Correction du devoir à la maison de Mathématiques n°1, bonus

Problème e3A PC, math 2 2018

I.1) Posons, pour tout x > 0, $\theta(x) = \frac{\ln(x)}{x}$ Alors θ est C^{∞} sur $]0, +\infty[$ et $\forall x > 0$, $\theta'(x) = \frac{1}{x^2} - \frac{\ln(x)}{x^2} = \frac{1 - \ln(x)}{x^2}$ On a donc le tableau de variation suivant :

x	0		e		$+\infty$
$\theta'(x)$		+	0	-	
			$\frac{1}{e}$		
θ		7	-	\searrow	
	$-\infty$				0

On remarque que $\theta(1) = 0$.

a) Supposons que $a \in]-\infty,0]$

Pour $x \ge e$ on a $\theta(x) > 0 > a$ et donc l'équation $\theta(x) = a \Leftrightarrow (E_a)$ n'admet pas de solution sur l'intervalle $[e, +\infty[$

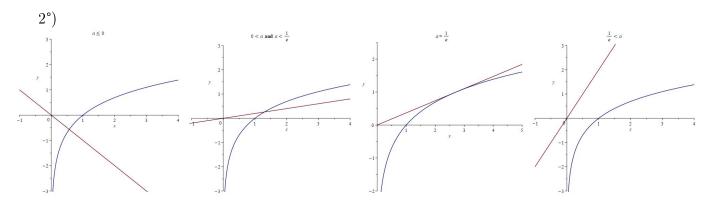
Sur l'intervalle]0, e[, θ est strictement croissante et continue, donc, d'après les limites aux bornes, on a que la restriction de θ à l'intervalle]0, 1[est une bijection de]0, e[vers $]-\infty, 0[$.

L'équation $\theta(x) = a \Leftrightarrow (E_a)$ admet une unique solution sur cet intervalle. (existence par le théorème des valeurs intermédiaires et unicité par stricte monotonie)

Bilan : Si $a \in]-\infty, 0$ alors (E_a) admet une unique solution $\alpha \in]0, e[.$

Avec le même type de raisonnement, on obtient :

- b) Si $a \in]0, \frac{1}{e}$ alors (E_a) admet exactement deux solutions $\alpha \in]1, e[$ et $\beta \in]e, +\infty[$
- c) Si $a = \frac{1}{e}$ alors (E_a) admet une unique solution e
- d) Si $a > \frac{1}{e}$ alors (E_a) n'admet pas de solution.



II.1) Supposons que φ soit constante, solution de (R) Notons r la constante de telle sorte que : $\forall x \in \mathbb{R}$, $\varphi(x) = r$ Alors $(R) \Leftrightarrow r = r^2 \Leftrightarrow r = 0$ ou r = 1

Bilan : Il existe exactement deux fonctions constantes solutions de (R) :

la fonction nulle et la fonction constante égale à 1.

II.2) Première implication : Si $\varphi(0) = 0$, alors, en prenant y = 0 : $\forall x \in \mathbb{R}$, $\varphi(x+0) = \varphi(0)\varphi(x) \Rightarrow \varphi(x) = 0$, donc $\forall x \in \mathbb{R}$, $\varphi(x) = 0$

Réciproque : Si $\forall x \in \mathbb{R}$, $\varphi(x) = 0$ alors en prenant x = 0, $\varphi(0) = 0$

Bilan : Si φ est solution de (R) alors $\varphi(0) = 0 \Leftrightarrow \forall x \in \mathbb{R}$, $\varphi(x) = 0$

II.3.a) Par contraposée du 2) on a $\varphi(0) \neq 0 \Rightarrow \forall x \in \mathbb{R}$, $\varphi(x) \neq 0$ La relation (R) donne : $\varphi(x+0) = \varphi(0)\varphi(x) \Rightarrow \varphi(x) = \varphi(0)\varphi(x)$ et comme on vient de voir que $\varphi(x) \neq 0$ alors $\varphi(0) = 1$

On a aussi $\varphi(x) = \varphi(\frac{x}{2} + \frac{x}{2}) = \varphi(\frac{x}{2})^2 \ge 0$ et comme $\varphi(x) \ne 0$ alors $\forall x \in \mathbb{R}, \ \varphi(x) > 0$

II.3.b) Soit $x \in \mathbb{R}$.

Pour commencer, montrons par récurrence sur n que : $\forall n \in \mathbb{N}, \ \varphi(nx) = \varphi(x)^n$

Au rang n = 0

 $\varphi(0x) = \varphi(0) = 1 = \varphi(x)^0$, la relation est donc bien vérifiée.

Remarque : la relation au rang 1 est évidente.

Supposons la propriété vraie au rang n et montrons là au rang n+1

 $\varphi((n+1)x) = \varphi(nx+x) = \varphi(nx)\varphi(x) = \varphi(x)^n\varphi(x) = \varphi(x)^{n+1}$

On a bien la relation au rang n+1

Conclusion : par récurrence on a : $\forall n \in \mathbb{N}$, $\varphi(nx) = \varphi(x)^n$

Maintenant si $n \in \mathbb{Z}$ avec n < 0: $1 = \varphi(0) = \varphi(nx - nx) = \varphi(nx)\varphi(-nx)$ mais $\varphi(-nx) = \varphi(x)^{-n}$ donc $1 = \varphi(nx)\varphi(x)^{-n}$ et donc (comme $\varphi(-nx) \neq 0$) $\varphi(nx) = \varphi(x)^n$

Conclusion: $\forall x \in \mathbb{R} , \forall n \in \mathbb{Z} , \varphi(nx) = \varphi(x)^n$

II.3.c) Soit $m \in \mathbb{N}^*$ alors $\varphi(1) = \varphi(m\frac{1}{m}) = (\varphi(\frac{1}{m}))^m$ à l'aide du b).

On a donc $\forall m \in \mathbb{N}^*$, $\varphi(1) = (\varphi(\frac{1}{m}))^m$

II.3.d) Soit $(n,m) \in \mathbb{Z} \times \mathbb{N}^*$. Alors : $\varphi(\frac{n}{m}) = \varphi(n\frac{1}{m}) = (\varphi(\frac{1}{m}))^n$ avec le b) En utilisant le c) on a : $\varphi(\frac{1}{m}) = (\varphi(1))^{\frac{1}{m}}$ et en reportant ci-dessus : $\varphi(\frac{n}{m}) = (\varphi(1))^{\frac{n}{m}}$

Bilan : $\forall (n,m) \in \mathbb{Z} \times \mathbb{N}^*$, $\varphi(\frac{n}{m}) = (\varphi(1))^{\frac{n}{m}}$

II.3.e) Par définition de la partie entière : $10^n x - 1 \le \lfloor 10^n x \rfloor \le 10^n x$

En multipliant par 10^{-n} on a : $x - 10^{-n} \le x_n \le x$. Alors, par encadrements et en faisant tendre n vers $+\infty$ on obtient : $\lim_{n \to +\infty} x_n = x$

II.3.f) Soit $x \in \mathbb{R}$, on définit la suite $(x_n)_{n \in \mathbb{N}}$ comme au e). Par construction c'est une suite de rationnels et on peut donc utiliser le e) et obtenir pour tour $n \in \mathbb{N}$: $\varphi(x_n) = (\varphi(1))^{x_n}$

Comme φ est par hypothèse **continue** et que $x \mapsto \varphi(1)$)^x est aussi continue alors, en passant à la limite dans la relation ci-dessus, on obtient : $\forall x \in \mathbb{R}$, $\varphi(x) = (\varphi(1))^x$

III.1.a) Directement :
$$P_1(X) = X$$
 et $P_2(X) = \frac{1}{2}X(X+2)$

III.1.b) Directement :
$$P_0(0) = 1$$
 et $\forall n \in \mathbb{N}^*$, $P_n(0) = 0$

III.2.) Si on dérive la relation définissant P_n alors :

$$P'_n(x) = \frac{1}{n!}(x+n)^{n-1} + \frac{n-1}{n!}x(x+n)^{n-2} = \frac{(x+n)^{n-2}}{n!}[(x+n) + (n-1)x] = \frac{(x+n)^{n-2}}{n!}n(x+1)$$

$$\text{Donc } P'_n(x) = \frac{(x+1)(x+n)^{n-2}}{(n-1)!} = \frac{(x+1)(x+1+(n-1))^{n-2}}{(n-1)!} = P_{n-1}(x+1)$$

On a donc :
$$\forall n \in \mathbb{N}^*$$
, $\forall x \in \mathbb{R}$, $P'_n(x) = P_{n-1}(x+1)$

III.3) Montrons par récurrence sur
$$n \in \mathbb{N}$$
 que : $\forall (x,y) \in \mathbb{R}^2$, $P_n(x+y) = \sum_{k=0}^n P_k(x) P_{n-k}(y)$

Au rang n = 0 la relation s'écrit 1=1, elle est donc vérifiée.

Au rang n=1 la relation s'écrit x+y=y+x, elle est donc aussi vérifiée.

Supposons la relation vraie au rang n-1 et démontrons là au rang n (avec $n \geq 2$).

Soit
$$y \in \mathbb{R}$$
 fixé. On pose $\forall x \in \mathbb{R}$, $\psi(x) = P_n(x+y) - \sum_{k=0}^n P_k(x) P_{n-k}(y)$

 ψ est dérivable sur \mathbb{R} et $\forall x \in \mathbb{R}$:

 $\psi'(x)$ on tient compte du fait que $P_0(x)=1$

$$=P'_n(x+y)-\sum_{k=1}^n P'_k(x)P_{n-k}(y)$$
 on utilise la relation du III.2)

$$= P'_n(x+y) - \sum_{k=1}^n P_{k-1}(x+1)P_{n-k}(y)$$
 changement d'indice $k' = k-1$

$$=P'_n(x+y)-\sum_{k'=0}^{n-1}P_{k'}(x+1)P_{n-1-k'}(y)$$
 on utilise la relation de récurrence

$$= P'_n(x+y) - P'_{n-1}(x+1+y) \text{ on utilise la relation du III.2}$$

La fonction ψ est donc constante sur l'intervalle \mathbb{R} , comme elle vaut 0 en x=0, alors elle est nulle et on en déduit la relation au rang n.

Conclusion:
$$\forall n \in \mathbb{N} , \forall (x,y) \in \mathbb{R}^2 , P_n(x+y) = \sum_{k=0}^n P_k(x) P_{n-k}(y)$$

$$\begin{split} & \text{IV.1.a) } (x+n)^{n-1} \\ &= exp((n-1)ln(x+n)) \\ &= exp((n-1)ln(n(1+\frac{x}{n}))) \\ &= exp((n-1)[ln(n) + ln(1+\frac{x}{n})]) \\ &= exp((n-1)[ln(n) + \frac{x}{n} + o(\frac{x}{n})]) \\ &= exp((n-1)ln(n))exp(\frac{n-1}{n}x)exp(o(1)) \\ &\sim n^{n-1}e^x \end{split}$$

On a donc :
$$(x+n)^{n-1} \underset{n \to +\infty}{\sim} n^{n-1} e^x$$

IV.1.b) On rappelle la formule de Stirling : $n! \sim \sqrt{2\pi n} (\frac{n}{e})^n$

 $P_n(x) = \frac{1}{n!}x(x+n)^{n-1}$ On utilise Stirling et la formule du a):

$$P_n(x) \sim \frac{1}{\sqrt{2\pi n}} (\frac{e}{n})^n x n^{n-1} e^x \sim \frac{e^n}{\sqrt{2\pi} n^{3/2}} x e^x$$

Pour $a \neq 0$ et $x \in \mathbb{R}^*$, on pose $u_n = P_n(x)a^n$, alors $u_n \neq 0$ et $u_n \sim \frac{(ae)^n}{\sqrt{2\pi}n^{3/2}}xe^x$ Donc $\left| \frac{u_{n+1}}{u_n} \right| \sim \left| \frac{(ae)^{n+1}}{\sqrt{2\pi}(n+1)^{3/2}} x e^x \times \frac{\sqrt{2\pi}n^{3/2}}{(ae)^n} \frac{1}{xe^x} \right| \sim \left| ae \right| \left(\frac{n}{n+1} \right)^{3/2} \underset{n \to +\infty}{\longrightarrow} \left| ae \right|$

On utilise la règle de D'Alembert et on a :

$$|a| < \frac{1}{e} \Leftrightarrow |ae| < 1 \Leftrightarrow \lim_{n \to +\infty} \left| \frac{u_{n+1}}{u_n} \right| < 1 \Leftrightarrow \sum u_n \text{ convergente}$$

 $|a| > \frac{1}{e} \Leftrightarrow |ae| > 1 \Leftrightarrow \lim_{n \to +\infty} \left| \frac{u_{n+1}}{u_n} \right| > 1 \Leftrightarrow \sum u_n \text{ divergente}$

$$|a| > \frac{1}{e} \Leftrightarrow |ae| > 1 \Leftrightarrow \lim_{n \to +\infty} \left| \frac{u_{n+1}}{u_n} \right| > 1 \Leftrightarrow \sum u_n \text{ divergente}$$

Il reste le cas $|a| = \frac{1}{e}$, dans ce cas : $|u_n| \sim \frac{1}{\sqrt{2\pi}n^{3/2}}xe^x$

Comme $\sum \frac{1}{n^{3/2}}$ est convergente, alors par la règle de l'équivalent pour les séries à termes positifs on a $\sum u_n$ convergente.

Si a = 0, $u_n = 0$ donc $\sum u_n$ est convergente.

On a donc : $a \in \mathbb{R}$, $x \in \mathbb{R}^*$, $\sum P_n(x)a^n$ convergente si et seulement si $|a| < \frac{1}{e}$

IV.2.a) Posons $\forall x \in \mathbb{R}$, $\forall n \in \mathbb{N}$, $f_n(x) = P_n(x)a^n$ Soit A > 0, alors, $\forall x \in [-A, A]$, $|P_n(x)| \leq P_n(A)$ et donc $|P_n(x)a^n| \leq P_n(A)a^n$

On peut donc poser $||f_n||_{\infty,A} = \sup_{x \in [-A,A]} |f_n(x)|$ et on a : $||f_n||_{\infty,A} \leq P_n(A)a^n$

Par choix de a on a : $\sum P_n(A)a^n$ convergente et donc par règle de comparaison $\sum ||f_n||_{\infty,A}$ est absolument convergente.

On en déduit que la série de fonction $\sum f_n$ converge normalement sur [-A, A], comme les f_n sont continues alors $\sum f_n$ est continue sur [-A, A].

 F_a est ainsi continue sur tout intervalle de la forme [-A,A], comme $\bigcup_{A>0} [-A,A] = \mathbb{R}$, on en déduit :

 F_a est continue sur \mathbb{R}

IV.2.b) cf cours

IV.2.c) $F_a(x)F_a(y) = (\sum_{n=0}^{+\infty} P_n(x)a^n)(\sum_{n=0}^{+\infty} P_n(y)a^n) = \sum_{n=0}^{+\infty} [\sum_{k=0}^{n} P_k(x)P_{n-k}(y)]a^n$ par produit de Cauchy (convergence absolue sur \mathbb{R})

En utilisant III.3) on a : $F_a(x)F_a(y) = \sum_{n=0}^{+\infty} P_n(x+y)a^n = F_a(x+y)$

 F_a est donc une fonction continue, solution de l'équation fonctionnelle (R).

On a donc, par la question II.3.f) que : $\forall x \in \mathbb{R}$, $F_a(x) = (F_a(1))^x$

IV.2.d) Chaque fonction
$$f_n$$
 est C^1 et $\forall n \geq 1$, $f'_n(x) = P'_n(x)a^n = P_{n-1}(x+1)a^n$ (et $f'_0(x) = 0$)

La série de fonction $\sum f'_n$ est alors la série $\sum P_{n-1}(x+1)a^n = a\sum P_{n-1}(x+1)a^{n-1}$ et elle est normalement convergente sur tout intervalle [-A,A] comme au a).

On a alors: $\begin{cases} \text{les fonction } f_n \text{ sont } C^1 \text{ sur } [-A, A] \\ \sum f_n \text{ converge simplement sur } [-A, A](\mathbf{a})) \\ \sum f'_n \text{ converge normalement donc uniformément sur } [-A, A] \end{cases}$

On en déduit que F_a est C^1 sur [-A, A] pour tout A > 0, et donc F_A est de classe C^1 sur \mathbb{R} . De plus :

$$\forall x \in \mathbb{R} , F'_a(x) = \sum_{n=1}^{+\infty} P_{n-1}(x+1)a^n = a \sum_{n=1}^{+\infty} P_{n-1}(x+1)a^{n-1} = a \sum_{n=0}^{+\infty} P_n(x+1)a^n = aF_a(x+1)$$

On a donc:
$$F_a \text{ qui est } C^1 \text{ sur } \mathbb{R} \text{ et } \forall x \in \mathbb{R} , F'_a(x) = aF_a(x+1)$$

IV.2.e) $F_a(1)$ étant une somme de termes positifs non tous nuls $F_a(1) > 0$

Alors : $F_a(x) = exp(xln(F_a(1)))$ qui est bien C^1 (et même C^{∞}) sur \mathbb{R} .

Alors $F'_a(x) = ln(F_a(1))F_a(x)$

On en déduit que : $F'_a(0) = ln(F_a(1))F_a(0)$ et comme $F_a(0) = 1$ alors $F'_a(0) = ln(F_a(1))$

Avec la relation du d) on a : $F'_a(0) = aF_a(1)$.

En regroupant les deux égalités ci-dessus on obtient : $ln(F_a(1)) = aF_a(1)$ et donc $\overline{F_a(1)}$ est solution de $\overline{E_a}$

IV.3.a)
$$G(a) = F_a(1) = \sum_{n=0}^{+\infty} P_n(1)a^n = \sum_{n=0}^{+\infty} \frac{(n+1)^{n-1}}{n!}a^n$$

Comme G est une série entière de rayon de convergence $R \geq \frac{1}{e}$ (IV) 1) a)) alors :

G est de classe C^1 sur $]-\frac{1}{e},\frac{1}{e}[$

De plus, G est strictement croissante sur $[0, \frac{1}{e}]$ comme somme de fonctions croissantes.

IV.3.b)
$$G(0) = F_0(1) = 1$$
 et $G(\frac{1}{e}) = e$ d'après I.1.c)
On a donc, puisque G est croissante sur $[0, \frac{1}{e}]$: $G([0, \frac{1}{e}] = [1; e]$

IV.3.c) Avec le IV.2.e) $F_a(1)$ est solution de (E_a) et avec le b) c'est a plus petite solution, donc : $\forall a \in [\frac{-1}{e}, \frac{1}{e}]$, $F_a(1) = \alpha_a$

IV.4) On a $1 \le C \le e^{\frac{1}{e}}$ donc C > 0, donc, pour y > 0: $y^y = C \Leftrightarrow y ln(y) = ln(C) \Leftrightarrow ln(\frac{1}{y}) = -\frac{1}{y} ln(C) \Leftrightarrow \frac{1}{y}$ est solution de $E_{-ln(C)}$

 $1 \le C \le e^{\frac{1}{e}} \Rightarrow 0 \le ln(C) \le \frac{1}{e} \Rightarrow -\frac{1}{e} \le -ln(C) \le 0$ donc, d'après la question I) 1) $E_{-ln(C)}$ admet une unique solution

On déduit des deux points précédentes que $y^y = C$ admet une unique solution y_0 et que $\frac{1}{y_0} = F_{-ln(C)}(1)$ par le IV) 2)

On a alors : $y_0 = \frac{1}{F_{-ln(C)}(1)} = (F_{-ln(C)}(1))^{-1} = F_{-ln(C)}(-1)$ On utilise l'expressision sous forme de séries entière. Alors :

$$= \sum_{n=0}^{90} P_n(-1)(-\ln(C))^n$$

$$= P_0(-1) + P_1(-1)(-\ln(C)) + \sum_{n=2}^{+\infty} \frac{1}{n!}(-1)(-1+n)^{n-1}(-\ln(C))^n$$

$$= 1 + \ln(C) + \sum_{n=2}^{+\infty} \frac{(-1)^{n+1}}{n!}(n-1)^{n-1}(\ln(C))^n$$

On a donc le résultat voulu.