Correction du devoir à la maison de Mathématiques n°1

EXERCICE 1

1°)

1 2 3 4	1 3 6 5 4	7 2 3 4 6 5 7
m = 4 8 1 2 3 3 16 15 14 m = 8	n = 6 1 2 3 6 5 4 7 8 9	n=7
3 4	5 6 7 8 n = 10	

2°) Démontrons par une récurrence FORTE que pour $n \ge 6$ un carré est divisible en n carrés.

Initialisation : le 1°) permet de démontrer le résultat pour $n \in \{6, 7, 8, 9, 10\}$

Hérédité : supposons que la propriété est vraie du rang 6 au rang n avec $n \ge 9$ (puisque le résultat est déjà démontrer jusqu'au rang 10) et montrons la au rang n+1

On remarque que si l'on divise un carré (d'un premier partage), en 4, il y en a 3 de plus. n+1-3=n-2, on sait divisé un carré en n-2 carrés, on part de cette division et on divise un des n-2 carrés en 4, on a alors n-2+3=n+1 carrés, ce qu'il fallait démontrer.

Conclusion : on a démontrer par récurrence que $\forall n \geq 6$ un carré est divisible en n carrés.

- 3°) * Pour n=1 le résultat est vraie et évident, on peut diviser un carré en un carré.
- * Supposons que le carré ABCD soit divisible en n carrés et ait pour longueur de coté 1.
- Si le carré contenant le coin A est de coté 1 alors il n'y a qu'un carré.
- Si le carré contenant le coin A n'est pas de coté 1, il y a au moins un carré de plus pour le coin B, au moins un carré de plus pour le coin C et au moins un carré de plus pour le coin d. Il y a donc au moins 4 carrés. Donc pas de solution pour n = 2 et n = 3.
- * Supposons que le carré ABCD soit divisible en 5 carrés et ait pour longueur de coté 1.
- Il y a donc au moins un carré par coin.
- Si tout ces carrés on pour coté $\frac{1}{2}$ alors ils recouvrent ABCD et n=4 absurde.
- Si tous ces carrés on des cotés de longueurs $<\frac{1}{2}$ il en faut un de plus qui touche chaque coté donc n>5 absurde
- Si un de ces carrés à un coté de longueur $> \frac{1}{2}$ (par exemple celui touchant le coin A), alors il y a au moins 6 carrés absurde. Le cas n=5 est donc impossible.

Bilan : on peut diviser un carré en n carrés pour $n \in \{1,4\} \bigcup [\![6; +\infty [\![$

EXERCICE 2: CCP 2019 TSI

1°)
$$u_0 = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} dt = \pi$$
, $u_1 = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos(t) dt = \left[\sin(t)\right]_{-\frac{\pi}{2}}^{\frac{\pi}{2}} = 2$

$$u_2 = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^2(t)dt = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left[\frac{1 + \cos(2t)}{2}\right]dt = \left[\frac{t}{2} + \frac{\sin(2t)}{4}\right]_{-\frac{\pi}{2}}^{\frac{\pi}{2}} = \frac{\pi}{2}$$

Donc:
$$u_0 = \pi$$
, $u_1 = 2$ et $u_2 = \frac{\pi}{2}$

2°)
$$\forall t \in [-\frac{\pi}{2}, \frac{\pi}{2}]$$
, $cos^n(t) \ge 0$ donc par positivité de l'intégrale $u_n \ge 0$

$$u_{n+1} - u_n = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \underbrace{\cos^n(t)}_{>0} \underbrace{(\cos(t) - 1)}_{<0} dt$$

L'intégrande étant négative sur l'intervalle d'intégration : $u_{n+1} - u_n \le 0$ et donc $[(u_n)_{n \in \mathbb{N}}]$ est décroissante.

3°) Soit $n \ge 1$, on fait une intégration par parties avec des fonctions C^1 dans u_{n+1} .

$$u_{n+1} = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^{n+1}(t)dt$$

$$=\int\limits_{-\frac{\pi}{2}}^{\frac{\pi}{2}}cos^{n}(t)cos(t)dt$$
 on fait une IPP en primitivant le cos isolé

$$= [\cos^n(t) sin(t)]_{-\frac{\pi}{2}}^{\frac{\pi}{2}} + \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} n sin(t) cos^{n-1}(t) sin(t) dt$$

$$= 0 + n \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^{n-1}(t) (1 - \cos^{2}(t)) dt$$

$$= 0 + n(u_{n-1} - u_{n+1}) \quad \text{Donc } u_{n+1} = n(u_{n-1} - u_{n+1}) \text{ et donc } \forall n \in \mathbb{N}^*, \ (n+1)u_{n+1} = nu_{n-1}$$

4°)
$$v_{n+1} - v_n = (n+2)u_{n+2}u_{n+1} - (n+1)u_{n+1}u_n$$

Mais, par le 3°): $(n+2)u_{n+2} = (n+1)u_n$ donc $v_{n+1} - v_n = (n+1)u_n u_{n+1} - (n+1)u_{n+1}u_n = 0$ et donc la suite $(v_n)_{n\in\mathbb{N}}$ est constante.

Comme $v_0 = u_1 u_0 = 2\pi$ alors la suite $(v_n)_{n \in \mathbb{N}}$ est constante et vaut 2π

5°)
$$v_n = 2\pi \Rightarrow (n+1)u_{n+1}u_n = 2\pi$$

Comme (u_n) est décroissante : $u_{n+1} \le u_n$, on multiplie par $(n+1)u_{n+1}$ et on obtient $(n+1)u_{n+1}^2 \le (n+1)u_{n+1}u_n$ En multipliant par $(n+1)u_n$ on obtient : $(n+1)u_{n+1}u_n \le (n+1)u_n^2$

En multipliant par $(n+1)u_n$ on obtient : $(n+1)u_{n+1}u_n \le (n+1)u_n^2$ En regroupant les deux inégalités : $(n+1)u_{n+1}^2 \le (n+1)_{n+1}u_n = v_n \le (n+1)u_n^2$

Et donc
$$(n+1)u_{n+1}^2 \le 2\pi \le (n+1)u_n^2$$

6°) L'inégalité de droite du 5°) donne :
$$\frac{2\pi}{n+1} \le u_n^2 \Rightarrow \sqrt{\frac{2\pi}{n+1}} \le u_n$$
 (puisque $u_n \ge 0$)

L'inégalité de gauche, décalée de 1, donne : $nu_n^2 \le 2\pi \Rightarrow u_n \le \sqrt{\frac{2\pi}{n}}$

On a donc :
$$\sqrt{\frac{2\pi}{n+1}} \le u_n \le \sqrt{\frac{2\pi}{n}}$$

7°) On déduit du 6°) que :
$$\sqrt{\frac{n}{n+1}} \leq \frac{u_n}{\sqrt{\frac{2\pi}{n}}} \leq 1$$
 et donc, par encadrements : $\lim_{n \to +\infty} \frac{u_n}{\sqrt{\frac{2\pi}{n}}} = 1$ et donc

$$u_n \sim \sqrt{\frac{2\pi}{n}}$$

EXERCICE 3

1°) Comme, au voisinage de 0 : $sin(x) = x + o(x^2)$ alors f(x) = 1 + o(x)Donc en posant $\alpha = 1$ on a : $\lim_{x \to 0} f(x) = 1 = f(0)$ et donc f continue en 0.

2°) a)
$$\frac{f(x)-f(0)}{x-0}=\frac{1+o(x)-1}{x}=o(1)$$
 d'après le développement limité trouvé au 1°). Donc $\lim_{x\to 0}\frac{f(x)-f(0)}{x-0}=0$ et donc f est dérivable en 0 et $f'(0)=0$

2°) b) • f est C^{∞} sur \mathbb{R}^* comme quotient de fonctions C^{∞} et $\forall x \in \mathbb{R}^*$:

•
$$f'(x) = \frac{\cos(x)x - \sin(x)}{x^2}$$

Au voisinage de 0 : $f'(x) = \frac{(1+o(x))x-(x+o(x^2))}{x^2} = \frac{x+o(x^2)-x+o(x^2)}{x^2} = o(1)$ et donc $\lim_{x\to 0} f'(x) = f'(0) = 0$

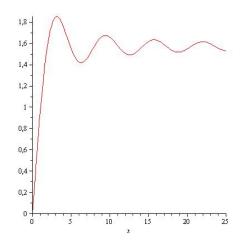
$$\bullet$$
 On a donc f C^1 en 0 et donc $\boxed{f$ de classe C^1 sur $\mathbb R$

2°) c) Avec les séries entières ... on verra çà plus tard ...

3°) a) F est une primitive de f qui est une fonction continue sur \mathbb{R} , donc F est de classe C^1 et F'=fOn a $\forall x \in \mathbb{R}$, $F'(x) = \frac{\sin(x)}{x}$ il est donc immédiat d'avoir le signe de F'

x	$2k\pi$		$(2k+1)\pi$		$(2k+2)\pi$
F'(x)	0	+	0	-	0
			$F((2k+1)\pi)$		
F(x)		7		\searrow	
	$F(2k\pi)$				$F((2k+1)\pi)$

3°) b)



4°) a) $\forall n \in \mathbb{N}^*$, $\theta_n = F(n\pi) = \int\limits_0^{n\pi} f(t)dt$ En utilisant la relation de Chasles : $\theta_n = \sum\limits_{k=0}^{n-1} \int\limits_{k\pi}^{(k+1)\pi} f(t)dt$

On effectue le changement de variable $t=u+k\pi$ dans $\int_{k\pi}^{(k+1)\pi} f(t)dt$, on obtient : $\int_{k\pi}^{(k+1)\pi} f(t)dt = \int_{0}^{\pi} f(u+k\pi)du$ Mais $f(u+k\pi) = \frac{\sin(u+k\pi)}{u+k\pi} = (-1)^k \frac{\sin(u)}{u+k\pi}$ et donc $\int_{k\pi}^{(k+1)\pi} f(t)dt = (-1)^k \int_{0}^{\pi} \frac{\sin(u)}{u+k\pi}du = u_k$

Mais
$$f(u + k\pi) = \frac{\sin(u + k\pi)}{u + k\pi} = (-1)^k \frac{\sin(u)}{u + k\pi}$$
 et donc $\int_{k\pi}^{(k+1)\pi} f(t)dt = (-1)^k \int_{0}^{\pi} \frac{\sin(u)}{u + k\pi} du = u_k$

Finalement : $\theta_n = \sum_{k=0}^{n-1} u_k$

4°) b)
$$\beta_n - \alpha_n = \theta_{2n+1} - \theta_{2n} = \sum_{k=0}^{2n} u_k - \sum_{k=0}^{2n-1} u_k = u_{2n}$$
 d'après le a)

Mais $u_{2n} = \int_{0}^{\pi} \frac{\sin(u)}{u + 2n\pi} du$ et donc $u_{2n} \ge 0$ car la fonction que l'on intègre est positive.

Remarque : plus généralement, comme ci-dessus, on peut montrer que u_n est positive si n est paire et négative si n est impair.

On a donc $\beta_n - \alpha_n \ge 0$ et donc $\beta_n \ge \alpha_n$

4°) c) Pour
$$n \in \mathbb{N}^*$$
, $|u_n| = \int_0^\pi \frac{\sin(u)}{u + n\pi} du$

sur $[0;\pi]$ on a $sin(u) \le 1$ et $u+n\pi \ge n\pi$ et donc $\frac{1}{u+n\pi} \le \frac{1}{n\pi}$

Donc
$$|u_n| \le \int_0^\pi \frac{1}{n\pi} du = \frac{1}{n}$$

On a bien : $\forall n \in \mathbb{N}^* \ |u_n| \leq \frac{1}{n}$

4°) d)
$$\alpha_{n+1} - \alpha_n = \theta_{2n+2} - \theta_{2n} = u_{2n+1} + u_{2n} = -\int_0^\pi \frac{\sin(u)}{u + (2n+1)\pi} du + \int_0^\pi \frac{\sin(u)}{u + 2n\pi} du$$

Par linéarité de l'intégrale

$$\alpha_{n+1} - \alpha_n = \int_0^{\pi} \frac{2\pi \sin(u)}{(u + (2n+1)\pi)(u + 2n\pi)} du$$

Et donc $\alpha_{n+1} - \alpha_n \ge 0$ et donc $(\alpha_n)_{n \in \mathbb{N}}$ est une suite croissante.

$$\beta_{n+1} - \beta_n = \theta_{2n+3} - \theta_{2n+1} = u_{2n+2} + u_{2n+1} = \int_0^\pi \frac{\sin(u)}{u + (2n+2)\pi} du - \int_0^\pi \frac{\sin(u)}{u + (2n+1)\pi} du$$

Par linéarité de l'intégrale :

$$\beta_{n+1} - \beta_n = \int_0^\pi \frac{\frac{-2\pi sin(u)}{-2\pi sin(u)}}{\frac{-2\pi sin(u)}{(u+(2n+2)\pi)(u+(2n+1)\pi)}} du$$
 Et donc $\beta_{n+1} - \beta_n \leq 0$ et donc $(\beta_n)_{n \in \mathbb{N}}$ est une suite décroissante.

$$\beta_n - \alpha_n = u_{2n+1}$$
 et par le c) $\lim_{n_t o + \infty} u_n = 0$ donc $\lim_{n_t o + \infty} \beta_n - \alpha_n = 0$

On déduit des trois points précédents que : les suites $(\alpha_n)_{n\in\mathbb{N}}$ et $(\beta_n)_{n\in\mathbb{N}}$ sont adjacentes.

 4°) e) Les suites $(\alpha_n)_{n\in\mathbb{N}}$ et $(\beta_n)_{n\in\mathbb{N}}$ étant adjacentes, elles convergent vers la même limite que l'on nommera

On a alors, vu la définition de ces suites, que $(\theta_n)_{n\in\mathbb{N}}$ est convergente et converge vers λ

5°) Soit
$$x > 0$$
, on pose $n_x = \lfloor \frac{x}{\pi} \rfloor$ (partie entière, on a : $\frac{x}{\pi} - 1 < n_x \le \frac{x}{\pi} \Leftrightarrow x - \pi < \pi n_x \le x$)

Alors
$$F(x) = \int_{0}^{n_x \pi} f(t)dt + \int_{n_x \pi}^{x} f(t)dt = \theta_{n_x} + \int_{n_x \pi}^{x} f(t)dt$$

Alors
$$F(x) = \int_{0}^{n_x \pi} f(t)dt + \int_{n_x \pi}^{x} f(t)dt = \theta_{n_x} + \int_{n_x \pi}^{x} f(t)dt$$

Mais $\left| \int_{n_x \pi}^{x} f(t)dt \right| = \left| \int_{n_x \pi}^{x} \frac{\sin(t)}{t}dt \right| \le \left| \int_{n_x \pi}^{x} \frac{1}{n_x \pi}dt \right|$ et comme $x - n_x \pi \le \pi$ alors $\left| \int_{n_x \pi}^{x} f(t)dt \right| \le \frac{1}{n_x}$

Donc comme $\lim_{x\to +\infty} n_x = +\infty$ on en déduit $\lim_{x\to +\infty} \int_{n_x\pi}^x f(t)dt = 0$

De plus
$$\lim_{x \to +\infty} \theta_{n_x} = \lambda$$
 et donc $\lim_{x \to +\infty} F(x) = \lambda$

On a bien répondu à la question.

EXERCICE 4

Raisonnons par équivalences pour écrire le résultat sous une autre forme. Pour $n \in \mathbb{N}^*$.

$$e - \frac{e}{2n} \le \left(1 + \frac{1}{n}\right)^n \le e \Leftrightarrow \ln(e(1 - \frac{1}{2n})) \le n\ln(1 + \frac{1}{n}) \le \ln(e) \Leftrightarrow 1 + \ln(1 - \frac{1}{2n}) \le n\ln(1 + \frac{1}{n}) \le 1$$

On a utilisé la croissance du ln

• Posons pour x > 0, $a(x) = \ln(1 + \frac{1}{x}) - \frac{1}{x}$ $a \text{ est } C^{\infty} \text{ et } a'(x) = \frac{\frac{-1}{x^2}}{1 + \frac{1}{x}} + \frac{1}{x^2} = \frac{-1}{x(x+1)} + \frac{1}{x^2} = \frac{-x + (x+1)}{x^2(x+1)} = \frac{1}{x^2(x+1)} > 0$

Donc a est croissante sur $]0; \infty[$, comme de plus $\lim a(x) = 0$ alors on en déduit $\forall x > 0$, a(x) < 0Donc $\forall x>0$, $ln(1+\frac{1}{x})-\frac{1}{x}<0\Leftrightarrow ln(1+\frac{1}{x})<\frac{1}{x}\Leftrightarrow xln(1+\frac{1}{x})<1\Leftrightarrow (1+\frac{1}{x})^x\leq e$ On peut appliquer ce résultat à x=n>0 pour $n\in\mathbb{N}^*$ et on obtient : $\forall n\in\mathbb{N}^*$, $(1+\frac{1}{n})^n\leq e$

• Posons $\forall x \ge 1$, $b(x) = 1 + ln(1 - \frac{1}{2x}) - xln(1 + \frac{1}{x})$

 $b \text{ est } C^{\infty} \text{ sur } [1; +\infty[\text{ et } b'(x) = \frac{\frac{1}{2x^2}}{1-\frac{1}{2x}} - ln(1+\frac{1}{x}) - x\frac{\frac{-1}{x^2}}{1+\frac{1}{x}} = \frac{1}{x(2x-1)} - ln(1+\frac{1}{x}) + \frac{1}{x+1}$

$$b''(x)$$

$$= \frac{-4x+1}{x^2(2x-1)^2} - \frac{\frac{-1}{x^2}}{1+\frac{1}{x}} - \frac{1}{(x+1)^2}$$

$$= \frac{-4x+1}{x^2(2x-1)^2} + \frac{1}{x(x+1)} - \frac{1}{(x+1)^2}$$

$$= \frac{(-4x+1)(x+1)^2 + (2x-1)^2 x(x+1) - x^2(2x-1)^2}{x^2(2x-1)^2 (x+1)^2}$$

$$= \frac{(-4x+1)(x^2 + 2x+1) + (4x^2 - 4x+1)(x^2 + x) - x^2(4x^2 - 4x+1)}{x^2(2x-1)^2 (x+1)^2}$$

$$= \frac{(-4x^3 - 8x^2 - 4x + x^2 + 2x+1) + (4x^4 + 4x^3 - 4x^3 - 4x^2 + x^2 + x) - (4x^4 - 4x^3 + x^2)}{x^2(2x-1)^2 (x+1)^2}$$

$$= \frac{-11x^2 - x + 1}{x^2(2x-1)^2 (x+1)^2}$$

Mais $-11x^2 \le 0$ et $-x + 1 \le 0$ car $x \ge 1$, donc $-11x^2 - x + 1 \le 0$ et $b''(x) \le 0$ sur $[1; +\infty[$ On en déduit b' décroissante sur $[1; +\infty[$.

Comme $\lim b'(x) = 0$ on en déduit $b'(x) \ge 0$ sur $[1; +\infty[$

On en déduit b croissante sur $[1; +\infty[$.

Comme $\lim_{x\to +\infty} b(x) = 0$ on en déduit $b(x) \le 0$ sur $[1; +\infty[$ et donc

 $\forall x \geq 1 \ , \ 1 + ln(1 - \frac{1}{2x}) - xln(1 + \frac{1}{x}) \leq 0 \Leftrightarrow e - \frac{e}{2x} \leq (1 + \frac{1}{x})^x$ Ce qui appliqué à x = n > 0 pour $n \in \mathbb{N}^*$ permet d'obtenir : $e - \frac{e}{2n} \leq (1 + \frac{1}{n})^n$.

En combinant les deux inégalités trouvées précédemment on obtient :

$$\forall n \in \mathbb{N}^*, \ e - \frac{e}{2n} \le (1 + \frac{1}{n})^n \le e$$