lambda I_r + J_0) + \sum_{k=1}^{p-2} e^{\lambda t} \frac{t^k}{k!} J_0^k (\lambda I_r + J_0) + e^{\lambda t} \frac{t^{p-1}}{(p-1)!} \lambda J_0^{p-1} \\ &= e^{\lambda t} \underbrace{(\lambda I_r + J_0)}_{J_\lambda} + \sum_{k=1}^{p-2} e^{\lambda t} \frac{t^k}{k!} J_0^k \underbrace{(\lambda I_r + J_0)}_{J_\lambda} + e^{\lambda t} \frac{t^{p-1}}{(p-1)!} \lambda J_0^{p-1} \end{split}$$

On remarque que :
$$J_{\lambda}J_0^{p-1} = (\lambda I_r + J_0)J_0^{p-1} = \lambda J_0^{p-1} + \underbrace{J_0^p}_{\text{mad}} = \lambda J_0^{p-1}$$

Donc
$$\varphi'(t) = e^{\lambda t} J_{\lambda} + \sum_{k=1}^{p-2} e^{\lambda t} \frac{t^k}{k!} J_0^k \underbrace{(\lambda I_r + J_0)}_{I_{\lambda}} + e^{\lambda t} \frac{t^{p-1}}{(p-1)!} J_{\lambda} J_0^{p-1} = J_{\lambda} \left(e^{\lambda t} I_r + \sum_{k=1}^{p-1} e^{\lambda t} \frac{t^k}{k!} J_0^k \right) = J_{\lambda} exp(t J_{\lambda})$$

Il est clair que J_{λ} et $exp(tJ_{\lambda})$ commutent car $exp(tJ_{\lambda})$ est une combinaison linéaire de J_0 et que $J_{\lambda} = \lambda I_r + J_0$

On a donc bien :
$$\varphi'(t) = J_{\lambda} exp(tJ_{\lambda}) = exp(tJ_{\lambda})J_{\lambda}$$

II.3) • Comme
$$J_0^p = (0)$$
 alors $\forall k \geq p$, $J_0^k = (0)$ donc $e^{\lambda t} \sum_{k=p}^{+\infty} \frac{t^k}{k!} J_0^k = (0)$ et donc $\forall t \in \mathbb{R}$, $exp(tJ_\lambda) = \sum_{k=0}^{+\infty} e^{\lambda t} \frac{t^k}{k!} J_0^k$

• On va pouvoir multiplier deux les sommes ci-dessous, car en réalité, elles ne sont pas infinie.

$$exp(tJ_{\lambda})exp(-tJ_{\lambda})$$

$$= \left(\sum_{k=0}^{+\infty} e^{\lambda t} \frac{t^k}{k!} J_0^k\right) \left(\sum_{\ell=0}^{+\infty} e^{-\lambda t} \frac{(-t)^{\ell}}{\ell!} J_0^{\ell}\right) \text{ on a simplifier les } exp(\lambda t) exp(-\lambda t)$$

$$= \left(\sum_{k=0}^{+\infty} \frac{t^k}{k!} J_0^k\right) \left(\sum_{\ell=0}^{+\infty} \frac{(-1)^{\ell} t^{\ell}}{\ell!} J_0^{\ell}\right)$$

$$= \sum_{j=0}^{+\infty} \left[\sum_{k=0}^{j} \frac{t^k}{k!} (-1)^{k-j} \frac{t^{k-j}}{(k-j)!} \right] J_0^j$$

$$= I_r + \sum_{j=1}^{+\infty} j! \left[\sum_{k=0}^{j} \binom{j}{k} (-1)^{k-j} \right] t^j J_0^j$$

$$= I_r + \sum_{j=1}^{+\infty} j! (1-1)^j t^j J_0^j$$

$$= I_r$$

Donc $exp(tJ_{\lambda})exp(-tJ_{\lambda})=I_r$ ce qui montre que : $exp(tJ_{\lambda})$ est inversible et que $[exp(tJ_{\lambda})]^{-1}=exp(-tJ_{\lambda})$

II.4) • Y est
$$C^1$$
 comme produit de fonctions C^1 et $Y'(t) = \frac{d}{dt} \left(e^{-tJ_{\lambda}} X(t) \right)$
On utilise Q37) et on a : $Y'(t) = -e^{-tJ_{\lambda}} J_{\lambda} X(t) + e^{-tJ_{\lambda}} X'(t) = e^{-tJ_{\lambda}} [X'(t) - J_{\lambda} X(t)]$

Mais $e^{-tJ_{\lambda}}$ est inversible par la question Q39).

On a alors : X solution de (S)

$$\Leftrightarrow X'(t) = J_{\lambda}X(t)$$

$$\Leftrightarrow Y'(t) = 0$$

 $\Leftrightarrow Y \text{ est constante sur } \mathbb{R} \text{ (intervalle)}$

Bilan : X solution de $(S) \Leftrightarrow Y$ est constante sur \mathbb{R}

 \bullet Y constante

$$\Leftrightarrow \exists X_0 \in E \ , \ \forall t \in \mathbb{R} \ , \ Y(t) = X_0$$

$$\Leftrightarrow \exists X_0 \in E \ , \ \forall t \in \mathbb{R} \ , \ e^{-tJ_{\lambda}}X(t) = X_0$$

$$\Leftrightarrow \exists X_0 \in E , \ \forall t \in \mathbb{R} , \ X(t) = e^{tJ_\lambda} X_0$$

Les solutions de (S) sont exactement les fonctions $X: t \mapsto e^{tJ_{\lambda}}X_0$ avec $X_0 \in E$

II.5) Si
$$X_0 = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$
 alors $X(t) = \begin{pmatrix} e^{\lambda t} \\ 0 \\ \vdots \\ 0 \end{pmatrix}$ et comme $\lambda > 0 \Rightarrow \lim_{t \to +\infty} e^{\lambda t} = +\infty$ alors X n'est pas bornée sur

 \mathbb{R}^+ .

Si $\lambda > 0$ alors (S) admet une solution non bornée sur \mathbb{R}^+ .

II.6) • Posons
$$Z = AX = \begin{pmatrix} z_1 \\ \vdots \\ z_p \end{pmatrix}$$

Alors
$$||Z||^2 = \sum_{i=1}^p |z_i|^2 = \sum_{i=1}^p \left| \sum_{j=1}^p a_{i,j} x_j \right|^2$$

Mais $\sum_{j=1}^{p} a_{i,j} x_j = \langle L_j^T, X \rangle$ avec L_j la j-ième ligne de A.

Donc par Cauchy-Schwarz pour le produit scalaire usuel :

$$\left| \langle L_j^T, X \rangle \right| \le \left| |L_j| \cdot ||X| \right| \Rightarrow \left| \sum_{j=1}^p a_{i,j} x_j \right|^2 \le \left[\sum_{j=1}^n |a_{i,j}|^2 \right] \left| |X| \right|^2$$

On a donc :
$$||AX||^2 = ||Z||^2 \le \sum_{i=1}^p \sum_{j=1}^n |a_{i,j}|^2 ||X||^2 \le N(A)^2 ||X||^2$$

En prenant la racine on a : $\forall A \in M_p(\mathbb{R})$, $\forall X \in E$, $||AX|| \leq N(A)||X||$

• On suppose $\lambda < 0$.

Soit $Y(t) = exp(tJ_{\lambda})X_0$ une solution de (S).

Alors
$$N(exp(tJ_{\lambda})) = N(e^{\lambda t} \sum_{k=0}^{p-1} \frac{t^k}{k!} J_0^k)$$
 Mais $e^{\lambda t} > 0$ donc $N(exp(tJ_{\lambda})) = e^{\lambda t} N(\sum_{k=0}^{p-1} \frac{t^k}{k!} J_0^k)$

On utilise maintenant l'inégalité triangulaire :

 $N(exp(tJ_{\lambda})) \le e^{\lambda t} \sum_{k=0}^{p-1} N(\frac{t^k}{k!}J_0^k)$ On travail avec t > 0 puisque l'on va faire $t \to +\infty$:

$$N(exp(tJ_{\lambda})) \le e^{\lambda t} \sum_{k=0}^{n-1} \frac{t^k}{k!} N(J_0^k)$$

Comme J_0^k ne contient que des 1, alors $N(J_0^k) = \sqrt{\text{nb de 1 de } J_0^k}$. Comme il y a au plus p coefficients 1 (dans le cas k = 0) alors $N(J_0^k) \leq \sqrt{p}$

On a donc :
$$N(exp(tJ_{\lambda}) \leq e^{\lambda t} \sum_{k=0}^{p-1} \frac{t^k}{k!} \sqrt{p}$$

Avec II.5°
$$Y(t) = exp(tJ_{\lambda})X_0 \Rightarrow ||Y|| \leq N(exp(tJ_{\lambda})) ||X_0|| \leq \left[e^{\lambda t} \sum_{k=0}^{p-1} \frac{t^k}{k!}\right] \sqrt{p}$$

Mais, comme $\lambda < 0$, $\left[e^{\lambda t} \sum_{k=0}^{p-1} \frac{t^k}{k!}\right] \xrightarrow[t \to +\infty]{} 0$ par comparaison exponentielle puissance et donc Y est bornée sur \mathbb{R}^+ .

Si $\lambda < 0$ alors les solutions de (S) sont bornées sur \mathbb{R}^+ .

II.7) Si
$$\lambda = 0$$
 alors X solution de $(S) \Rightarrow \begin{cases} x_1'(t) = 0 \\ x_2'(t) = x_1(t) \end{cases} \Rightarrow \begin{cases} x_1(t) = a \\ x_2'(t) = a \end{cases} \Rightarrow \begin{cases} x_1(t) = a \\ x_2'(t) = a \end{cases}$

avec $(a,b) \in \mathbb{R}^2$

Si on regarde chaque coordonnée on a que x_k est un polynôme de degré k-1.

La seule possibilités pour que X soit bornée (sur \mathbb{R}^+ ou même sur \mathbb{R}) est que X soit constante.