Exercice 1

a) Comme C est la matrice de f alors det(f) = det(C) et tr(f) = tr(C)On a facilement tr(f) = 1 + 1 - 1 = 1.

On fait
$$L_1 \leftarrow L_1 + L_3$$
 et $L_2 \leftarrow L_2 + L_3$ pour avoir $det(C) = \begin{vmatrix} 3 & 3 & 0 \\ 2 & 2 & 0 \\ 2 & 1 & -1 \end{vmatrix}$

Par blocs : $det(C) = -\begin{vmatrix} 3 & 3 \\ 2 & 2 \end{vmatrix} = 0$

On a donc : tr(f) = 1 et det(f) = 0

b) Comme det(f) = 0 alors f n'est pas un automorphisme.

c)
$$C \begin{pmatrix} x \\ y \\ z \end{pmatrix} \iff \begin{cases} x + 2y + z = 0 \\ y + z = 0 \\ 2x + y - z = 0 \end{cases} \iff \begin{cases} z = -y \\ x = -y \\ 0 = 0 \end{cases}$$

Donc
$$ker(f) = Vect\begin{pmatrix} -1\\1\\-1 \end{pmatrix}$$
)

On a donc dim(ker(f)) = 1 et par le théorème du rang :

$$dim(Im(f)) = dim(\mathbb{R}^3) - dim(ker(f)) = 3 - 1 = 2$$

Comme les deux premières colonnes de C sont dans Im(f) et qu'elles sont clairement non colinéaires, alors, par la dimension, elles forment une base de Im(f)

On a donc :
$$ker(f) = Vect\begin{pmatrix} -1\\1\\-1 \end{pmatrix}$$
) et $Im(f) = Vect\begin{pmatrix} 1\\0\\2 \end{pmatrix}, \begin{pmatrix} 2\\1\\1 \end{pmatrix}$)

Exercice 2

1°) b) Par téléscopage :

$$w_{n+1} - w_n$$

$$= \frac{1}{n+1} - \ln(n+1) + \ln(n)$$

$$= \frac{1}{n+1} + \ln(\frac{n}{n+1})$$

$$= \frac{1}{n+1} + \ln(1 - \frac{1}{n+1})$$

$$= \frac{1}{n+1} - \frac{1}{n+1} - \frac{1}{2(n+1)^2} + o(\frac{1}{(n+1)^2})$$

$$= \frac{-1}{2(n+1)^2} + o(\frac{1}{(n+1)^2})$$
Donc $w_{n+1} - w_n \sim \frac{-1}{2(n+1)^2} \sim \frac{-1}{2n^2}$

On a bien :
$$w_{n+1} - w_n \sim \frac{-1}{2n^2}$$

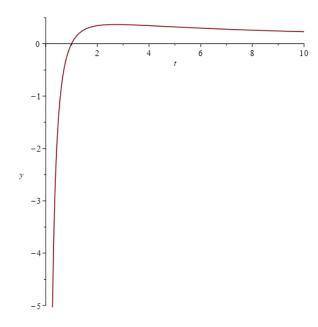
1°) c) $w_{n+1} - w_n \sim \frac{-1}{2n^2} < 0$ et $\sum \frac{-1}{2n^2}$ est une série de Riemann convergente Donc par la règle de l'équivalent $\sum (w_{n+1} - w_n)$ est convergente.

On en déduit d'après le cours que : (w_n) est convergente. On notera γ sa limite.

2°) φ est dérivable sur $]0; +\infty[$ et $\varphi'(t) = \frac{1-ln(t)}{t^2}$ On en déduit le tableau de variation :

t	0		e		$+\infty$
$\varphi'(t)$		+	0	-	
			$\frac{1}{e}$		
$\varphi(t)$		7		\searrow	
	$-\infty$				0

et la représentation graphique :



3°) a) • On remarque que $|u_n| = \varphi(n)$, donc avec le tableau de variation du 2°) on a : $(|u_n|)_{n\geq 3}$ décroissante.

Comme de plus $\sum_{n\geq 3}u_n$ est alternée et $\lim_{u_n}=0$, alors, par le théorème spéciale on a : $\sum_{n\geq 3}u_n$ convergente.

Comme les premiers termes ne changent pas la nature de la série : $\sum u_n$ est convergente.

• On a : $\forall n \geq 3$, $ln(n) \geq ln(e) = 1$ et donc $|u_n| \geq \frac{1}{n} > 0$ Comme $\sum \frac{1}{n}$ est une série de Riemann divergente, alors, par comparaison : $\sum |u_n|$ est divergente.

On a alors : $\sum u_n$ n'est pas absolument convergente.

3°) b) D'après le théorème spécial dont on a vérifier les hypothèses au a), on a :

$$|S_{2n} - S| \le |u_{2n+1}| = \frac{\ln(2n+1)}{2n+1}$$

On a : $S_{2n+1} - S_{2n} = u_{2n+1} \le 0$, on en déduit d'après le cours, que : S_{2n} est une valeur approchée de S par excès.

4°) a) Comme pour $n \geq 3$ on a $[3; +\infty[\subset [e; +\infty[$ on en déduit que φ est décroissante sur [n; n+1]et donc que $\forall t \in [n; n+1] \ \varphi(n+1) \leq \varphi(t)$

En intégrant cette inégalité entre n et n+1 on a : $\varphi(n+1) \leq \int_{n}^{1} \varphi(t)dt$

et donc
$$\forall n \geq 3 \ \frac{\ln(n+1)}{n+1} \leq \int_{n}^{n+1} \frac{\ln(t)}{t} dt$$

4°) b) On remarque d'abord que :
$$\int_{n}^{n+1} \frac{\ln(t)}{t} dt = \left[\frac{(\ln(t))^{2}}{2}\right]_{n}^{n+1} = \frac{(\ln(n+1))^{2}}{2} - \frac{(\ln(n))^{2}}{2}$$

Pour
$$n \ge 3$$
: $v_{n+1} - v_n = \frac{\ln(n+1)}{n+1} - \frac{(\ln(n+1))^2}{2} + \frac{(\ln(n))^2}{2} = \frac{\ln(n+1)}{n+1} - \int_{0}^{n+1} \frac{\ln(t)}{t} dt$

Et donc $v_{n+1} - v_n \le 0$ d'après le a), on en déduit que $(v_n)_{n\ge 3}$ est décroissante.

Comme φ est décroissante sur $[3; +\infty[$ alors : $\forall k \geq 3 \ \forall t \in [k; k+1] \ \varphi(t) \leq \varphi(k)$

En intégrant entre k et k+1 on obtient : $\int\limits_{t}^{k+1} \frac{\ln(t)}{t} dt \leq \frac{\ln(k)}{k}$

En sommant de k=3 à k=n on obtient : $\sum_{k=2}^{n} \int_{t}^{k+1} \frac{\ln(t)}{t} dt \leq \sum_{k=2}^{n} \frac{\ln(k)}{k}$

Par la relation de Chasles on a alors : $\int_{0}^{n+1} \frac{\ln(t)}{t} dt \leq \sum_{k=2}^{n} \frac{\ln(k)}{k}$

$$\Rightarrow \frac{(\ln(n+1))^2}{2} - \frac{(\ln(3))^2}{2} \le \sum_{k=1}^n \frac{\ln(k)}{k} - \frac{\ln(2)}{2}$$

$$\Rightarrow \frac{(\ln(n+1))^2}{2} - \frac{(\ln(3))^2}{2} \le v_n + \frac{(\ln(n))^2}{2} - \frac{\ln(2)}{2}$$

$$\Rightarrow \frac{(\ln(n+1))^2}{2} - \frac{(\ln(3))^2}{2} \le v_n + \frac{(\ln(n))^2}{2} - \frac{\ln(2)}{2}$$

$$\Rightarrow \frac{(\ln(n+1))^2}{2} - \frac{(\ln(3))^2}{2} - \frac{(\ln(n))^2}{2} + \frac{\ln(2)}{2} \le v_n$$

$$\Rightarrow \frac{(\ln(n+1))^2 - (\ln(n))^2 - (\ln(3))^2 + \ln(2)}{2} \le v_n$$

$$\Rightarrow \frac{(\ln(n+1))^2 - (\ln(n))^2 - (\ln(3))^2 + \ln(2)}{2} \le v_n$$

Mais
$$(ln(n+1))^2 - (ln(n))^2 = (ln(n+1) - ln(n))(ln(n+1) + ln(n))$$

= $ln(1 + \frac{1}{n})ln(n(n+1)) \sim \frac{ln(n+n^2)}{n} \underset{n \to +\infty}{\longrightarrow} 0$
Donc (v_n) est minorée par une suite ayant une limite et donc (v_n) est minorée.

Comme $(v_n)_{n\geq 3}$ est décroissante et minorée : $|(v_n)_{n\geq 3}|$ est convergente.

5°) Montrons par récurrence sur $n \in \mathbb{N}^*$ que : $\forall n \in \mathbb{N}^*$ on a :

$$Prop_n \Leftrightarrow S_{2n} = 2(\sum_{k=1}^{n} \frac{\ln(2k)}{2k}) - \sum_{k=1}^{2n} \frac{\ln(k)}{k}$$

Initialisation: Au rang 1:

$$S_{2\times 1} = S_2 = u_1 + u_2 = 0 + \frac{\ln(2)}{2}$$

D'autre part, si n = 1:

$$2(\sum_{k=1}^{n} \frac{\ln(2k)}{2k}) - \sum_{k=1}^{2n} \frac{\ln(k)}{k} = 2\frac{\ln(2)}{2} - 0 - \frac{\ln(2)}{2} = \frac{\ln(2)}{2}$$

On a bien Prop

Hérédité : On suppose
$$Prop_n$$
 vraie. Alors : $S_{2(n+1)} = S_{2n+2} = S_{2n} + u_{2n+1} + u_{2n+2} = S_{2n} - \frac{\ln(2n+1)}{2n+1} + \frac{\ln(2n+2)}{2n+2} = S_{2n} + 2\frac{\ln(2n+2)}{2n+2} - \frac{\ln(2n+1)}{2n+1} - \frac{\ln(2n+2)}{2n+2}$ En utilisant $Prop_n$:

En demsant
$$I \cap op_n$$
.

$$S_{2(n+1)} = \left[2\left(\sum_{k=1}^{n} \frac{\ln(2k)}{2k}\right) - \sum_{k=1}^{2n} \frac{\ln(k)}{k}\right] + 2\frac{\ln(2n+2)}{2n+2} - \frac{\ln(2n+1)}{2n+1} - \frac{\ln(2n+2)}{2n+2}$$

$$S_{2(n+1)} = 2\left(\sum_{k=1}^{n} \frac{\ln(2k)}{2k}\right) + 2\frac{\ln(2(n+1))}{2(n+1)} - \sum_{k=1}^{2n} \frac{\ln(k)}{k} - \frac{\ln(2n+1)}{2n+1} - \frac{\ln(2n+2)}{2n+2}$$

$$S_{2(n+1)} = 2\left(\sum_{k=1}^{n+1} \frac{\ln(2k)}{2k}\right) - \sum_{k=1}^{2(n+1)} \frac{\ln(k)}{k}$$

On a bien $Prop_{n+1}$

On a donc démontré par récurrence sur $n \in \mathbb{N}^*$ que : $\forall n \in \mathbb{N}^*$ $S_{2n} = 2(\sum_{k=1}^n \frac{\ln(2k)}{2k}) - \sum_{k=1}^{2n} \frac{\ln(k)}{k}$

$$\forall n \in \mathbb{N}^* \ S_{2n} = 2\left(\sum_{k=1}^n \frac{\ln(2k)}{2k}\right) - \sum_{k=1}^{2n} \frac{\ln(k)}{k}$$

Comme $\frac{\ln(2k)}{2k} = \frac{\ln(2) + \ln(k)}{2k}$ l'égalité précédente devient :

$$S_{2n} = ln(2)(\sum_{k=1}^{n} \frac{1}{k}) + (\sum_{k=1}^{n} \frac{\ln(k)}{k}) - \sum_{k=1}^{2n} \frac{\ln(k)}{k}$$

$$S_{2n} = \ln(2) \left(\sum_{k=1}^{n} \frac{1}{k} \right) + \left(v_n + \frac{(\ln(n))^2}{2} \right) - \left(v_{2n} + \frac{(\ln(2n))^2}{2} \right)$$
$$= \ln(2) \left(\sum_{k=1}^{n} \frac{1}{k} \right) + v_n - v_{2n} + \left(\frac{(\ln(n))^2}{2} - \frac{(\ln(2n))^2}{2} \right)$$

$$= ln(2) \left(\sum_{k=1}^{n} \frac{1}{k} \right) + v_n - v_{2n} + \left(\frac{(ln(n))^2}{2} - \frac{(ln(2) + ln(n))^2}{2} \right)$$

$$ln(2)\left(\sum_{k=1}^{n} \frac{1}{k}\right) + v_n - v_{2n} + \left(\frac{(ln(n))^2 - (ln(2))^2 - 2ln(2)ln(n) - (ln(n))^2}{2}\right)$$

$$ln(2)(\sum_{k=1}^{n} \frac{1}{k}) + v_n - v_{2n} + (\frac{-(ln(2))^2 - 2ln(2)ln(n)}{2})$$

$$= \ln(2)\left(\sum_{k=1}^{n} \frac{1}{k}\right) + v_n - v_{2n} - \frac{(\ln(2))^2}{2} - \ln(2)\ln(n)$$

On a bien :
$$\forall n \in \mathbb{N}^*$$
, $S_{2n} = ln(2)(\sum_{k=1}^n \frac{1}{k}) + v_n - v_{2n} - \frac{(ln(2))^2}{2} - ln(2)ln(n)$

6°) On sait d'après le 1°) c) que $\sum_{k=1}^{n} \frac{1}{k} = \ln(n) + \gamma + o(1)$ ce qui reporté dans la dernière égalité du

5°) donne:
$$S_{2n} = ln(2)(ln(n) + \gamma + o(1)) + v_n - v_{2n} - \frac{(ln(2))^2}{2} - ln(2)ln(n)$$

 $\Rightarrow S_{2n} = ln(2)\gamma + o(1) - \frac{(ln(2))^2}{2} + v_n - v_{2n}$

Mais comme (v_n) est convergente alors $v_{2n} - v_n \xrightarrow[n \to +\infty]{} 0$

Et donc
$$\lim_{n\to+\infty} S_{2n} = \gamma ln(2) - \frac{(ln(2))^2}{2}$$

Comme $S_{2n+1} = S_{2n} - \frac{\ln(2n+1)}{2n+1}$ on en déduit $\lim_{n \to +\infty} S_{2n+1} = \lim_{n \to +\infty} S_{2n}$ et donc (S_n) est convergente (vers la même limite que (S_{2n}))

On en déduit que $\sum (-1)^n \frac{\ln(n)}{n}$ est convergente et que : $\sum_{n=1}^{+\infty} (-1)^n \frac{\ln(n)}{n} = \gamma \ln(2) - \frac{\ln(2)^2}{2}$

Problème 1

1°) a) On a :
$$M_{\mathscr{B}}(f \circ f) = A^2 = \frac{1}{9} \begin{pmatrix} 3 & -3 \\ -6 & 6 \end{pmatrix} = A = M_{\mathscr{B}}(f)$$

On a donc $f^2 = f$ et donc f est un projecteur.

On remarque que la deuxième colonne de A est l'opposée de la première, donc rg(f) = rg(A) = 1

1°) b)
$$A \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Leftrightarrow \begin{cases} x - y = 0 \\ -2x + 2y = 0 \end{cases} \Leftrightarrow x = y$$

On a donc $Ker(f) = vect(e_1 + e_2)$

De plus par le théorème du rang : dim(Im(f))+dim(Ker(f))=dim(E)=2 et comme dim(Ker(f))=1 alors dim(Im(f))=1 La première colonne de A nous donne donc une base de Im(f).

Bilan:
$$Ker(f) = vect(e_1 + e_2)$$
 et $Im(f) = Vect(e_1 - 2e_2)$

1°) c) I_2 et A commutent on peut donc appliquer la formule du binôme et obtenir :

$$(I_2 + A)^n = \sum_{k=0}^n {n \choose k} A^k = I_2 + \sum_{k=1}^n {n \choose k} A$$
 puisque $A^k = A$ pour $k \ge 1$

Donc
$$(I_2 + A)^n = I_2 + \left[\sum_{k=1}^n \binom{n}{k}\right]A = I_2 + \left[\sum_{k=0}^n \binom{n}{k} - 1\right]A = I_2 + \left[2^n - 1\right]A = \frac{1}{3} \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix} + \frac{2^n - 1}{3} \begin{pmatrix} 1 & -1 \\ -2 & 2 \end{pmatrix}$$

Bilan:
$$\forall n \in \mathbb{N}, (I_2 + A)^n = \frac{1}{3} \begin{pmatrix} 2^n + 2 & 1 - 2^n \\ 2 - 2^{n+1} & 2^{n+1} + 1 \end{pmatrix}$$

2°) a) Ecrivons une équation cartésienne de P sous la forme : ax+by+cz=0

Alors:
$$\begin{cases} v \in P \\ w \in P \end{cases} \Leftrightarrow \begin{cases} a - c = 0 \\ 2a - b = 0 \end{cases} \Leftrightarrow \begin{cases} c = a \\ b = 2a \end{cases}$$

En choisissant a = 1: une équation cartésienne de P est x + 2y + z = 0

2°) b) On a directement avec les caractéristique de P: p(u) = 0, p(v) = v et p(w) = w

Donc:
$$\begin{cases} p(e_1 + 3e_2 - e_3) = 0 \\ p(e_1 - e_3) = e_1 - e_3 \\ p(2e_1 - e_2) = 2e_1 - e_2 \end{cases} \Leftrightarrow \begin{cases} p(e_1) + 3p(e_2) - p(e_3) = 0 \\ p(e_1) - p(e_3) = e_1 - e_3 \\ 2p(e_1) - p(e_2) = 2e_1 - e_2 \end{cases}$$

 $L_1 - L_2$ donne $p(e_2) = \frac{1}{3}(-e_1 + e_3)$

Avec L_3 on obtient : $p(e_1) = \frac{1}{6}(5e_1 - 3e_2 + e_3)$ et avec L_2 on obtient : $p(e_3) = \frac{1}{6}(-e_1 - 3e_2 + 7e_3)$

On en déduit donc que : la matrice de p relativement à \mathscr{B} est $\frac{1}{6}\begin{pmatrix} 5 & -2 & -1 \\ -3 & 0 & -3 \\ 1 & 2 & 7 \end{pmatrix}$

 3°) • Soit $x \in Ker(p) \cap Im(p)$

Alors $p(x) = 0_E$ et $\exists y \in E$, x = p(y)

Mais $0_E = p(x) = p(p(y)) = p^2(y) = p(y) = x$ car $p^2 = p$ et donc $x = 0_E$

On en déduit $Ker(p) \cap Im(p) \subset \{0_E\}$, comme l'autre inclusion est évidente on a : $Ker(p) \cap Im(p) = \{0_E\}$ et donc $Ker(p) + Im(p) = Ker(p) \oplus Im(p)$

Comme la somme est directe : $dim(Ker(p) \oplus Im(p)) = dim(ker(p)) + dim(Im(p)) = dim(E)$ par le théorème du rang.

Donc $\begin{cases} Ker(p) \oplus Im(p) \subset E \\ dim(Ker(p) \oplus Im(p)) = dim(E) \end{cases}$ et on en déduit $Ker(p) \oplus Im(p) = E$

• Soit $x \in Im(p)$ alors $\exists y \in E$, x = p(y)

Comme $p = p^2$ alors $p(x) = p(p(y)) = p^2(y) = p(y) = x$ donc $x - p(x) = (e - p)(x) = 0_E$ On a alors $x \in Ker(e-p)$ et donc $Im(p) \subset Ker(e-p)$

Soit $x \in Ker(e-p)$ alors $(e-p)(x) = 0_E \Rightarrow x - p(x) = 0_E \Rightarrow x = p(x)$ et donc $x \in Im(p)$ On a alors: $Ker(e-p) \subset Im(p)$

Par double inclusion : Im(p) = Ker(e-p)Bilan : $E = ker(p) \oplus Im(p)$ et Im(p) = ker(p-e)

4°) On choisit une base adaptée à la somme directe du 3°), donc de la forme $(e_1, \ldots, e_k, \epsilon_1, \ldots, \epsilon_m)$ avec les e_i dans ker(p) et les ϵ_i dans Im(p).

On a par définition $u(e_i) = 0_E$. De plus $\epsilon_i \in Im(p) = ker(p-e)$ donc $(p-e)(\epsilon_i) = 0_E \Rightarrow p(\epsilon_i) = \epsilon_i$ Posons K = rg(p) = dim(Im(p)) = dim(ker(p - e))

Alors, dans la base ci-dessus la matrice de p est de la forme (matrice par blocs) : $\begin{pmatrix} 0_{M_{n-K}} & 0_{M_{n-K}} \\ 0_{M_{N-K}} & I_K \end{pmatrix}$

Il est alors facile de voir que rg(p) = K = tr(p)

On a bien : |rg(p) = tr(p)|

5°) e-u est un projecteur

 $\Leftrightarrow (e-u)^2 = e - u \Leftrightarrow e^2 - 2u + u^2 = e - u \Leftrightarrow u^2 = u \Leftrightarrow u \text{ est un projecteur}$

Remarque : on a utilisé que u et e commutent.

On a bien l'équivalence : |u| est un projecteur $\Leftrightarrow e-u$ est un projecteur

6°) Si on reprend le 3°) en remplaçant p par u et remarquant que Ker(u-e) = Ker(e-u), on obtient : Im(u) = Ker(e-u) Comme e-u est aussi un projecteur on peut "remplacer" u par e-u et on a : Im(e - u) = Ker(e - (e - u)) = Ker(u)

Donc si u est un projecteur on a : Im(u) = Ker(e-u) et Ker(u) = Im(e-u)

7°) u + v est un projecteur

- $\Leftrightarrow (u+v)^2 = u+v$
- $\Leftrightarrow u^2 + v^2 + u \circ v + v \circ u = u + v$ mais $u = u^2$ et $v = v^2$ puisque l'on a des projecteurs
- $\Leftrightarrow u + v + u \circ v + v \circ u = u + v \Leftrightarrow u \circ v + v \circ u = O$

On a bien : Si u et v sont des projecteurs : u + v est un projecteur $\Leftrightarrow u \circ v + v \circ u = O$

- 8°) L'implication : $u \circ v = v \circ u = O \Rightarrow u \circ v + v \circ u = O$ est évidente, il nous faut montrer la réciproque.
 - Supposons donc $u \circ v + v \circ u = O$. On compose à gauche par u et on obtient :

 $u \circ u \circ v + u \circ v \circ u = O \Rightarrow u^2 \circ v + (u \circ v) \circ u = O$

Mais u est un projecteur donc $u^2 = u$ et par hypothèse $u \circ v = -v \circ u$

Donc : $u \circ v - (v \circ u) \circ u = O$ et en réutilisant $u^2 = u$ alors $u \circ v - v \circ u = O$

On a donc les deux égalités : $\begin{cases} u \circ v + v \circ u = O \\ u \circ v - v \circ u = O \end{cases}$ En faisant $L_1 + L_2$ et $L_1 - -L_2$ on obtient bien : $u \circ v = v \circ u = O$

- Bilan : Si u et v sont des projecteurs : $u \circ v + v \circ u = O \Leftrightarrow u \circ v = v \circ u = O$
- 9°) Supposons que u + v est un projecteur.

En utilisant le 7°) et le 8°) on a : $u \circ v = v \circ u = O$. Alors :

$$y \in Im(v) \Rightarrow \exists x \in E , y = v(x) \Rightarrow u(y) = \underbrace{(u \circ v)}_{O}(x) = 0_{E} \Rightarrow y \in Ker(u) \text{ On a donc } Im(v) \subset Ker(u)$$

Par symétrie : $Im(u) \subset Ker(v)$

- Supposons que : $Im(v) \subset Ker(u)$ et $Im(u) \subset Ker(v)$ Soit $x \in E$ alors $(v \circ u)(x) = v(u(x)) = 0_E$ puisque $u(x) \in Im(u) \subset Ker(v)$ De même $(u \circ v)(x) = 0_E$ et donc, en additionnant : $(u \circ v)(x) + (v \circ u)(x) = 0_E$ Finalement: $u \circ v + v \circ u = O$ et donc avec le 7°) u + v est un projecteur.
 - On a donc : |u+v| est un projecteur $\Leftrightarrow Im(v) \subset Ker(u)$ et $Im(u) \subset Ker(v)$
 - 10°) Supposons que f commute avec u.

Soit
$$x \in Ker(u)$$
 alors $u(f(x)) = f(\underbrace{u(x)}_{x \in Ker(u)}) = f(0_E) = 0_E$ donc $f(x) \in Ker(u)$ et $Ker(u)$ est stable

par f.

Soit $y \in Im(u)$ alors $\exists x \in E$, y = u(x). Alors $f(y) = (f \circ u)(x) = (u \circ f)(x) = u(f(x)) \in Im(u)$. Donc Im(u) est stable par f.

• Supposons que Ker(u) et Im(u) sont stables par f. Alors, comme à la question 4°), dans une base adaptée à $E = Ker(u) \oplus Im(u)$ la matrice de f s'écrit (par blocs) $F = \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}$

Comme celle de u s'écrit : $U = \begin{pmatrix} 0 & 0 \\ 0 & I_K \end{pmatrix}$ alors $FU = UF = \begin{pmatrix} 0 & 0 \\ 0 & B \end{pmatrix}$ et donc u et f commutent.

• Bilan : $f \in L(E)$ commute avec u si et seulement si Im(u) et Ker(u) sont stables par f

Problème 2 : d'après e3A PSI 2003 math B

1°) Posons :
$$\forall n \in \mathbb{N}^*$$
 , $a_n = \frac{1}{2}$. Alors : $p_n = \prod_{k=1}^n a_k = \prod_{k=1}^n \frac{1}{2} = \frac{1}{2^n} \xrightarrow[n \to +\infty]{} 0$

$$\left[\text{Si } \forall n \in \mathbb{N}^* \text{ , } a_n = \frac{1}{2} \text{ alors } p_n \xrightarrow[n \to +\infty]{} 0 \right]$$

2°) Si p_n converge vers $p \neq 0$, alors, à partir d'un certain rang N on a $p_n \neq 0$.

On peut donc calculer, pour n > N: $\frac{p_n}{p_{n-1}} = \frac{\prod\limits_{k=1}^n a_k}{\prod\limits_{k=1}^{n-1} a_k} = a_n$

Mais comme $p_n \xrightarrow[n \to +\infty]{} p$, on a aussi $p_{n-1} \xrightarrow[n \to +\infty]{} p$ et donc $a_n = \frac{p_n}{p_{n-1}} \xrightarrow[n \to +\infty]{} \frac{p}{p} = 1$

Si (p_n) converge vers $p \neq 0$ alors (a_n) converge vers 1.

 3°) a) Soit $n \geq n_0$.

Alors
$$p_n = \prod_{k=1}^n a_k = (\prod_{k=1}^{n_0} a_k) (\prod_{k=n_0+1}^n a_k)$$
 et donc $\forall n \ge n_0, \ q_n = \frac{p_n}{p_{n_0}}$

3°) b) On remarque pour commencer que l'on peut considérer la série $\sum ln(a_n)$ car $a_n>0$ pour $n\geq n_0$

 $n \ge n_0$ Pour $n \ge n_0$ on a : $ln(q_n) = ln(\prod_{k=n_0+1}^n a_k) = \sum_{k=n_0+1}^n ln(a_k)$

On en déduit que si $\sum ln(a_k)$ est convergente alors $ln(q_n)$ (somme partielle de la série $\sum ln(a_k)$) est convergente, donc $\exists a \in \mathbb{R}$, $ln(q_n) \xrightarrow[n \to +\infty]{} a$

convergente, donc $\exists a \in \mathbb{R}$, $ln(q_n) \underset{n \to +\infty}{\longrightarrow} a$ Puis, par continuité de l'exponentielle : $q_n \underset{n \to +\infty}{\longrightarrow} exp(a) > 0$

Avec la relation du a), on a : $p_n \xrightarrow[n \to +\infty]{} p = p_{n_0} exp(a)$.

Mais $p_{n_0} \neq 0$ car les a_k sont non nuls (hypothèse), et $exp(a) \neq 0$ donc $p \neq 0$

On a donc : $\sum ln(a_n)$ convergente $\Rightarrow (p_n)$ converge vers un réel p non nul.

- 3°) c) Si $\sum ln(a_n)$ diverge vers $-\infty$, alors $ln(q_n) \xrightarrow[n \to +\infty]{} -\infty$ et donc, en passant par l'exponentielle $q_n \xrightarrow[n \to +\infty]{} 0$. On a alors $p_n \xrightarrow[n \to +\infty]{} 0$
- Si $\sum ln(a_n)$ diverge vers $+\infty$, alors $ln(q_n) \xrightarrow[n \to +\infty]{} +\infty$ et donc, en passant par l'exponentielle, $q_n \xrightarrow[n \to +\infty]{} +\infty$. On a alors $p_n \xrightarrow[n \to +\infty]{} \pm\infty$ (suivant le signe de p_{n_0})

 4°) • Supposons que (p_n) converge vers p > 0.

Par définition $a_n \geq 1$, donc clairement $p_n \geq 1$ et on peut prendre le ln de p_n , on a alors $p \geq 1$ (donc ln(p) est défini) et on écrit, par continuité de ln:

$$\lim_{n \to +\infty} \ln(p)$$

$$\Rightarrow \ln(\prod_{k=1}^{n} a_k) \xrightarrow[n \to +\infty]{} \ln(p)$$
$$\Rightarrow \sum_{k=1}^{n} \ln(a_k) \xrightarrow[n \to +\infty]{} \ln(p)$$

$$\Rightarrow \sum_{k=1}^{n} ln(a_k) \underset{n \to +\infty}{\longrightarrow} ln(p)$$

$$\Rightarrow \sum_{k=1}^{n} ln(1+u_k) \underset{n\to+\infty}{\longrightarrow} ln(p)$$

La série $\sum ln(1+u_n)$ est donc convergente.

Mais (p_n) converge vers $p \neq 0$, donc, d'après le 2°): $a_n \xrightarrow[n \to +\infty]{} 1$ et donc $u_n \xrightarrow[n \to +\infty]{} 0$

On a alors $\begin{cases} ln(1+u_n) \sim u_n \geq 0 \\ \sum ln(1+u_n) \text{ est convergente} \end{cases} \Rightarrow \sum u_n \text{ est convergente par la règle de l'équivalent pour}$

• Réciproquement, supposons que $\sum u_n$ converge. Alors $\sum u_n$ converge $\Rightarrow u_n \underset{n \to +\infty}{\longrightarrow} 0$ et on peut, comme ci-dessus, en déduire que $\sum ln(1+u_n)$ est convergente.

Par le même calcul que ci-dessus : $ln(p_n) \underset{n \to +\infty}{\longrightarrow} a > 0$ et comme exp est continue $p_n \underset{n \to +\infty}{\longrightarrow} e^a > 0$

• Bilan : (p_n) converge vers p > 0 si et seulement si $\sum u_n$ converge

5°) a)
$$\sum u_n$$
 converge $\Rightarrow u_n \xrightarrow[n \to +\infty]{} 0$

5°) a) $\sum u_n$ converge $\Rightarrow u_n \xrightarrow[n \to +\infty]{} 0$ Alors $a_n = 1 + u_n \xrightarrow[n \to +\infty]{} 1$ et on peut donc considérer $ln(a_n)$ pour n assez grand.

$$ln(a_n) = ln(1 + u_n) = u_n - \frac{u_n^2}{2} + o(u_n)^2$$

On pose
$$v_n = \underline{ln(a_n)} - u_n = -\frac{u_n^2}{2} + o(u_n)^2 \sim \frac{-u_n^2}{2} \le 0$$

On pose $v_n = ln(a_n) - u_n = -\frac{u_n^2}{2} + o(u_n)^2 \sim \frac{-u_n^2}{2} \leq 0$ Donc, comme $\sum u_n^2$ est convergente, alors, par la règle de l'équivalent (séries à termes négatifs) on a $\sum v_n$ convergente.

On a alors $\begin{cases} ln(a_n) = u_n + v_n \\ \sum u_n \text{ convergente} \\ \sum v_n \text{ convergente} \end{cases}$, donc $\sum ln(a_n)$ est convergente et par le 3°)b) p_n converge vers $p \neq 0$

Bilan : $\sum u_n$ et $\sum u_n^2$ convergentes $\Rightarrow (p_n)$ converge vers un réel p non nul.

5°) b) Si
$$\sum u_n^2$$
 diverge, alors, comme $u_n^2 \geq 0$, on a $\sum_{k=1}^n u_k^2 \underset{n \to +\infty}{\longrightarrow} +\infty$
Avec les notations ci-dessus, comme $v_n \leq 0$ au voisinage de $+\infty$ (deux équivalents ont même signe) on

$$a: \sum_{k=1}^{n} v_k \xrightarrow[n \to +\infty]{} -\infty$$

Comme $ln(a_n) = u_n + v_n$ et que $\sum u_n$ est convergente, on en déduit $\sum ln(a_n) \xrightarrow[n \to +\infty]{} -\infty$ et donc $p_n \xrightarrow[n \to +\infty]{} 0 \text{ (par le 3°)c)}$

Bilan : $\sum u_n$ convergente et $\sum u_n^2$ divergente $\Rightarrow (p_n)$ converge vers 0.

6°) Si $\sum u_n$ converge absolument, alors $u_n \underset{n \to +\infty}{\longrightarrow} 0$, donc, à partir d'un certain rang : $0 \le |u_n| \le 1 \Rightarrow 0 \le u_n^2 \le |u_n|$ et par la règle de comparaison, comme $\sum |u_n|$ est convergente, alors $\sum u_n^2$ est convergente et on peut appliquer le 5°) a) pour en déduire (p_n) converge vers un réel p non nul.

Bilan : $\sum u_n$ absolument convergente $\Rightarrow (p_n)$ converge vers un réel p non nul.

7°) a) Si
$$\forall n \in \mathbb{N}^*$$
, $a_n = 1 + \frac{1}{n}$ alors $p_n = \prod_{k=1}^n a_k = \prod_{k=1}^n \frac{1+k}{k} = \frac{\prod_{k'=2}^{n+1} k'}{\prod_{k=1}^n k} = \frac{(n+1)!}{n!} = n+1 \xrightarrow[n \to +\infty]{} +\infty$

$$(p_n)$$
 diverge et $p_n \xrightarrow[n \to +\infty]{} +\infty$

7°) b) • On pose
$$u_n = \frac{(-1)^n \ln(n)}{\sqrt{n}}$$
. On a : $|u_n| = f(n)$ avec $f: [1, +\infty[\longrightarrow \mathbb{R}]$

f est dérivable sur $[1, +\infty[$ et $f'(x) = \frac{\frac{1}{x}\sqrt{x} - \ln(x)\frac{1}{2\sqrt{x}}}{x} = \frac{1 - \frac{\ln(x)}{2}}{x^{3/2}}, \text{ donc } f'(x) \leq 0 \text{ sur } [e^2, +\infty[$ De plus $f(x) \underset{x \to +\infty}{\longrightarrow} 0$

On a donc $\begin{cases} \sum u_n \text{ est une série alternée} \\ (|u_n|)_{n>e^2} \text{ est décroissante} \\ |u_n| \underset{n \to +\infty}{\longrightarrow} 0 \end{cases}$ donc, par le théorème spécial à certaines séries alternées,

 $\sum u_n$ est convergente

• $u_n^2 = \frac{(\ln(n))^2}{n} \ge \frac{1}{n} > 0$ pour n > e. Comme $\sum \frac{1}{n}$ est une série de Riemann divergente, alors, par règle de comparaison pour les séries à termes positifs : $\sum u_n^2$ est divergente.

• On a donc : $\sum u_n$ est convergente et $\sum u_n^2$ est divergente. On peut alors appliquer le 5°) b) et en

déduire que
$$(p_n)$$
 converge et $p_n \xrightarrow[n \to +\infty]{} 0$

$$7^{\circ}) c) On calcule, pour $n \ge 1 : p_n = \prod_{k=1}^n a_k = \prod_{k=1}^n \frac{4k^2 - 1}{4k^2} = \prod_{k=1}^n \frac{(2k-1)(2k+1)}{4k^2}$$$

Mais
$$\prod_{k=1}^{n} k = n!$$
 et $\prod_{k=1}^{n} 4 = 4^n$ donc $p_n = \frac{((\prod_{k=1}^{n} (2k+1)))(\prod_{k=1}^{n} (2k-1)))}{4^n (n!)^2}$

$$\prod_{k=1}^{n} (2k-1) = \frac{\prod\limits_{k=1}^{2n} k}{\prod\limits_{k=1}^{n} (2k)} = \frac{(2n)!}{2^{n}n!} \text{ et de même } \prod_{k=1}^{n} (2k+1) = \frac{\prod\limits_{k=1}^{2n+1} k}{\prod\limits_{k=1}^{n} (2k)} = \frac{(2n+1)(2n)!}{2^{n}n!}$$

On a donc
$$p_n = (\frac{(2n)!}{2^n n!})^2 (2n+1) \frac{1}{4^n (n!)^2} = \frac{((2n)!)^2 (2n+1)}{4^{2n} (n!)^4}$$

On utilise maintenant la fameuse formule de Stirling : $N! \sim \sqrt{2\pi} N^{N+\frac{1}{2}} e^{-N}$ donc :

$$p_n \sim \frac{(\sqrt{2\pi}(2n)^{2n+\frac{1}{2}}e^{-2n})^2(2n+1)}{4^{2n}(\sqrt{2\pi}n^{n+\frac{1}{2}}e^{-n})^4} \sim \frac{2\pi}{(2\pi)^2} \frac{2^{4n+1}}{4^{2n}} \frac{n^{4n+1}(2n+1)}{n^{4n+2}} \frac{e^{-4n}}{e^{-4n}} \sim \frac{2}{\pi}$$

On en déduit que
$$(p_n)$$
 converge et $p_n \xrightarrow[n \to +\infty]{2} \frac{2}{\pi}$

8°) Comme l'intégrale $\int_{0}^{+\infty} e^{-t^2} dt$ est convergente alors $\int_{0}^{n} e^{-t^2} dt \xrightarrow[n \to +\infty]{} \frac{\sqrt{\pi}}{2}$ et donc $a_n \xrightarrow[n \to +\infty]{} \frac{2}{\sqrt{\pi}} \frac{\sqrt{\pi}}{2} = 1$

On pose alors: $u_n = a_n - 1 = -\frac{2}{\sqrt{\pi}} \int_{-\infty}^{+\infty} e^{-t^2} dt$

Comme $\forall t \geq 1 \ 0 \leq t \leq t^2 \Rightarrow -t^2 \leq -t$ et \exp croissante alors : $\exists N \in \mathbb{N}$, $\forall t \geq N$, $0 \leq e^{-t^2} \leq e^{-t}$

Donc
$$\forall n \geq N$$
, $0 \leq -u_n = \frac{2}{\sqrt{\pi}} \int_{n}^{+\infty} e^{-t^2} dt \leq \frac{2}{\sqrt{\pi}} \int_{n}^{+\infty} e^{-t} dt = \frac{2}{\sqrt{\pi}} [-e^{-t}]_{n}^{+\infty} = \frac{2}{\sqrt{\pi}} e^{-n}$

Comme $\sum e^{-n}$ est une série géométrique convergente, alors, par règle de comparaison, $\sum -u_n$ est convergente et donc $\sum u_n$ est convergente.

On a aussi : $0 \le u_n^2 \le (\frac{2}{\sqrt{\pi}}e^{-n})^2 = \frac{4}{\pi}e^{-2n}$

Comme $\sum e^{-2n}$ est une série géométrique convergente, alors, par règle de comparaison, $\sum u_n^2$ est convergente.

On a $\sum u_n$ et $\sum u_n^2$ convergentes, donc avec la question 5°) a): $|(p_n)|$ converge vers une limite non nulle.

9°)a) On a :
$$\frac{p_n}{p_{n-1}} = 1 + u_n$$
. En divisant par $p_n \neq 0$ on a : $\frac{1}{p_{n-1}} = \frac{1}{p_n} + \underbrace{\frac{u_n}{p_n}}_{v_n}$ et donc $\underbrace{v_n = \frac{1}{p_{n-1}} - \frac{1}{p_n}}_{v_n}$

9°)b)i) On a $\sum u_n$ et $\sum u_n^2$ qui convergent. Alors par le 5°)a) la suite (p_n) qui converge vers $p \neq 0$. Puisque $p \neq 0$, on a donc la suite $(\frac{1}{p_n})$ qui converge vers $\frac{1}{p}$

Par le théorème suite-série on en déduit $\sum \left(\frac{1}{p_n} - \frac{1}{p_{n-1}}\right)^r$ est convergente, et avec l'égalité du a) que $\sum v_n$ est convergente

9°)b)ii) Si on pose $u_n = \frac{1}{n}$ alors $a_n = 1 + \frac{1}{n}$ et avec le 7°)a) $p_n = n + 1$. Alors $v_n = \frac{u_n}{p_n} = \frac{1}{n(n+1)} \sim \frac{1}{n^2}$ On a alors $\sum v_n$ convergente et $\sum u_n$ divergente.

La convergence de $\sum v_n$ n'implique pas celle de $\sum u_n$

10°) Voir 9°)b)ii)

- 11°) a) On commence par traité le cas c=0. Si c=0, alors $u_n=0$, donc $a_n=1$, donc $p_n=1$ et donc (p_n) ne converge pas vers 0.
- On suppose désormais que $c \neq 0$ et on pose $u_n = sin(\frac{c}{n^{\alpha}})$. Comme $\alpha > 0$ on a $\frac{1}{n^{\alpha}} \xrightarrow[n \to +\infty]{} 0$ et donc $u_n \sim \frac{c}{n^{\alpha}} \ (c \neq 0)$

Cas 1 : $\alpha > 1$ donc $\sum \frac{c}{n^{\alpha}}$ est convergente comme série de Riemann et par la règle de l'équivalent pour les séries à termes positifs on a $\sum u_n$ convergente.

Comme u_n est de signe constant au voisinage de $+\infty$, on a même $\sum u_n$ absolument convergente, donc avec le 6°) (p_n) converge vers $p \neq 0$

Cas 2: $0 < \alpha \le 1$

Alors avec l'équivalent ci-dessus et la règle de l'équivalent $(u_n \text{ est de signe constant}) \sum u_n$ est divergente. On a $u_n \underset{n \to +\infty}{\longrightarrow} 0$ car $\alpha > 0$ donc $ln(a_n) = ln(1 + u_n) \sim u_n$ et on en déduit que $\sum ln(a_n) \underset{n \to +\infty}{\longrightarrow} \pm \infty$ suivant le signe de c.

On utilise alors le 3°)c).

Cas 2, 1:
$$c > 0$$
 Alors $ln(a_n) \xrightarrow[n \to +\infty]{} +\infty$ et $p_n \xrightarrow[n \to +\infty]{} +\infty$
Cas 2, 2: $c < 0$ Alors $ln(a_n) \xrightarrow[n \to +\infty]{} -\infty$ et $p_n \xrightarrow[n \to +\infty]{} 0$

Finalement (p_n) converge vers 0, seulement dans le cas 2,2

Bilan : (p_n) converge vers 0 si et seulement si $0 < \alpha \le 1$ et c < 0

11°)b) On a $\alpha = 1$. On distingue alors 2 cas suivant le signe de c.

Cas 1 : c > 0 ou c = 0

Alors avec le 11°)a) on a (p_n) qui ne converge pas vers 0, donc $\sum p_n$ est grossièrement convergente.

Cas 2 : c < 0 (Cette fois, avec le 11°)a) $p_n \xrightarrow[n \to +\infty]{} 0$ et la divergence n'est pas grossière)

$$ln(1 + sin(\frac{c}{n})) = ln(1 + \frac{c}{n} + O(\frac{1}{n^2})) = \frac{c}{n} + O(\frac{1}{n^2})$$

 $ln(1+sin(\frac{c}{n})) = ln(1+\frac{c}{n}+O(\frac{1}{n^2})) = \frac{c}{n}+O(\frac{1}{n^2})$ On pose alors : $A_n = ln(1+sin(\frac{c}{n})) - \frac{c}{n}$ On vient de voir que $A_n = O(\frac{1}{n^2})$ donc, comme $\sum \frac{1}{n^2}$ est une série à termes positifs convergente, on a, par comparaison, $\sum A_n$ convergente.

On a:
$$\sum_{k=1}^{n} A_k = \sum_{k=1}^{n} \left[\ln(1 + \sin(\frac{c}{k})) - \frac{c}{k} \right] = \sum_{k=1}^{n} \ln(1 + \sin(\frac{c}{k})) - \sum_{k=1}^{n} \frac{c}{k} = \ln(p_n) - c(t_n + \ln(n))$$

On en déduit : $ln(p_n) - cln(n) = ct_n + \sum_{k=1}^{n} A_k$

Comme (t_n) est convergente et $\sum A_n$ est convergente, alors $(ct_n + \sum_{k=1}^n A_k)$ est convergente et il existe

 $\mu \in \mathbb{R}$ tel que : $ln(p_n) - cln(n) \xrightarrow[n \to +\infty]{} \mu$

Donc $ln(\frac{p_n}{n^c}) \xrightarrow[n \to +\infty]{} \mu$

Par continuité de l'exponentielle : $\frac{p_n}{n^c} \xrightarrow[n \to +\infty]{} e^{\mu}$ et donc $p_n \sim e^{\mu} n^c > 0$

Par la règle de l'équivalent pour les séries à termes positifs on a $\sum p_n$ et $\sum n^c$ de même nature, donc, par les séries de Riemann: $\sum p_n$ est convergente si et seulement si c < -1 (on a bien c < 0)

Bilan : Si $\alpha = 1$ alors : $\sum p_n$ convergente si et seulement si c < -1