BONUS : Devoir à la maison n°1 de Mathématiques

PROBLEME: PC E3A 2018, épreuve 2

L'objet de ce problème est détudier les éventuelles solutions de l'équation :

$$ln(x) = ax$$

où $a \in \mathbb{R}$ est fixé et x > 0 est l'inconnue.

Partie I. Etude de l'équation (E_a)

- 1. On se fixe, dans cette question, un réel a quelconque.
 - (a) Montrer que si $a \in]-\infty,0]$, l'équation (E_a) admet une unique solution $\alpha \in]0,1]$.
 - (b) Montrer que que si $a \in]0, \frac{1}{e}[$, l'équation (E_a) admet exactement deux solutions α et β vérifiant $\alpha \in]1, e[$ et $\beta \in]e, +\infty[$.
 - (c) Montrer que si $a=\frac{1}{e}$, l'équation (E_a) admet une unique solution dont on donnera la valeur.
 - (d) Montrer que si $a > \frac{1}{e}$, l'équation (E_a) n'admet pas de solution.
- 2. Illustrer sur quatre graphiques différents les cas où $a \in]-\infty,0], \ a \in]0,\frac{1}{e}[,\ a=\frac{1}{e} \text{ et } a>\frac{1}{e} \text{ (on représentera la fonction logarithme ainsi que la droite d'équation }y=ax)$

Partie II. Etude d'une équation fonctionnelle

Dans cette partie on s'intéresse à l'étude de l'équation fonctionnelle

$$\forall (x,y) \in \mathbb{R}^2, \quad \varphi(x+y) = \varphi(x)\varphi(y)$$
 (R)

où l'inconnue est une fonction φ continue sur \mathbb{R} .

- 1. Montrer qu'il existe exactement deux fonctions constantes sur \mathbb{R} , que l'on précisera, solutions de (R).
- 2. Soit φ une solution de (R). Montrer que :

$$\varphi(0) = 0 \Leftrightarrow \forall x \in \mathbb{R}, \quad \varphi(x) = 0.$$

- 3. Soit φ une solution de (R) vérifiant $\varphi(0) \neq 0$.
 - (a) Donner la valeur de $\varphi(0)$ et montrer que : $\forall x \in \mathbb{R}, \quad \varphi(x) > 0$.
 - (b) Montrer que

$$\forall n \in \mathbb{Z}, \forall x \in \mathbb{R}, \quad \varphi(nx) = (\varphi(x))^n.$$

(c) Montrer que

$$\forall m \in \mathbb{N}^*, \quad \varphi(1) = \left(\varphi\left(\frac{1}{m}\right)\right)^m.$$

(d) Déduire des questions précédentes que

$$\forall (n,m) \in \mathbb{Z} \times \mathbb{N}^*, \quad \varphi\left(\frac{n}{m}\right) = (\varphi(1))^{\frac{n}{m}}.$$

- (e) Soit $x \in \mathbb{R}$. Montrer que la suite $(x_n)_{n \in \mathbb{N}}$, définie par $x_n = \lfloor 10^n x \rfloor 10^{-n}$ pour tout $n \in \mathbb{N}$, converge vers x ($|\cdot|$ désignant la fonction partie entière).
- (f) Conclure que

$$\forall x \in \mathbb{R}, \quad \varphi(x) = (\varphi(1))^x.$$

Partie III. Etude d'une suite de polynômes

On considère pour la suite de ce problème la suite de polynômes $(P_n)_{n\in\mathbb{N}}$ définie par $P_0=1$ et, pour $n\in\mathbb{N}^*$:

$$P_n(X) = \frac{1}{n!}X(X+n)^{n-1}.$$

- 1. (a) Expliciter les polynômes P_1 et P_2 .
 - (b) Donner la valeur de $P_n(0)$ pour tout $n \in \mathbb{N}$.
- 2. Montrer que

$$\forall n \in \mathbb{N}^*, \forall x \in \mathbb{R}, \quad P'_n(x) = P_{n-1}(x+1).$$

3. En déduire que

$$\forall n \in \mathbb{N}, \forall (x, y) \in \mathbb{R}^2, \quad P_n(x+y) = \sum_{k=0}^n P_k(x) P_{n-k}(y)$$

(on pourra procéder par récurrence sur $\mathbb{N}).$

Partie IV. Retour sur l'équation (E_a)

Dans cette partie on note α_a la plus petite solution, si elle existe, de l'équation (E_a) .

- 1. (a) Montrer que pour $x \in \mathbb{R}$, $(x+n)^{n-1} \underset{n \to +\infty}{\sim} e^x n^{n-1}$.
 - (b) Rappeler la formule de Stirling puis montrer que, pour $a \in \mathbb{R}$ et $x \in \mathbb{R}^*$ fixés, la série numérique $\sum_{n\geq 0} P_n(x)a^n$ converge absolument si et seulement si $|a|\leq \frac{1}{e}$.
- 2. Dans cette question on se fixe un réel a de $\left[-\frac{1}{e},\frac{1}{e}\right]$ et on note F_a la fonction définie sur $\mathbb R$ par :

$$F_a(x) = \sum_{n=0}^{+\infty} P_n(x)a^n.$$

- (a) Montrer que F_a est continue sur \mathbb{R} .
- (b) Rappeler le résultat de cours sur le produit de Cauchy de deux séries.
- (c) En utilisant les résultats de la partie III., montrer que F_a est solution de (R) et en déduire :

$$\forall x \in \mathbb{R}, \quad F_a(x) = (F_a(1))^x.$$

(d) Montrer que F_a est de classe \mathcal{C}^1 sur $\mathbb R$ et que :

$$\forall x \in \mathbb{R}, \quad F_a'(x) = aF_a(x+1).$$

- (e) En calculant $F'_a(0)$ de deux façons différentes, montrer que $F_a(1)$ est solution de (E_a) .
- 3. On note G la fonction définie sur $\left[-\frac{1}{e},\frac{1}{e}\right]$ par $G(a)=F_a(1)$
 - (a) Montrer que G est de classe C^1 sur $\left] \frac{1}{e}, \frac{1}{e} \right[$ et monotone sur $\left[0, \frac{1}{e}\right]$.
 - (b) Expliciter $G\left(\left[0,\frac{1}{e}\right]\right)$, image de l'intervalle $\left[0,\frac{1}{e}\right]$ par la fonction G.
 - (c) Conclure que

$$\forall a \in \left[-\frac{1}{e}, \frac{1}{e} \right], \quad F_a(1) = \alpha_a.$$

4. Soit C un réel tel que $1 \le C \le e^{\frac{1}{e}}$. Montrer que l'équation $y^y = C$, d'inconnue y > 0, admet une unique solution y_0 et que

$$y_0 = 1 + \ln(C) + \sum_{n=2}^{+\infty} (-1)^{n+1} \frac{(n-1)^{n-1}}{n!} (\ln(C))^n.$$