Correction du devoir à la maison de Mathématiques n°2

EXERCICE 1

a) Comme : $|sin(n)| \le 1$ et que $ch(\frac{1}{n}) \ge 1 \Leftrightarrow ch(\frac{1}{n}) - 1 \ge 0$ on a : $0 \le |u_n| \le ch(\frac{1}{n}) - 1$ Mais $ch(\frac{1}{n}) - 1 = 1 + \frac{1}{2n^2} + o(\frac{1}{n^2}) - 1 = \frac{1}{2n^2} + o(\frac{1}{n^2}) \sim \frac{1}{2n^2}$

On a donc $\begin{cases} u_n = O(\frac{1}{n^2}) \\ \sum \frac{1}{n^2} \text{ est une série de Riemann à termes positifs convergente car } 2 > 1 \end{cases}$

Donc, par domination : $\sum u_n$ est convergente.

b) Posons : $f: [0, +\infty[\longrightarrow \mathbb{R}]$ $x \longmapsto \frac{x^3}{1+x^4}.$ Alors f est dérivable sur $[0, +\infty[$ et $f'(x) = \frac{3x^2(1+x^4)-4x^3x^3}{(1+x^4)^2} = \frac{3x^2-x^6}{(1+x^4)^2}$ qui est négatif au voisinage de $+\infty$ On a donc $\exists A>0$ tel que f est décroissante sur $[A, +\infty[$ On a donc : $\begin{cases} \text{la série } \sum u_n = \sum (-1)^n f(n) \text{ est alternée} \\ (f(n))_{n\geq A} \text{ est décroissante} \\ \lim_{x\to +\infty} f(n) = 0 \end{cases}$ alternées on a : $\sum u_n \text{ est convergente.}$ alors, par le théorème spécial à certaines séries

c) Pour $n \in \mathbb{N}^*$, $\frac{u_n}{\frac{1}{n^{5/4}}} = n^{5/4} \frac{ln(n)}{n^{3/2}} = \frac{ln(n)}{n^{3/2-5/4}} = \frac{ln(n)}{n^{1/4}} \xrightarrow[n \to +\infty]{} 0$ par comparaison ln-puissance.

On en déduit : $u_n = o(\frac{1}{n^{5/4}})$ Comme $\frac{1}{n^{5/4}} > 0$ et que $\sum \frac{1}{n^{5/4}}$ est une série de Riemann convergente (5/4 > 1), alors, par négligeabilité : $\sum u_n$ est convergente

EXERCICE 2 (e3A 2018 mathématiques 1 MP, exercice 1): Constante d'Euler

1°) Comme $1-x>0 \Leftrightarrow x<1$ alors : $[x\mapsto x+\ln(1-x)]$ est définie sur $]-\infty,1[]$

Au voisinage de 0, d'après le cours : $ln(1-x) = -x - \frac{1}{2}x^2 + o(x^2)$ donc $x + ln(1-x) = -\frac{x^2}{2} + o(x^2)$ (développement de Taylor à l'ordre 2 en 0)

2°) Posons $\forall x \in [0,1[, A(x) = x + ln(1-x)]$

Alors, comme $0 \le x < 1 \Rightarrow 1 - x > 0$ on a A est C^{∞} sur son domaine et

 $A'(x) = 1 - \frac{1}{1-x} = \frac{-x}{1-x} < 0$ sur [0, 1[Mais A(0) = 0 et A est décroissante donc $A(x) \le 0$ donc $x + ln(1-x) \le 0$ sur [0, 1[

Comme pour $n \ge 2$, $\frac{1}{n} \in [0,1[$ alors $u_n = \frac{1}{n} + \ln(1 - \frac{1}{n}) = A(\frac{1}{n}) \le 0$. On ne vérifie pas ce résultat pour $u_1 = 1$!!! Donc $\left[\forall n \ge 2 , u_n \le 0 \text{ et } u_1 \ge 0 \right]$

3°) Pour n au voisinage de $+\infty$: $u_n = \frac{-1}{2n^2} + o(\frac{1}{n^2})$ en utilisant le 1°).

Donc
$$\begin{cases} u_n \sim \frac{-1}{2n^2} < 0\\ \sum \frac{1}{n^2} \text{ est convergente} \end{cases}$$

Alors, par la règle de l'équivalent pour les séries de signe constant, on a : $\sum u_n$ est convergente.

- 4°) La fonction f est définie et dérivable sur [0,1] et $\forall x \in [0,1]$, $f'(x) = 1 \frac{1}{1+x} = \frac{x}{1+x} \ge 0$ Donc f est croissante sur [0,1] De plus, comme f(0)=0, alors f est positive sur [0,1] et on en déduit : $\forall x \in [0,1] , x - ln(1+x) \ge 0$
 - 5°) Au voisinage de $+\infty$: $v_n = \frac{1}{n} (\frac{1}{n} \frac{1}{2n^2} + o(\frac{1}{n^2})) = \frac{1}{2n^2} + o(\frac{1}{n^2}) \sim \frac{1}{2n^2} > 0$

Donc
$$\begin{cases} v_n \sim \frac{1}{2n^2} > 0\\ \sum \frac{1}{n^2} \text{ est convergente} \end{cases}$$

Alors, par la règle de l'équivalent pour les séries de signe constant, on a : $\sum v_n$ est convergente.

 6°) • Pour $n \geq 2$:

$$v_n - u_n$$

$$= \left(\frac{1}{n} - \ln(1 + \frac{1}{n})\right) - \left(\frac{1}{n} + \ln(1 - \frac{1}{n})\right)$$

$$= -\ln(1 + \frac{1}{n}) - \ln(1 - \frac{1}{n})$$

$$= -\ln(\frac{n+1}{n}) - \ln(\frac{n-1}{n})$$

$$= -\ln(n+1) + \ln(n) - \ln(n-1) + \ln(n)$$

$$= -ln(n+1) + ln(n) - ln(n-1) + ln(n)$$

= $2ln(n) - ln(n-1) - ln(n+1)$

$$v_1 - u_1 = 1 - \ln(2) - 1 = -\ln(2)$$

On a donc: $\forall n \geq 2$, $v_n - u_n = 2ln(n) - ln(n-1) - ln(n+1)$ et $v_1 - u_1 = -ln(2)$

• Pour $N \geq 3$, on en déduit :

$$\sum_{n=1}^{N} (v_n - u_n)$$

$$= (v_n - u_n) + \sum_{n=1}^{N} (v_n - u_n)$$

$$= (v_1 - u_1) + \sum_{n=2}^{N} [2ln(n) - ln(n-1) - ln(n+1)]$$

$$= -ln(2) + 2\sum_{n=2}^{N} ln(n) - \sum_{n=1}^{N-1} ln(n) - \sum_{n=3}^{N+1} ln(n)$$

$$= -ln(2) + 2ln(2) + 2ln(N) - ln(N) - ln(N) = ln(\frac{N^2}{N(N+1)}) = ln(\frac{N}{N+1})$$

On a donc : Pour
$$N \ge 3$$
, $\sum_{n=1}^{N} (v_n - u_n) = ln(\frac{N}{N+1})$

7°) Posons :
$$\forall N \in \mathbb{N}^*$$
 , $U_N = \sum_{n=1}^N u_n$ et $V_N = \sum_{n=1}^N v_n$

Comme $\forall n \geq 2$, $u_n \leq 0$ (2°)) alors (U_N) est décroissante.

Comme
$$\forall n \geq 2$$
, $v_n \geq 0$ (4°)) alors (V_N) est croissante.
D'après 6°): $U_N - V_N = ln(\frac{N}{N+1}) \underset{N \to +\infty}{\longrightarrow} 0$

On en déduit que : (U_N) et (V_N) sont adjacentes.

On sait d'après le cours que deux suites adjacentes ont même limite donc : $\sum_{n\geq 1} u_n = \sum_{n\geq 1} v_n$

$$\sum_{n\geq 1} u_n = \sum_{n\geq 1} v_n$$

8°) Vu l'adjacence des deux suites : $\forall n \in \mathbb{N}^*$, $V_1 < V_n \le \gamma \le U_n < U_1$ Comme $V_1 = 0$ et $U_1 = 1$ on en déduit bien : $\gamma \in]0,1[$

9°) Soit $k \in \mathbb{N}^*$. Comme $t \mapsto \frac{1}{t}$ est décroissante sur [k,k+1], alors $\forall t \in [k,k+1]$, $\frac{1}{k+1} \leq \frac{1}{t} \leq \frac{1}{k}$ On intègre cette inégalité entre k et k+1 pour obtenir :

$$\int_{k}^{k+1} \frac{1}{k+1} dt \le \int_{k}^{k+1} \frac{1}{t} dt \le \int_{k}^{k+1} \frac{1}{k} dt \text{ et donc } \frac{1}{k+1} \le \int_{k}^{k+1} \frac{1}{t} dt \le \frac{1}{k}$$

Si on somme de k=1 à $k=n\in\mathbb{N}^*$ on obtient : $\sum_{k=1}^n\frac{1}{k+1}\leq\sum_{k=1}^n\int\limits_{t=1}^{k+1}\frac{1}{t}dt\leq\sum_{k=1}^n\frac{1}{k}$

On utilise la relation de Chasles dans l'intégrale donc : $\sum_{k=1}^{n} \frac{1}{k+1} \leq \int_{1}^{n+1} \frac{1}{t} dt \leq \sum_{k=1}^{n} \frac{1}{k}$

Ce qui donne : $h_{n+1} - 1 \le ln(n+1) \le h_n$

On a déjà $ln(n+1) \leq h_n$ avec l'inégalité de droite.

En décalant les indices de 1 dans l'inégalité de gauche on obtient : $h_n - 1 \le ln(n)$

En regroupant les deux inégalités on a : $\forall n \in \mathbb{N}^*$, $ln(n+1) \leq h_n \leq 1 + ln(n)$

$$10^{\circ}) \ f_{n+1} - f_n = [h_{n+1} - \ln(n+1)] - [h_n - \ln(n)] = h_{n+1} - h_n - (\ln(n+1) - \ln(n)) = \frac{1}{n+1} + \ln(\frac{n}{n+1}) = \frac{1}{n+1} + \ln(1 - \frac{1}{n+1})$$

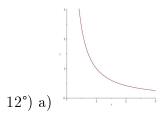
Dans le 2°) on a montrer que $x + ln(1-x) \le 0$ sur [0,1[, on l'applique ici à $x = \frac{1}{n+1} \in]0,1[$

On a donc $f_{n+1} - f_n \leq 0$ et on en déduit que : | la suite $(f_n)_{n \in \mathbb{N}^*}$ est décroissante.

11°) On a pour $n \geq 2$:

$$\sum_{k=1}^{n} u_k$$
= $u_1 + \sum_{k=2}^{n} u_k$
= $1 + \sum_{k=2}^{n} \frac{1}{k} + \sum_{k=2}^{n} |ln(k-1) - ln(k)|$
= $h_n + \sum_{k=1}^{n} (ln(k-1) - ln(k))$ par téléscopage
= $(f_n + ln(n)) - ln(n) = f_n$

On a en déduit donc : $\lim_{n \to +\infty} f_n = \sum_{n=1}^{+\infty} u_n$



12°) b) Soit A > a.

$$\int\limits_{a}^{A} \frac{dt}{t^{r}} = \left[\frac{-1}{(r-1)t^{r-1}}\right]_{a}^{A} = \frac{1}{(r-1)a^{r-1}} - \frac{1}{(r-1)A^{r-1}} \xrightarrow[A \to +\infty]{} \frac{1}{(r-1)a^{r-1}} \text{ puisque } r > 1$$

On a donc démontrer la convergence de I(a) et montrer que : $\forall r \in \mathbb{N}^*$, $\forall a > 0$, $I(a) = \frac{1}{(r-1)a^{r-1}}$

12°) c) i) Par définition de la limite
$$n^r(w_{n+1}-w_n) \underset{n\to+\infty}{\longrightarrow} \ell$$

 $\Leftrightarrow \forall \epsilon>0 \;,\; \exists N\in\mathbb{N} \;,\; [n\geq N\Rightarrow \ell-\epsilon\leq n^r(w_{n+1}-w_n)\leq \ell+\epsilon$

En prenant $\epsilon > 0$ tel que $a < \ell - \epsilon < \ell + \epsilon < b$ (possible car $a < \ell < b$) on a alors : $\exists N \in \mathbb{N} , [n \ge N \Rightarrow a \le n^r(w_{n+1} - w_n) \le b]$

12°) c) ii) • Soit $k \geq N$. Alors, comme $t \mapsto \frac{1}{t^r}$ est décroissante sur [k, k+1] on a : $\forall t \in [k, k+1]$, $\frac{1}{(k+1)^r} \leq \frac{1}{t^r} \leq \frac{1}{k^r} \Rightarrow \frac{1}{(k+1)^r} \leq \int\limits_k^{k+1} \frac{1}{t^r} dt \leq \frac{1}{k^r}$ en intégrant entre k et k+1

• L'inégalité de droite donne : $a\int\limits_k^{k+1} \frac{1}{t^r} dt \leq \frac{a}{k^r}$ et avec l'inégalité du i) :

$$a\int\limits_{k}^{k+1}\frac{1}{t^{r}}dt\leq w_{k+1}-w_{k}$$

On somme maintenant pour k variant de N à n avec $n \ge N$: $a \sum_{k=N}^{n} \int_{k}^{k+1} \frac{1}{t^r} dt \le \sum_{k=N}^{n} (w_{k+1} - w_k)$

Par télescopage et relation de Chasles on obtient : $a \int_{N}^{n+1} \frac{1}{t^r} dt \le w_{n+1} - w_N$

• L'inégalité de gauche donne : $\frac{b}{(k+1)^r} \le b \int_k^{k+1} \frac{1}{t^r} dt$

En décalant les indices de 1 ('k=k+1'), on a : $\frac{b}{k^r} \leq b \int\limits_{k-1}^k \frac{1}{t^r} dt$ et avec l'inégalité du i) : $w_{k+1} - w_k \leq b \int\limits_{k-1}^k \frac{1}{t^r} dt$

On somme maintenant pour k variant de N à n avec $n \ge N$: $\sum_{k=N}^{n} (w_{k+1} - w_k) \le b \sum_{k=N}^{n} \int_{k-1}^{k} \frac{1}{t^r} dt$

Par télescopage et relation de Chasles on obtient : $w_{n+1} - w_N \le b \int_{N-1}^n \frac{1}{t^r} dt$

• En regroupant les deux inégalités : $\forall n \geq N$, $a \int_{N}^{n+1} \frac{1}{t^r} dt \leq w_{n+1} - w_N \leq b \int_{N-1}^{n} \frac{1}{t^r} dt$

12°) c) iii) Par convergence des intégrales et puisque $\lim_{n\to+\infty}w_n=0$, en passant à la limite dans la relation du ii) on obtient : $aI(N)\leq 0-w_N\leq bI(N-1)$ et donc $\boxed{-bI(N-1)\leq w_N\leq -aI(N)}$

12°) c) iv) En utilisant le résultat de 12°)b) et celui du iii) on a :
$$-b\frac{1}{(r-1)(N-1)^{r-1}} \leq w_N \leq -a\frac{1}{(r-1)N^{r-1}} \Rightarrow -b\frac{1}{(r-1)}(\frac{N-1}{N})^{r-1} \leq N^{r-1}w_N \leq -a\frac{1}{(r-1)}$$

Soit $\epsilon > 0$. Si ϵ est suffisamment petit, on peut choisir $a = \ell - \epsilon$ et $b = \ell + \epsilon$ Et on a alors, en remarquant que la relation précédente est valable pour tout $n \geq N$:

$$-(\ell+\epsilon)\frac{1}{(r-1)}\underbrace{(\frac{n-1}{n})^{r-1}}_{n \xrightarrow{n \to +\infty} 1} \leq n^{r-1}w_n \leq -(\ell-\epsilon)\frac{1}{(r-1)}$$

On a alors : $\forall \epsilon' > 0$, $\exists N \in \mathbb{N}^*$, $[n \ge N' \Rightarrow -\frac{\ell}{r-1} - \epsilon \le n^{r-1} w_n \le -\frac{\ell}{r-1} + \epsilon w_n \le -\frac{\ell}{r-1} + w_n \le -\frac{\ell}{r-1} +$

On a donc par définition de la limite : $\left| \lim_{n \to +\infty} n^{r-1} w_n = \frac{-\ell}{r-1} \right|$

- 13°) Recherche : on veut du $\frac{\alpha}{n}$ donc r-1=1, on prendra r=2 ... on garde $\frac{\alpha}{n}$ à droite dans l'égalité voulue et on passe à gauche le reste : $\underbrace{h_n \ln(n)}_{f_n} \gamma = \frac{\alpha}{n} + \mathrm{o}(\frac{1}{n})$...
- On est donc amené à poser : $\forall n \in \mathbb{N}^*$, $w_n = f_n \gamma$ Alors: $n^2(w_{n+1}-w_n)$

Alors:
$$n^2(w_{n+1} - w_n)$$

= $n^2(f_{n+1} - f_n)$ on utilise le calcul du 10°)
= $n^2(\frac{1}{n+1} + ln(1 - \frac{1}{n+1}))$
= $n^2(\frac{1}{n+1} + (-\frac{1}{n+1} - \frac{1}{2(n+1)^2} + o(\frac{1}{(n+1)^2}))$
= $n^2(\frac{-1}{2(n+1)^2} + o(\frac{1}{(n+1)^2}))$
 $\sim \frac{-n^2}{2(n+1)^2}$
 $\sim \frac{-1}{2}$

$$= n^{2} \left(\frac{-1}{2(n+1)^{2}} + o\left(\frac{1}{(n+1)} \right) \right)$$

$$\sim \frac{-n^{2}}{2}$$

$$\sim \frac{-n^2}{2(n+1)^2}$$
$$\sim \frac{-1}{2}$$

On a donc :
$$\begin{cases} w_n \underset{n \to +\infty}{\longrightarrow} 0 \\ (n^2 w_n) \underset{n \to +\infty}{\longrightarrow} \frac{-1}{2} < 0 \end{cases}$$

On peut donc appliquer le 12°) $(r=2, \ell=\frac{-1}{2})$ (quitte à changer w_n en $-w_n$ pour régler le problème de signe de ℓ) et obtenir $n^{2-1}w_n \underset{n \to +\infty}{\longrightarrow} \frac{-\ell}{r-1} = \frac{1}{2}$

Donc $w_n = \frac{1}{2n} + o(\frac{1}{n})$ et en réutilisant la définition de $w_n = f_n - \gamma = h_n - \ln(n) - \gamma$:

$$\sum_{k=1}^{n} \frac{1}{k} = \ln(n) + \gamma + \frac{1}{2n} + o(\frac{1}{n})$$

EXERCICE 3 : Calcul de $\sum_{n=1}^{+\infty} \frac{1}{n^2}$

1°) Lemme de Lebesgue (voir exercice)

Soit f une fonction de classe C^1 sur $[0,\pi]$. On intègre par partie, comme f est dérivable :

$$\int_{0}^{\pi} f(t) sin(\frac{2n+1}{2}t) dt = \left[\frac{-f(t)2cos(\frac{2n+1}{2}t)}{2n+1}\right]_{0}^{\pi} + \frac{2}{2n+1} \int_{0}^{\pi} f'(t)cos(\frac{2n+1}{2}t) dt$$

On utilise que $\left|\cos(\frac{2n+1}{2}t)\right| \leq 1$ et qu'il existe M>0 vérifiant $\forall t\in[0,\pi]$, $|f'(t)|\leq M$ puisque f' est continue sur le segment $[0,\pi]$ (théorème des bornes atteintes).

On a alors :
$$\left| \int_{0}^{\pi} f(t) \sin(\frac{2n+1}{2}t) dt \right| \le \frac{2|f(\pi)| + 2|f(0)|}{2n+1} + \frac{2M\pi}{2n+1} \underset{n \to +\infty}{\longrightarrow} 0$$

On en déduit par encadrements : $\lim_{n \to +\infty} \int_{0}^{\pi} f(t) sin(\frac{2n+1}{2}t) dt = 0$

2°) Soit $t \in]0,\pi]$ et n > 1. Alors:

$$A_n(t) = \frac{1}{2} + \sum_{k=1}^n \cos(kt) = \frac{1}{2} + \sum_{k=1}^n Re(e^{ikt}) = \frac{1}{2} + Re(\sum_{k=1}^n e^{ikt}) = \frac{1}{2} + Re(\sum_{k=1}^n (e^{it})^k)$$
 somme des termes d'une suite géométrique de raison e^{it} $(e^{it} \neq 1 \text{ puisque } t \in]0, \pi])$

somme des termes d'une suite geo
$$A_n(t) = \frac{1}{2} + Re(e^{it} \frac{1 - (e^{it})^n}{1 - e^{it}})$$

$$= \frac{1}{2} + Re(e^{it} \frac{1 - e^{int}}{1 - e^{it}})$$

$$= \frac{1}{2} + Re(e^{it} \frac{e^{int/2}(e^{-int/2} - e^{int/2})}{e^{it/2}(e^{-it/2} - e^{it/2})})$$

$$= \frac{1}{2} + Re(e^{it(1 + n/2 - 1/2)} \frac{-2isin(nt/2)}{-2isin(t/2)})$$

$$= \frac{1}{2} + Re(e^{it((n+1)/2)} \frac{sin(nt/2)}{sin(t/2)})$$

$$= \frac{1}{2} + \frac{sin(nt/2)cos(\frac{n+1}{2}t)}{sin(t/2)}$$
Mais $\forall (a, b) \in \mathbb{R}^2$ $sin(a)cos(b) = \frac{1}{2}$

$$=\frac{1}{2} + Re(e^{it}\frac{1-e^{int}}{1-e^{it}})$$

$$= \frac{1}{2} + Re(e^{it} \frac{e^{int/2}(e^{-int/2} - e^{int/2})}{e^{it/2}(e^{-it/2} - e^{it/2})}$$

$$=\frac{1}{2}+Re(e^{it(1+n/2-1/2)}\frac{-2isin(nt/2)}{-2isin(t/2)}$$

$$=\frac{1}{2} + Re(e^{it((n+1)/2)} \frac{sin(nt/2)}{sin(t/2)})$$

$$=\frac{1}{2}+\frac{\sin(nt/2)\cos(\frac{n+1}{2}t)}{\sin(t/2)}$$

Mais
$$\forall (a,b) \in \mathbb{R}^2$$
, $sin(a)cos(b) = \frac{1}{2}[sin(a+b) + sin(a-b)]$

Donc
$$A_n(t) = \frac{1}{2} + \frac{\sin((n+\frac{1}{2})t) + \sin(-t/2)}{2\sin(t/2)} = \frac{1}{2} + \frac{\sin(\frac{2n+1}{2}t)}{2\sin(t/2)} - \frac{1}{2}$$

Mais
$$\forall (a,b) \in \mathbb{R}^2$$
, $sin(a)cos(b) = \frac{1}{2}[sin(a+b) + sin(a-b)]$
Donc $A_n(t) = \frac{1}{2} + \frac{sin((n+\frac{1}{2})t) + sin(-t/2)}{2sin(t/2)} = \frac{1}{2} + \frac{sin(\frac{2n+1}{2}t)}{2sin(t/2)} - \frac{1}{2}$
On obtient donc : $\forall t \in]0,\pi]$, $\forall n \in \mathbb{N}^*$, $A_n(t) = \frac{sin(\frac{2n+1}{2}t)}{2sin(\frac{t}{2})}$

3°) Soit $(a,b) \in \mathbb{R}^2$. Par intégration par partie :

$$\int_{0}^{\pi} (at^{2} + bt) cos(nt) dt$$

$$= [(at^{2} + bt)\frac{\sin(nt)}{n}]_{0}^{\pi} - \int_{0}^{\pi} (2at + b)\frac{\sin(nt)}{n}dt \text{ mais } \sin(0) = \sin(n\pi) = 0$$

$$=-\int\limits_0^\pi (2at+b)rac{\sin(nt)}{n}dt$$
 on refait une IPP

$$=-[(2at+b)\frac{-cos(nt)}{n^2}]_0^{\pi}-\int_0^{\pi}2a\frac{cos(nt)}{n^2}dt \text{ or } cos(0)=1 \text{ et } cos(n\pi)=(-1)^n$$

$$= \frac{(-1)^n (2\pi a + b) - b}{n^2} - 2a \left[\frac{\sin(nt)}{n^3} \right]_0^{\pi} \text{ mais } \sin(0) = \sin(n\pi) = 0$$
$$= \frac{(-1)^n (2\pi a + b) - b}{n^2}$$

Pour avoir le résultat souhaité il faut :
$$\begin{cases} 2\pi a + b = 0 \\ -b = 1 \end{cases} \Leftrightarrow \begin{cases} b = -1 \\ a = \frac{1}{2\pi} \end{cases}$$

$$\begin{cases} 2\pi a + b = 0 \\ -b = 1 \end{cases} \Leftrightarrow \begin{cases} b = -1 \\ a = \frac{1}{2\pi} \end{cases}$$

On a donc:
$$\forall n \in \mathbb{N}^*, \int_0^{\pi} (at^2 + bt) \cos(nt) dt = \frac{1}{n^2} \text{ avec } a = \frac{1}{2\pi} \text{ et } b = -1$$

4°) En sommant l'égalité du 3°) pour k = n' variant de k = 1 jusqu'à n on obtient par linéarité de l'intégrale (somme finie):

$$\int_{0}^{\pi} (at^{2} + bt) \sum_{k=1}^{n} \cos(kt) dt = \sum_{k=1}^{n} \frac{1}{k^{2}}$$

$$\operatorname{Donc} \int_{0}^{\pi} (at^{2} + bt) (A_{n}(t) - \frac{1}{2}) dt = S_{n}$$

$$\operatorname{Donc} \int_{0}^{\pi} (at^{2} + bt) A_{n}(t) dt - \frac{1}{2} \int_{0}^{\pi} (at^{2} + bt) dt = S_{n}$$

$$\operatorname{Donc} \int_{0}^{\pi} (at^{2} + bt) A_{n}(t) dt = S_{n} + \frac{1}{2} \int_{0}^{\pi} (at^{2} + bt) dt$$

$$\operatorname{Donc} \int_{0}^{\pi} (at^{2} + bt) A_{n}(t) dt = S_{n} + \frac{1}{2} (a\frac{\pi^{3}}{3} + b\frac{\pi^{2}}{2}) \text{ mais } a = \frac{1}{2\pi} \text{ et } b = -1$$

$$\operatorname{Donc} \int_{0}^{\pi} (at^{2} + bt) A_{n}(t) dt = S_{n} + \frac{1}{2} (\frac{\pi^{2}}{6} - \frac{\pi^{2}}{2}) = S_{n} - \frac{\pi^{2}}{6}$$

$$\operatorname{On a donc} : \forall n \geq 1, \int_{0}^{\pi} (at^{2} + bt) A_{n}(t) dt = S_{n} - \frac{\pi^{2}}{6}$$

$$g : [0, \pi] \longrightarrow \mathbb{R}$$

$$5^{\circ}) \text{ On pose alors} : t \longmapsto \begin{cases} \frac{at^{2} + bt}{2\sin(t/2)} & \text{si } t \neq 0 \\ b & \text{si } t = 0 \end{cases}$$

g est de classe C^1 sur $[0,\pi]$ comme quotient de fonctions C^1 . Etudions en 0.

Au voisinage de $0: g(t) \sim \frac{bt}{t} \xrightarrow[t \to 0]{} b = g(0)$ donc g est continue en 0.

Sur
$$]0,\pi]$$
, $g'(t) = \frac{(2at+b)2sin(t/2)-cos(t/2)(at^2+bt)}{4sin^2(t/2)}$
Au voisinage de $0: g'(t) = \frac{2at^2+bt-at^2-bt+o(t^2))}{4sin^2(t/2)} = \frac{at^2+o(t^2))}{4sin^2(t/2)} \sim \frac{at^2}{t^2} \xrightarrow[t\to 0]{} 0$

 $\begin{aligned} & \text{Sur }]0,\pi] \;,\; g'(t) = \frac{(2at+b)2sin(t/2)-cos(t/2)(at^2+bt)}{4sin^2(t/2)} \\ & \text{Au voisinage de } 0 : g'(t) = \frac{2at^2+bt-at^2-bt+o(t^2))}{4sin^2(t/2)} = \frac{at^2+o(t^2))}{4sin^2(t/2)} \sim \frac{at^2}{t^2} \underset{t\to 0}{\longrightarrow} a \\ & \left\{ g \text{ est continue sur } [0,\pi] \\ g \text{ est dérivable sur }]0,\pi] \end{aligned} \quad \text{on peut donc appliquer le théorème de prolongement de la fonction dérivée et} \\ & \lim_{t\to 0^+} g'(t) = a \end{aligned}$

on en déduit que g est de classe C^1 sur $[0,\pi]$.

• Comme g est C^1 sur $[0,\pi]$ alors par le 1°) : $\lim_{n\to+\infty}\int\limits_0^\pi g(t)sin(\frac{2n+1}{2}t)dt=0$

Comme on a vu que : $\int_{0}^{\pi} g(t) sin(\frac{2n+1}{2}t) dt = S_n - \frac{\pi^2}{6}$ on en déduit $\lim_{n \to +\infty} S_n = \frac{\pi^2}{6}$

On a donc montrer que : $A = \sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$

6°) • $\left| \frac{(-1)^n}{n^2} \right| = \frac{1}{n^2}$ et $\sum \frac{1}{n^2}$ est une série de Riemann convergente, donc B est absolument convergente. $\begin{cases} \frac{1}{(2n+1)^2} \sim \frac{1}{4n^2} \\ \sum \frac{1}{n^2} \text{ est une série de Riemann convergente} \end{cases}$, par la règle de l'équivalent pour les séries à termes positifs on en déduit que C est convergente.

 \bullet En séparant les termes d'indice pair de ceux d'indice impair dans A on obtient :

$$A = \sum_{n=1}^{+\infty} \frac{1}{(2n)^2} + \sum_{n=0}^{+\infty} \frac{1}{(2n+1)^2} \operatorname{donc} A = \frac{1}{4}A + C \Rightarrow C = \frac{3}{4}A = \frac{\pi^2}{8}$$

ullet De même, en séparant les termes d'indice pair de ceux d'indice impair dans B on obtient :

$$B = \sum_{n=1}^{+\infty} \frac{(-1)^{2n}}{(2n)^2} + \sum_{n=0}^{+\infty} \frac{(-1)^{2n+1}}{(2n+1)^2} = \frac{1}{4} \sum_{n=1}^{+\infty} \frac{1}{n^2} - \sum_{n=0}^{+\infty} \frac{1}{(2n+1)^2} \text{ donc } B = \frac{1}{4}A - C = \frac{1}{4} \frac{\pi^2}{6} - \frac{\pi^2}{8} = \frac{-\pi^2}{12}$$

 \bullet Bilan : B et C sont convergentes et $B = \frac{-\pi^2}{12}$ $C = \frac{\pi^2}{8}$