Correction du devoir à la maison de Mathématiques n°3

EXERCICE 1

- 1) Voir cours.

2) Comme $u_n = \frac{(-1)^n}{\sqrt{n}} \xrightarrow[n \to +\infty]{} 0$ et que $sin(u) \underset{u=0}{\sim} u$ alors $v_n \sim u_n$ De même $ln(1+u) \underset{u=0}{\sim} u$ donne $w_n \sim u_n$ et par transitivité de l'équivalent, on a : $u_n \sim v_n \sim w_n$

- 3) $\begin{cases} \sum u_n \text{ est une série alternée} \\ |u_n| \underset{n \to +\infty}{\longrightarrow} 0 \\ (|u_n|) \text{ cet déen} \end{cases}$ donc, par le théorème spécial : $\sum u_n$ est convergente.

• Par développement limité : $v_n = \frac{(-1)^n}{\sqrt{n}} - \frac{1}{6} \frac{1}{n^{3/2}} + o(\frac{1}{n^{3/2}}) = u_n + O(\frac{1}{n^{3/2}})$ Comme $\frac{1}{n^{3/2}} > 0$ et $\sum \frac{1}{n^{3/2}}$ est une série de Riemann convergente $(\frac{3}{2} > 1)$, alors, par domination : $\sum O(\frac{1}{n^{3/2}})$ est convergente.

On a donc : $\begin{cases} v_n = u_n + O(\frac{1}{n^{3/2}}) \\ \sum u_n \text{ convergente} \end{cases}$ et donc $\sum v_n$ convergente.

• Par développement limité : $w_n = \frac{(-1)^n}{\sqrt{n}} - \frac{1}{2n} + o(\frac{1}{n})$ En posant $a_n = w_n - u_n$ on a : $a_n = -\frac{1}{2n} + o(\frac{1}{n})$ $a_n \sim -\frac{1}{2n} < 0$, et comme $\sum \frac{1}{n}$ est une série de Riemann divergente, alors, par équivalent : $\sum a_n$ divergente. On a donc : $\begin{cases} w_n = u_n + a_n \\ \sum u_n \text{ convergente} \end{cases}$ et donc $\sum w_n$ divergente. • BILAN : $\sum u_n$ et $\sum v_n$ sont convergentes et $\sum w_n$ est divergente.

EXERCICE 2

• On commence par comparer $2^{\sqrt{n}}$ et b^n . On a : $\frac{2^{\sqrt{n}}}{b^n} = exp(ln(2)\sqrt{n} - nln(b))$

Cas 1: 0 < b < 1

Alors $ln(b) \leq 0$ et $ln(2)\sqrt{n} - nln(b) \underset{n \to +\infty}{\longrightarrow} +\infty$ Donc $\frac{2^{\sqrt{n}}}{b^n} = exp(ln(2)\sqrt{n} - nln(b)) \underset{n \to +\infty}{\longrightarrow} +\infty$ et on a $2^{\sqrt{n}} + b^n \sim 2^{\sqrt{n}}$

Alors ln(b) > 0 et $ln(2)\sqrt{n} - nln(b) \underset{n \to +\infty}{\longrightarrow} -\infty$ (comparaison de puissances) Donc $\frac{2^{\sqrt{n}}}{b^n} = exp(ln(2)\sqrt{n} - nln(b)) \underset{n \to +\infty}{\longrightarrow} 0$ et on a $2^{\sqrt{n}} + b^n \sim b^n$

• Revenons à c_n en gardant ces deux cas.

$$\begin{array}{l} \operatorname{Cas} \ 1: \ 0 < b \leq 1 \\ \operatorname{Alors} \ c_n \sim \frac{a^n 2^{\sqrt{n}}}{2^{\sqrt{n}}} \sim a^n > 0 \end{array}$$

Donc par la règle de l'équivalent on a : $\sum c_n$ et $\sum a^n$ qui sont de même nature.

Or $\sum a^n$ convergente $\Leftrightarrow 0 < a < 1$ car on reconnaît une série géométrique, donc, dans le cas $b \le 1$: $\sum c_n$ convergente $\Leftrightarrow 0 < a < 1$

Cas 2 :
$$b > 1$$

Alors $c_n \sim \frac{a^n 2^{\sqrt{n}}}{b^n}$

Cas 2:
$$b > 1$$

Alors $c_n \sim \frac{a^n 2\sqrt{n}}{b^n}$
 $c_n \neq 0$ donc $\frac{c_{n+1}}{c_n} \sim \frac{a^{n+1}2^{\sqrt{n+1}}}{b^{n+1}} \frac{b^n}{a^n 2\sqrt{n}} \sim \frac{a}{b} exp((\sqrt{n+1} - \sqrt{n})ln(2))$
Mais $\sqrt{n+1} - \sqrt{n} = \sqrt{n}((1+\frac{1}{n})^{\frac{1}{2}} - 1) = \sqrt{n}(1+\frac{1}{2n} + o(\frac{1}{n}) - 1) = \frac{1}{2\sqrt{n}} + o(\frac{1}{\sqrt{n}}) \sim \frac{1}{2\sqrt{n}}$
On en déduit $exp((\sqrt{n+1} - \sqrt{n})ln(2)) \xrightarrow[n \to +\infty]{} 1$ et donc $\frac{c_{n+1}}{c_n} \xrightarrow[n \to +\infty]{} \frac{a}{b}$
La règle de D'Alembert permet alors d'obtenir:

La règle de D'Alembert permet alors d'obtenir :

$$\frac{a}{b} < 1 \Leftrightarrow a < b \Rightarrow \sum c_n$$
 convergente et $\frac{a}{b} > 1 \Leftrightarrow a > b \Rightarrow \sum c_n$ divergente

et
$$\frac{a}{b} > 1 \Leftrightarrow a > b \Rightarrow \sum c_n$$
 divergente

Si a=b alors $c_n=2^{\sqrt{n}}$ qui ne tend pas vers 0 et la série est grossièrement divergente.

Donc dans le cas 2 : $\sum c_n$ convergente $\Leftrightarrow a < b$

Bilan :
$$\sum c_n \text{ convergente} \Leftrightarrow \begin{cases} \begin{cases} b \leq 1 \\ a < 1 \end{cases} \\ \text{ou} \\ \begin{cases} b > 1 \\ a < b \end{cases} \end{cases}$$

EXERCICE 3

• Posons pour $n \in \mathbb{N}^*$, $u_n = det(A_n(x))$

On a alors :
$$u_{n+2} = \begin{vmatrix} 1+x^2 & x & 0 & \dots & 0 \\ x & 1+x^2 & x & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & 1+x^2 & x \\ 0 & \dots & 0 & x & 1+x^2 \end{vmatrix}_{(n+2)}$$

l'indice (n+2) désignant la taille de la matrice

• On developpe alors par rapport a la premiere ligne et on obtient :
$$u_{n+2} = (1+x^2) \begin{vmatrix} 1+x^2 & x & 0 & \dots & 0 \\ x & 1+x^2 & x & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & 1+x^2 & x \\ 0 & \dots & 0 & x & 1+x^2 \end{vmatrix}_{(n+1)} \begin{vmatrix} x & x & 0 & \dots & 0 \\ 0 & 1+x^2 & x & \ddots & \vdots \\ x & \ddots & \ddots & 0 \\ \vdots & 0 & \ddots & 1+x^2 & x \\ 0 & 0 & 0 & x & 1+x^2 \end{vmatrix}_{(n+1)}$$

$$\Rightarrow u_{n+2} = (1+x^2) \begin{vmatrix} 1+x^2 & x & 0 & \dots & 0 \\ x & 1+x^2 & x & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & 1+x^2 & x \\ 0 & \dots & 0 & x & 1+x^2 \end{vmatrix}_{(n+1)} \begin{vmatrix} 1+x^2 & x & 0 & \dots & 0 \\ x & 1+x^2 & x & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & 1+x^2 & x \\ 0 & \dots & 0 & x & 1+x^2 \end{vmatrix}_{(n+1)}$$

 $\Rightarrow u_{n+2} - (1+x^2)u_{n+1} + x^2u_n = 0$

• On remarque alors que $(u_n)_{n\in\mathbb{N}^*}$ vérifie une relation de récurrence linéaire d'ordre 2 à coefficients constants homogène d'équation caractéristique : $R^2 - (1 + x^2)R + x^2 = 0$ On résout : $\Delta = (1+x^2)^2 - 4x^2 = 1 - 2x^2 + x^4 = (1-x^2)^2$

Cas 1: $x \neq 1$ et $x \neq -1$ Deux racines distinctes : $R_1 = \frac{1+x^2+1-x^2}{2} = 1$ et $R_2 = \frac{1+x^2-1+x^2}{2} = x^2$

On sait alors, par le cours, qu'il existe $(\alpha, \beta) \in \mathbb{R}^2$ tel que : $\forall n \in \mathbb{N}^*$, $u_n = \alpha + \beta x^{2n-2}$

Mais $u_1 = 1 + x^2$ et $u_2 = (1 + x^2)^2 - x^2 = 1 + x^2 + x^4$

Donc
$$\begin{cases} \alpha + \beta = 1 + x^2 \\ \alpha + x^2 \beta = 1 + x^2 + x^4 \end{cases} \Leftrightarrow \begin{cases} \beta = \frac{x^4}{x^2 - 1} \\ \alpha = \frac{-1}{x^2 - 1} \end{cases}$$

Donc: $\forall n \in \mathbb{N}^*$, $u_n = \frac{x^{2n+2}-1}{x^2-1} = \sum_{n=1}^{n} x^{2k}$

Cas 2: x = 1 ou x = -1

On a une racine double R=1 et donc, par le cours, il existe $(\alpha,\beta)\in\mathbb{R}^2$ tel que : $\forall n \in \mathbb{N}^*, \ u_n = \alpha + \beta(n-1)$

Mais
$$u_1 = 2$$
 et $u_2 = 3$ (pour les deux valeurs de x)
$$\operatorname{Donc} \begin{cases} \alpha = 2 \\ \alpha + \beta = 3 \end{cases} \Leftrightarrow \begin{cases} \alpha = 2 \\ \beta = 1 \end{cases} \text{ et donc } u_n = 2 + n - 1 = n + 1$$

On remarque que si x=1 ou x=-1, alors : $\sum_{k=0}^{n} x^{2k} = n+1$ • On a donc le bilan : $\forall n \in \mathbb{N}^*$, $det(A_n(x)) = \sum_{k=0}^{n} x^{2k}$

EXERCICE 4

1) Soit $(M, N) \in M_n(\mathbb{R} \text{ et } \lambda \in \mathbb{R}.$

Alors:
$$\phi(M + \lambda N) = A(M + \lambda N) = AM + \lambda AN = \phi(M) + \lambda \phi(N)$$

 ϕ est donc linéaire, comme de plus ϕ va de $M_n(\mathbb{R})$ dans $M_n(\mathbb{R})$ alors ϕ est un endomorphisme.

2)
$$\phi^2(M) = \phi(AM) = A(AM) = A^2M$$

On montrerai, par récurrence que : $\forall k \in \mathbb{N}$, $\phi^k(M) = A^k M$

3) a)
$$\phi(E_1) = \begin{pmatrix} 1 & 0 \\ 3 & 0 \end{pmatrix} = E_1 + 3E_3$$
 , $\phi(E_2) = \begin{pmatrix} 0 & 1 \\ 0 & 3 \end{pmatrix} = E_2 + 3E_4$
 $\phi(E_3) = \begin{pmatrix} 2 & 0 \\ 4 & 0 \end{pmatrix} = 2E_1 + 4E_3$, $\phi(E_4) = \begin{pmatrix} 0 & 2 \\ 0 & 4 \end{pmatrix} = 2E_2 + 4E_4$

On a donc :
$$M_B(\phi) = \begin{pmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 0 & 2 \\ 3 & 0 & 4 & 0 \\ 0 & 3 & 0 & 4 \end{pmatrix}$$

3) b) • On a $det(\phi) = det(M_B(\phi))$

On effectue
$$C_3 \leftarrow C_3 - 2C_1$$
 et $C_4 \leftarrow C_4 - 2C_2$, on a donc $det(\phi) = \begin{vmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 3 & 0 & -2 & 0 \\ 0 & 3 & 0 & -2 \end{vmatrix} = 4$

• $tr(\phi) = tr(M_B(\phi)) = 1 + 1 + 4 + 4 = 10$

On a donc :
$$tr(\phi) = 10$$
 et $det(\phi) = 4$

4) • Supposons A inversible.

 $M \in ker(\phi) \Leftrightarrow AM = 0 \Leftrightarrow A^{-1}AM = 0 \Leftrightarrow M = 0 \text{ donc } ker(\phi) = \{0\} \text{ et donc } \phi \text{ est injective.}$ Comme ϕ est un endomorphisme alors ϕ est bijective et donc ϕ inversible.

• Réciproquement, supposons ϕ inversible.

Soit $X \in ker(A)$. On pose $M = (X \ X \dots \ X)$ et on a donc $\phi(M) = (AX \ AX \dots \ AX) = 0$, ce qui donne $M \in ker(\phi) = \{0\} \text{ donc } M = 0 \text{ et donc } X = 0$ On a alors $ker(A) = \{0\}$ et donc A inversible.

Bilan : ϕ inversible $\Leftrightarrow A$ inversible

- 5) Si A est une matrice de symétrie alors $A^2=I_n$ et donc $\phi^2(M)=A^2M=M$ donc $\phi^2=Id$ et donc ϕ est une symétrie.
- 6) Supposons que $rg(A) \geq 1$, alors A admet au moins une colonne non nulle. Soit donc $i \in [1; n]$ telle que C_i , la i-ième colonne de A soit non nulle.

4

Soit $j \in [1, n]$. On pose $M_{i,j}$ la matrice dont tous les termes sont nuls sauf le (i, j) ième.

Alors $\phi(M_{i,j})$ est la matrice dont les colonnes sont nulles sauf la j-ième qui vaut C_i .

La famille $(\phi(M_{i,1}), \ldots, \phi(M_{i,n}))$ étant clairement libre on a $rg(\phi) \geq n$

Bilan : $|rg(A)| \ge 1 \Rightarrow rg(\phi) \ge n$

7) Comme n=2, on écrit $A=\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ et comme à la question 3) on a :

$$M_B(\phi) = \begin{pmatrix} a & 0 & b & 0 \\ 0 & a & 0 & b \\ c & 0 & d & 0 \\ 0 & c & 0 & d \end{pmatrix}$$

On effectue
$$L_2 \longleftrightarrow L_3$$
 et on a : $rg(\phi) = rg\begin{pmatrix} a & 0 & b & 0 \\ c & 0 & d & 0 \\ 0 & a & 0 & b \\ 0 & c & 0 & d \end{pmatrix}$

On effectue
$$L_2 \longleftrightarrow L_3$$
 et on a : $rg(\phi) = rg(\begin{pmatrix} a & 0 & b & 0 \\ c & 0 & d & 0 \\ 0 & a & 0 & b \\ 0 & c & 0 & d \end{pmatrix})$
On effectue $C_2 \longleftrightarrow C_3$ et on a : $rg(\phi) = rg(\begin{pmatrix} a & b & 0 & 0 \\ c & d & 0 & 0 \\ 0 & 0 & a & b \\ 0 & 0 & c & d \end{pmatrix}) = \begin{pmatrix} A & 0 \\ 0 & A \end{pmatrix}$

Avec cette écriture on a : $rg(\phi) = 2rg(A)$

8) • Soit $\lambda \in sp(\phi)$

Alors, il existe $M \in M_n(\mathbb{R})$ telle que $M \neq 0$ et $\phi(M) = \lambda M$

Comme M est non nulle, elle possède (au moins) une colonne, notée C_i , non nulle.

Alors $\phi(M) = \lambda M \Rightarrow AM = \lambda M$ et sur la colonne C_i on a : $AC_i = \lambda C_i$ ave $C_i \neq 0$ et donc $\lambda \in sp(A)$ On a donc $sp(\phi) \subset sp(A)$

• Soit $\lambda \in sp(A)$

Alors, il existe $X \in M_{n,1}(\mathbb{R})$ telle que $X \neq 0$ et $AX = \lambda X$ Si on pose $M = (X \ X \ \dots \ X)$ alors $\phi(M) = \lambda M$ avec $M \neq 0$ et donc $\lambda \in sp(\phi)$ On a donc $sp(A) \subset sp(\phi)$

- Comme on a les deux inclusions alors : $|sp(\phi) = sp(A)|$
- 9) a) Si A est diagonalisable alors il existe (C_1, \ldots, C_n) une base de vecteurs propres de A avec C_i associé à la valeur propre λ_i

Si on note $F_{i,j}$ la matrice dont toutes les colonnes sont nulles sauf la j-ième qui vaut C_i

Alors $B_A = (F_{1,1}, \ldots, F_{1,n}, \ldots, F_{i,1}, \ldots, F_{i,n}, \ldots, F_{n,n})$ est une base de $M_n(\mathbb{R})$ et la matrice de ϕ relativement à cette base vaut : $diag(\lambda_1 I_n, \dots, \lambda_i I_n, \dots, \lambda_n I_n)$

On déduit : $det(\phi) = \lambda_1^n \dots \lambda_n^n = (\lambda_1 \dots \lambda_n)^n = det(A)^n$

9) b) On utilise le résultat $A=\lim_{N\to +\infty}A_N$ avec les A_N diagonalisable, par continuité on a : $\det(\phi)=\lim_{N\to +\infty}\det(A_N)^n=(\lim_{N\to +\infty}\det(A_N))^n=\det(A)^n$

$$det(\phi) = \lim_{N \to +\infty} det(A_N)^n = (\lim_{N \to +\infty} \det(A_N))^n = det(A)^n$$