Question de cours, Exercices proches du cours

1°), 2°) et 3°) Voir cours

4°)
$$f(x)$$

= $\frac{\sin(x)}{\sqrt{1+x}}$
= $\sin(x)(1+x)^{-1/2}$ on utilise les DL usuel du cours
= $(x - \frac{x^3}{6} + o(x^3))(1 - \frac{1}{2}x + \frac{-\frac{1}{2}(-\frac{1}{2}-1)}{2}x^2 + o(x^2))$
= $(x - \frac{x^3}{6} + o(x^3))(1 - \frac{1}{2}x + \frac{3}{8}x^2 + o(x^2))$
= $x - \frac{1}{2}x^2 + \frac{3}{8}x^3 - \frac{x^3}{6} + o(x^3)$
= $x - \frac{1}{2}x^2 + \frac{5}{24}x^3 + o(x^3)$

On a donc, au voisinage de 0 : $f(x) = x - \frac{1}{2}x^2 + \frac{5}{24}x^3 + o(x^3)$

Remarque : comme le Dl de sin(x) a son premier terme nul, on a pu se contenter de l'ordre 2 pour le DL de $\sqrt{1+x}$ car le x nous a permis de gagner un ordre.

5°)
$$A = \int_{0}^{\frac{\pi}{2}} cos^{2}(t)dt = \int_{0}^{\frac{\pi}{2}} \frac{cos(2t)+1}{2}dt = \left[\frac{sin(2t)}{4} + \frac{1}{2}t\right]_{0}^{\frac{\pi}{2}} = \frac{\pi}{4}$$
 On a donc : $A = \frac{\pi}{4}$

Remarque : on a linéariser en utilisant les formules trigonométrique du cours.

6°) a) Comme $\frac{1}{n} \xrightarrow[n \to +\infty]{} 0$ et que $sin(u) \sim u$ au voisinage de u = 0, alors : $sin(\frac{1}{n}) \sim \frac{1}{n}$, donc $u_n \sim \frac{1}{n} = \frac{1}{n^{3/2}}$ et donc : $u_n \sim \frac{1}{n^{3/2}}$

6°) b)
$$\begin{cases} u_n \sim \frac{1}{n^{3/2}} > 0\\ \sum \frac{1}{n^{3/2}} \text{ est convergente comme série de Riemann} \end{cases}$$
nc. par la règle de l'équivalent pour les séries à termes pos

donc, par la règle de l'équivalent pour les séries à termes positifs : $\sum u_n$ est convergente

Remarque: bien penser au signe quand on utilise la règle de l'équivalent.

Problème 1

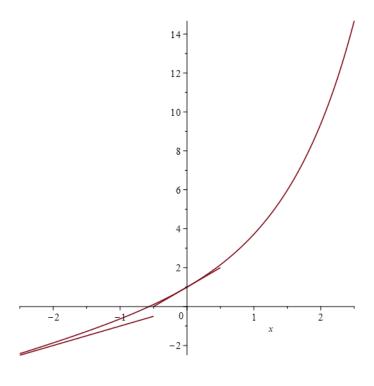
1°) On remarque que f est de classe C^{∞} et que : $\forall x \in \mathbb{R}$, $f'(x) = 1 + e^x > 0$ On en déduit que f est strictement croissante sur \mathbb{R}

On en déduit que f est strictement croissante sur \mathbb{R} .

- On a, de plus que : $\lim_{x \to -\infty} f(x) = -\infty$ et $\lim_{x \to +\infty} f(x) = +\infty$. Comme f est continue, strictement croissante sur $\mathbb R$ et vu les limites aux bornes, on a : f est une bijection de $\mathbb R$ dans $\mathbb R$
 - 2°) a) $\frac{f(x)}{e^x} = xe^{-x} + 1 \xrightarrow[x \to +\infty]{} 1$, (par comparaison exp-puissance), donc par définition : $f(x) \sim e^x$
 - 2°) b) $f(x) x = e^x \xrightarrow[x \to -\infty]{} 0 \text{ donc} : \left[\lim_{x \to -\infty} \left(f(x) x \right) = 0 \right]$
- 3°) a) $f(x) = x + e^x$, on utilise le cours : $f(x) = x + \left(1 + x + \frac{x^2}{2} + \frac{x^3}{6} + o(x^3)\right)$ donc : au voisinage de 0 : $f(x) = 1 + 2x + \frac{x^2}{2} + \frac{x^3}{6} + o(x^3)$
- 3°) b) On sait que l'équation de la tangente est donner par la partie d'ordre 1 (linéaire) du développement limité, donc : \boxed{D} a pour équation cartésienne y=1+2x
- 3°) c) f est C^{∞} , donc son développement limité en 0 est donné par son développement de Taylor. Par identification avec le résultat du 3°) a) : $\frac{f^{(3)}(0)}{3!} = \frac{1}{6}$ donc : $\boxed{f^{(3)}(0) = 1}$
- 3°) d) f est une bijection dérivable de $\mathbb R$ dans $\mathbb R$ et $\forall x \in \mathbb R$, $f'(x) \neq 0$, donc f^{-1} est dérivable sur $\mathbb R$ et $\forall y \in \mathbb R$, $(f^{-1})'(y) = \frac{1}{f'(f^{-1}(y))}$ Comme f(0) = 1 alors $f^{-1}(1) = 0$ et $(f^{-1})'(1) = \frac{1}{f'(0)} = \frac{1}{2}$

Donc : $(f^{-1})'(1)$ existe et $(f^{-1})'(1) = \frac{1}{2}$

- 4°) f est deux fois dérivable et $\forall x \in \mathbb{R}$, $f''(x) = e^x > 0$, donc, d'après le cours : f est convexe sur \mathbb{R}
- 5°) Ci-dessous : Γ ainsi que D et la droite y=x (asymptote oblique)



6°) a) On a: f(0) = 1 et f(ln(n)) = ln(n) + exp(ln(n)) = ln(n) + nComme $n \in \mathbb{N}^*$ alors $n \geq 1$ et $ln(n) \geq 0$ donc $f(ln(n)) \geq n$ On a donc : $f(0) \le n \le f(\ln(n))$ et comme f^{-1} est croissante : $\forall n \in \mathbb{N}^*, 0 \le u_n \le \ln(n)$

6°) b) D'après le a) : $0 \le \frac{u_n}{\ln(n)} \le 1$, donc la suite $(\frac{u_n}{\ln(n)})$ est bornée et par définition : $u_n = O(\ln(n))$

6°) c) $f(u_n) = n$

 $\Leftrightarrow u_n + e^{u_n} = n$ $\Leftrightarrow e^{u_n} = n - u_n$

on compose par ln (le membre de gauche est clairement strictement positif, donc celui de droite aussi)

 $\Leftrightarrow u_n = ln(n - u_n)$ on utilise le résultat du b)

 $\Leftrightarrow u_n = ln(n + O(ln(n)))$

 $\Leftrightarrow u_n = \ln(n(1 + O(\frac{\ln(n)}{n})))$ propriété du ln

 $\Leftrightarrow u_n = ln(n) + ln(1 + O(\frac{ln(n)}{n}))$

 $\Leftrightarrow u_n = \ln(n) + O(\frac{\ln(n)}{n})$

On a donc : $u_n = \ln(n) + O(\frac{\ln(n)}{n})$

7°) a) On repart de l'étape : $u_n = ln(n-u_n)$ mais cette fois-ci on injecte le résultat du 6°)c) :

 $u_n = ln\left(n - ln(n) + O(\frac{ln(n)}{n})\right)$ $= ln \left(n \left(1 - \frac{ln(n)}{n} + O\left(\frac{ln(n)}{n^2}\right) \right) \right)$ $= \ln(n) + \ln\left(1 - \frac{\ln(n)}{n} + O(\frac{\ln(n)}{n^2})\right)$ = $\ln(n) - \frac{\ln(n)}{n} + O(\frac{\ln(n)}{n^2})$

On a donc : $u_n = \ln(n) - \frac{\ln(n)}{n} + O(\frac{\ln(n)}{n^2})$

7°) b) D'après le 7°) a): $u_n - ln(n) \sim -\frac{ln(n)}{n} < 0$ Donc $\sum (u_n - ln(n))$ et $\sum \frac{ln(n)}{n}$ sont de même nature.

Mais, pour *n* assez grand : $0 \le \frac{1}{n} \le \frac{\ln(n)}{n}$.

Comme $\sum \frac{1}{n}$ est une série de Riemann divergente, alors, par comparaison : $\sum \frac{\ln(n)}{n}$ est divergente.

En revenant au problème posé, par règle de l'équivalent, on a : $\sum (u_n - ln(n))$ divergente

Problème 2 : inspirer de ccINP TPC 2022

1°) a)
$$\forall t \in \mathbb{R} \{-1\}$$
, $\frac{1}{1+t^3} = \frac{a}{1+t} + \frac{b(2t-1)}{t^2-t+1} + \frac{c}{t^2-t+1}$
 $\Leftrightarrow \forall t \in \mathbb{R} \{-1\}$, $\frac{1}{(1+t)(t^2-t+1)} = \frac{a}{1+t} + \frac{b(2t-1)}{t^2-t+1} + \frac{c}{t^2-t+1}$
 $\Leftrightarrow \forall t \in \mathbb{R} \{-1\}$, $1 = a(t^2 - t + 1) + b(2t - 1)(1 + t) + c(1 + t)$
 $\Leftrightarrow \forall t \in \mathbb{R} \{-1\}$, $1 = a(t^2 - t + 1) + b(-1 + t + 2t^2) + c(1 + t)$
 $\Leftrightarrow \forall t \in \mathbb{R} \{-1\}$, $1 = a(t^2 - t + 1) + b(-1 + t + 2t^2) + c(1 + t)$
 $\Leftrightarrow \{0 = -a + b + c\}$ par identification de 2 polynômes sur une infinité de valeurs $0 = a + 2b$
 $\Rightarrow \{a = -2b\}$
 $\Rightarrow \{a = -2b\}$

Donc: $\forall t \in \mathbb{R} \{-1\}, \frac{1}{1+t^3} = \frac{1}{3(1+t)} - \frac{1}{6} \frac{(2t-1)}{t^2-t+1} + \frac{1}{2} \frac{1}{t^2-t+1}$

1°) b) On effectue dans $\int_{0}^{1} \frac{1}{t^2-t+1} dt$ le changement de variable dérivable $u = \frac{2t-1}{\sqrt{3}}$

On a
$$2t-1=\sqrt{3}u$$
 et donc $t=\frac{\sqrt{3}u+1}{2}$, alors $t^2=\frac{3u^2+2\sqrt{3}u+1}{4}$, donc : $t^2-t+1=\frac{3u^2+2\sqrt{3}u+1}{4}-\frac{\sqrt{3}u+1}{2}+1=\frac{3u^2+3}{4}=\frac{3}{4}(u^2+1)$ De plus $dt=\frac{\sqrt{3}}{2}du$

Donc
$$\int_{0}^{1} \frac{1}{t^{2}-t+1} dt = \int_{\frac{-1}{\sqrt{3}}}^{\frac{1}{\sqrt{3}}} \frac{4}{3} \frac{1}{1+u^{2}} \frac{\sqrt{3}}{2} du = \frac{2}{\sqrt{3}} \left[arctan(u) \right]_{\frac{-1}{\sqrt{3}}}^{\frac{1}{\sqrt{3}}} = \frac{2}{\sqrt{3}} \left(\frac{\pi}{6} - \frac{-\pi}{6} \right) = \frac{4\pi}{6\sqrt{3}} = \frac{2\sqrt{3}\pi}{9}$$

1°) c) Avec le a):
$$u_1 = \int_0^1 \left(\frac{1}{3(1+t)} - \frac{1}{6} \frac{(2t-1)}{t^2-t+1} + \frac{1}{2} \frac{1}{t^2-t+1}\right) dt$$

$$= \int_0^1 \left(\frac{1}{3(1+t)} - \frac{1}{6} \frac{(2t-1)}{t^2-t+1}\right) dt + \frac{1}{2} \int_0^1 \frac{1}{t^2-t+1} dt$$

$$= \left[\frac{1}{3} ln(1+t) - \frac{1}{6} ln(t^2-t+1)\right]_0^1 + \frac{1}{2} \int_0^1 \frac{1}{t^2-t+1} dt$$

$$= \frac{1}{3} ln(2) + 0 + \frac{1}{2} \int_0^1 \frac{1}{t^2-t+1} dt$$

On a donc : $u_1 = \frac{1}{3}ln(2) + \frac{\sqrt{3}\pi}{9}$

2°) a) On a : $\forall t \in [0,1]$, $0 \le \frac{1}{(1+t^3)^n} \le 1$, donc, en intégrant entre 0 et 1 : $0 \le u_n \le \int_{1}^{1} 1 dt = 1$ Donc $0 \le u_n \le 1$

2°) b) Par linéarité de l'intégrale :

$$u_{n+1} - u_n = \int_0^1 \left(\frac{1}{(1+t^3)^{n+1}} - \frac{1}{(1+t^3)^n} \right) dt = \int_0^1 \frac{1}{(1+t^3)^n} \left(\frac{1}{1+t^3} - 1 \right) dt = \int_0^1 \underbrace{\frac{1}{(1+t^3)^n} \left(\frac{-t^3}{1+t^3} \right)}_{\leq 0} dt$$

Donc, par positivité de l'intégrale : $u_{n+1} - u_n \le 0$ et donc (u_n) est décroissante

2°) c) (u_n) est décroissante et minorée par 0, donc $|u_n|$ est convergente.

3°) a) Pour
$$n \ge 2$$
, $\int_{0}^{1} \frac{1}{(1+t)^n} dt = \left[\frac{-1}{n-1} \frac{1}{(1+t)^{n-1}}\right]_{0}^{1} = \frac{1}{n-1} - \frac{1}{(n-1)2^{n-1}} = \frac{1}{n-1} \underbrace{\left(1 - \frac{1}{2^{n-1}}\right)}_{n \to +\infty}$

Donc
$$\int_{0}^{1} \frac{1}{(1+t)^{n}} dt \sim \frac{1}{n-1} \sim \frac{1}{n}$$

3°) b) Pour
$$t \in [0,1]$$
, $0 \le t^3 \le t$ donc $0 \le 1 + t^3 \le 1 + t$ donc $0 \le (1+t^3)^n \le (1+t)^n$ donc $\forall t \in [0,1]$, $0 \le \frac{1}{(1+t)^n} \le \frac{1}{(1+t^3)^n}$

3°) c) En intégrant la relation du b) entre 0 et 1 on obtient : $0 \le \int_0^1 \frac{1}{(1+t)^n} dt \le u_n$

Avec le a), comme $\frac{1}{n} > 0$ et que $\sum \frac{1}{n}$ est divergente, alors, par règle de l'équivalent pour les séries à termes positifs : $\sum \int_{0}^{\infty} \frac{1}{(1+t)^n} dt$ est divergente.

On utilise alors l'inégalité ci-dessus et la règle de comparaison pour obtenir : $\sum u_n$ est divergente.

- 4°) a) On sait que $u_n \ge 0$, donc, en passant à la limite, comme $\lim_{n \to +\infty} u_n = \ell$ alors : $\ell \ge 0$
- 4°) b) On a déjà $0 \le u_n$
- Comme $\varepsilon \in]0,1[$, on écrit par la relation de Chasles : $u_n = \int_0^\varepsilon \frac{1}{(1+t^3)^n} dt + \int_0^1 \frac{1}{(1+t^3)^n} dt$
- Pour $t \in [0, \varepsilon]$, $0 \le \frac{1}{(1+t^3)^n} \le 1$ donc, en intégrant sur $[0, \varepsilon]$: $0 \le \int_0^\varepsilon \frac{1}{(1+t^3)^n} dt \le \varepsilon$
- Pour $t \in [\varepsilon,1]$, $0 \le \frac{1}{(1+t^3)^n} \le \frac{1}{(1+\varepsilon^3)^n}$ donc, en intégrant sur $[\varepsilon,1]$:

$$0 \le \int_{\varepsilon}^{1} \frac{1}{(1+t^3)^n} dt \le (1-\varepsilon) \frac{1}{(1+\varepsilon^3)^n} \le \frac{1}{(1+\varepsilon^3)^n}$$

- En combinant les deux points précédents : $0 \le u_n \le \varepsilon + \frac{1}{(1+\varepsilon^3)^n}$ En faisant tendre n vers $+\infty$, comme $0 \le \frac{1}{(1+\varepsilon^3)} < 1$ on obtient : $0 \le \ell \le \varepsilon$

Ce résultat étant valable pour tout $\varepsilon \in]0,1[$ on en déduit : $\overline{\ell = 0}$

5°) a) f_n est de classe C^1 sur $[0, +\infty[$ comme primitive d'une fonction continue et $\forall x \in [0, +\infty[$, $f'(x) = \frac{1}{(1+x^3)^n} \ge 0$

On en déduit donc : f_n croissante sur $[0, +\infty[$

5°) b) • Comme $\forall t \geq 0$, $\frac{1}{(1+t^3)^n} \geq 0$, en intégrant sur [0,x] on a, pour $x \geq 1$: $f_n(x) \geq 0$

• Pour
$$x \ge 1$$
, par la relation de Chasles : $f_n(x) = \underbrace{\int\limits_0^1 \frac{1}{(1+t^3)^n} dt}_{u_n} + \int\limits_1^x \frac{1}{(1+t^3)^n} dt$

Pour la deuxième intégrale :

$$\begin{array}{l} t \geq 1 \\ \Rightarrow 1 \leq t^2 \leq t^3 \\ \Rightarrow 1 \leq 1 + t^2 \leq 1 + t^3 \\ \Rightarrow 0 \leq \frac{1}{1+t^3} \leq \frac{1}{1+t^2} \leq 1 \Rightarrow 0 \leq \frac{1}{(1+t^3)^n} \leq \frac{1}{(1+t^2)^n} \leq \frac{1}{1+t^2} \end{array}$$

En intégrant entre 1 et $x: \int_{1}^{x} \frac{1}{(1+t^3)^n} dt \leq \int_{1}^{x} \frac{1}{1+t^2} dt = [arctan(t)]_{1}^{x} = arctan(x) - \frac{\pi}{4}$

• Comme
$$f_n(x) = u_n + \int_1^x \frac{1}{(1+t^3)^n} dt$$
 on a donc : $f_n(x) \le u_n + arctan(x) - \frac{\pi}{4}$

• Bilan :
$$\forall x \geq , \ 0 \leq f_n(x) \leq u_n + arctan(x) - \frac{\pi}{4}$$

5°) c) On a vu que $u_n \le 1$ à la question 2°) a) , comme $\arctan(x) \le \frac{\pi}{2}$ on a alors avec le 5°) b) : $0 \le f_n(x) \le 1 + \frac{\pi}{4}$

Donc f_n est croissante et majorée sur $[0, +\infty[$. On peut donc poser $v_n = \lim_{x \to +\infty} f_n(x)$

6°) Pour calculer v_1 on réutilise le calcul de u_1 (en particulier 1°)a) et b)) en changeant la borne 1 par x. On obtient : $\int_a^x \frac{1}{1+t^3} dt$

$$\begin{split} &= \int_{0}^{x} \left[\frac{1}{3(1+t)} - \frac{1}{6} \frac{(2t-1)}{t^{2}-t+1} + \frac{1}{2} \frac{1}{t^{2}-t+1} \right] dt \\ &= \frac{1}{3} \left[\ln(1+t) \right]_{0}^{x} - \frac{1}{6} \left[\ln(t^{2}-t+1) \right]_{0}^{x} + \frac{1}{2} \frac{2}{\sqrt{3}} \left[\arctan(u) \right]_{-\frac{1}{\sqrt{3}}}^{\frac{2x-1}{\sqrt{3}}} \\ &= \frac{1}{3} \ln(1+x) - \frac{1}{6} \ln(x^{2}-x+1) + \frac{1}{\sqrt{3}} \left[\arctan(\frac{2x-1}{\sqrt{3}}) - \frac{-\pi}{6} \right] \\ &= \frac{1}{6} \ln((1+x)^{2}) - \frac{1}{6} \ln(x^{2}-x+1) + \frac{1}{\sqrt{3}} \left[\arctan(\frac{2x-1}{\sqrt{3}}) - \frac{-\pi}{6} \right] \\ &= \frac{1}{6} \ln(\frac{(1+x)^{2}}{x^{2}-x+1}) + \frac{1}{\sqrt{3}} \left[\arctan(\frac{2x-1}{\sqrt{3}}) - \frac{-\pi}{6} \right] \end{split}$$

En faisant tendre n vers $+\infty$ on a : $v_1 = 0 + \frac{1}{\sqrt{3}} \left[\frac{\pi}{2} + \frac{\pi}{6} \right] = \frac{1}{\sqrt{3}} \frac{2\pi}{3} = \frac{2\pi}{3\sqrt{3}}$ et donc $v_1 = \frac{2\sqrt{3}\pi}{9}$

7°) On suit l'indication de l'énoncé :

$$f_n(x) = \int_0^x \left(\frac{1}{(1+t^3)^n} \times 1\right) dt$$

$$= \left[\frac{1}{(1+t^3)^n} \times t\right]_0^x - \int_0^x \left((-3t^2)(-n)\frac{1}{(1+t^3)^{n+1}} \times t\right) dt$$

$$= \frac{x}{(1+x^3)^n} - 0 + n \int_0^x \frac{3t^3}{(1+t^3)^{n+1}} dt$$

$$= \frac{x}{(1+x^3)^n} - 0 + n \int_0^x \frac{3(t^3+1-1)}{(1+t^3)^{n+1}} dt$$

$$= \frac{x}{(1+x^3)^n} - 0 + n \left[\int_0^x \frac{3}{(1+t^3)^n} - \int_0^x \frac{3}{(1+t^3)^{n+1}} dt\right]$$

On fait maintenant tendre x vers $+\infty$ et on obtient : $v_n = 0 + n(3v_n - 3v_{n+1}) \Leftrightarrow v_{n+1} = \frac{3n-1}{3n}v_n$

La relation de récurrence cherchée est donc : $\forall n \in \mathbb{N}^*$, $v_{n+1} = \frac{3n-1}{3n}v_n$

8°) a) Soit $k \in \mathbb{N}^*$. On a : $t \mapsto ln(t)$ qui est dérivale sur [k, k+1] et continue sur [k, k+1], donc par le théorème des accroissements finis : $\exists c_k \in]k, k+1[$, $ln(k+1)-ln(k)=(ln)'(c_k)(k+1-k)$ Comme $(\ln l)'(t) = \frac{1}{t}$ on a bien : $\forall k \in \mathbb{N}^*$, $\exists c_k \in]k, k+1[$, $\ln(k+1) - \ln(k) = \frac{1}{c_k}$

8°) b)
$$c_k \in]k, k+1[\Rightarrow k < c_k < k+1 \Rightarrow \frac{1}{k+1} \le \frac{1}{c_k} \le \frac{1}{k}$$
, donc avec le a) : $\forall k \in \mathbb{N}^*$, $\frac{1}{k+1} \le ln(k+1) - ln(k) \le \frac{1}{k}$

9°) • En sommant l'inégalité de gauche du 8°) pour k variant de 1 à n-1 on obtient :

$$\sum_{k=1}^{n-1} \frac{1}{k+1} \le \ln(n-1+1) - \ln(1) \text{ par t\'elescopage}$$

$$\Rightarrow \sum_{k=2}^{n} \frac{1}{k} \le ln(n)$$

$$\Rightarrow \sum_{k=1}^{n} \frac{1}{k} - 1 \le ln(n)$$

$$\Rightarrow \sum_{k=1}^{n} \frac{1}{k} - ln(n) \le 1$$

$$\Rightarrow H_n \leq 1$$

• En sommant l'inégalité de droite du 8°) pour k variant de 1 à n-1 on obtient :

 $ln(n-1+1) - ln(1) \le \sum_{k=1}^{n-1} \frac{1}{k}$ par télescopage

$$\Rightarrow ln(n) \leq \sum_{k=1}^{n} \frac{1}{k} - \frac{1}{n}$$

$$\Rightarrow \frac{1}{n} \le \sum_{k=1}^{n} \frac{1}{k} - \ln(n)$$
$$\Rightarrow 0 \le H_n$$

$$\Rightarrow 0 \leq H_n$$

• On a donc : $\forall n \in \mathbb{N}^*$, $0 \le H_n \le 1$ et donc (H_n) est bornée.

10°) a) Posons : $\forall x \in [0,1[\ ,\ A(x)=x+ln(1-x)$

A est dérivable et $A'(x) = 1 - \frac{1}{1-x} = \frac{-x}{1-x} \le 0$, donc A est décroissante sur [0,1[et comme A(0) = 0alors $A(x) \leq 0$ pour $x \in [0, 1[$ et donc : $\forall x \in]0, 1[$, $x + ln(1-x) \leq 0$

10°) b) Comme les sommes se télescopent :

(avec les notations du a)) et donc
$$H_{n+1} - H_n \le 0$$
 puisque $\frac{1}{n+1} \in]0,1[$

On en déduit : $|(H_n)|$ décroissante.

10°) c) Avec le a) et le b) on a que (H_n) est une suite décroissante minorée, donc convergente, donc

$$\exists \gamma \in \mathbb{R} , H_n = \gamma + o(1) \text{ et donc } \exists \gamma \in \mathbb{R} , \sum_{k=1}^n \frac{1}{k} = \ln(n) + \gamma + o(1)$$

11°) On reprend la relation de récurrence du 7°) : $v_{n+1} = \frac{3n-1}{3n}v_n$ qui s'écrit aussi $\frac{v_{n+1}}{v_n} = 1 - \frac{3}{n} \in]0,1[$ On peut prend le ln de cette égalité : $ln(v_{n+1}) - ln(v_n) = ln(1 - \frac{3}{n})$ et faire un DL : $ln(v_{n+1}) - ln(v_n) = -\frac{3}{n} + O(\frac{1}{n^2}) \Rightarrow ln(v_{n+1}) - ln(v_n) + \frac{3}{n} = O(\frac{1}{n^2})$

On a bien :
$$w_n = O(\frac{1}{n^2})$$

12°) Avec la relation du 11°), comme $\sum \frac{1}{n^2}$ est une série convergente, alors, par comparaison : $\sum w_n$ est convergente.

Donc
$$\exists K \in \mathbb{R}$$
, $\sum_{k=1}^{n} w_k = K + o(1)$

Mais, par télescopage :
$$\sum_{k=1}^{n} w_k = \ln(v_{n+1}) - \ln(v_1) + \frac{1}{3} \sum_{k=1}^{n} \frac{1}{k}$$

On utilise le 10°) c) et la remarque précédente : $K + o(1) = \ln(v_{n+1}) - \ln(v_1) + \frac{1}{3}(\gamma + \ln(n) + o(1))$

Donc:
$$ln(v_{n+1}) = K + ln(v_1) - \frac{1}{3}\gamma + o(1) - \frac{1}{3}ln(n)$$

On pose alors : $d = K + ln(v_1) - \frac{1}{3}\gamma$ et on décale d'un indice : $ln(v_n) = d + o(1) + ln(\frac{1}{(n-1)^{1/3}})$

$$\text{Mais } ln(\frac{1}{(n-1)^{1/3}}) = \frac{1}{3}ln(\frac{1}{n-1}) = \frac{-1}{3}ln(n-1) = \frac{-1}{3}ln(n(1-\frac{1}{n})) = \frac{-1}{3}ln(n) - \frac{1}{3}ln(1-\frac{1}{n}) = \frac{-1}{3}ln(n) + o(1)$$

Donc :
$$ln(v_n) = d + o(1) + ln(\frac{1}{(n)^{1/3}})$$
 et donc $v_n = e^{d} \frac{1}{n^{1/3}} exp(o(1))$

Mais $\exp(o(1)) \underset{n \to +\infty}{\longrightarrow} 1$ et donc, par définition, en posant $C = e^d$:

$$\exists C \in \mathbb{R} \ , \ v_n \sim \frac{C}{n^{1/3}}$$