Feuille d'exercices n°60 : chap. 22 calcul différentiel

Exercice 464. (\star)

On pose
$$\forall t \in \mathbb{R}$$
 $g(t) = \begin{cases} 0 \text{ si } t \leq 0 \\ exp(\frac{-1}{t}) \text{ si } t > 0 \end{cases}$

a) Montrer que g est de classe C^1 sur \mathbb{R}

On pose
$$\forall (x,y) \in \mathbb{R}^2$$
 $G(x,y) = \begin{cases} 0 & si(x,y) = (0,0) \\ exp(\frac{-1}{x^2+y^2}) & si(x,y) \neq (0,0) \end{cases}$

b) Montrer que G est de classe C^{1} sur

Exercice 465. Soit f une fonction de classe C^1 de \mathbb{R}^2 dans \mathbb{R} .

On définit pour tout $t \in \mathbb{R}$ q(t) = f(tx, ty).

a) Montrer que g est dérivable sur \mathbb{R} et calculer sa dérivée.

On suppose désormais que $\forall (x, y, t) \in \mathbb{R}^3$ f(tx, ty) = tf(x, y)

- b) Montrer que: $\forall (x, y, t) \in \mathbb{R}^3$ $f(x, y) = x \frac{\partial f}{\partial x}(tx, ty) + y \frac{\partial f}{\partial y}(tx, ty)$ c) Montrer qu'il existe $(\alpha; \beta) \in \mathbb{R}^2$ $f(x, y) = \alpha x + \beta y$

Exercice 466. Soit $n \geq 1$ et ||.|| la norme euclidiene canonique de \mathbb{R}^n .

Exercice 467. Soit $n \geq 1$ et ||.|| la norme euclidiene canonique de \mathbb{R}^n .

Etudier le le gradient de f.

Exercice 468. a) Trouver f de classe C^1 sur \mathbb{R}^2 telle que : $\nabla(f)(x,y) = \begin{pmatrix} xy^2 \\ yx^2 \end{pmatrix}$

b) Trouver
$$g$$
 de classe C^1 sur \mathbb{R}^2 telle que : $\nabla(g)(x,y) = \begin{pmatrix} e^x y \\ e^x + 2y \end{pmatrix}$

Exercice 469. Soit $f: \mathbb{R} \to \mathbb{R}$ de classe \mathscr{C}^1 , telle qu'il existe $k \in]0,1[$ vérifiant :

$$\forall x \in \mathbb{R}, \quad |f'(x)| \le k$$

Soit l'application
$$g: \mathbb{R}^2 \to \mathbb{R}^2, (x, y) \longmapsto (x + f(y), y + f(x))$$

- a) Montrer que g est injective.
- b) Soit $(a,b) \in \mathbb{R}^2$, et soit $(x,y) \in \mathbb{R}^2$

Montrer l'équivalence:
$$g(x,y) = (a,b) \iff \begin{cases} x = a - f(b - f(x)) & (i) \\ y = b - f(x) & (ii) \end{cases}$$

On considère la suite réelle (x_n) définie par : $x_0 = 0$, $\forall n \in \mathbb{N}$, $x_{n+1} = a - f(b - f(x_n))$

- c) Montrer que la série de terme général $x_{n+1} x_n$ converge.
- d) En déduire que la suite (x_n) converge, et montrer que sa limite ℓ est une solution de (i).
- e) En déduire que le couple (a, b) admet au moins un antécédent par q
- f) En déduire que q est une bijection de \mathbb{R}^2 sur \mathbb{R}^2