Chapitre 6 : Exemples d'exercices corrigés

Enoncé exercice 6.1

Montrer que $A = \int_{0}^{+\infty} \frac{2}{t^2+4t+3} dt$ est une intégrale convergente et calculer A.

Correction

 $t\mapsto \frac{2}{t^2+4t+3}$ est une fonction continue sur $[0;+\infty[$, donc A est une intégrale impropre en $+\infty$

On va chercher une écriture plus simple de la fonction à intégrer. On écrit
$$\frac{2}{t^2+4t+3}=\frac{2}{(t+3)(t+1)}=\frac{a}{t+3}+\frac{b}{t+1}$$
 avec $(a,b)\in\mathbb{R}^2$
$$\frac{2}{(t+3)(t+1)}=\frac{a}{t+1}+\frac{b}{t+3}$$
 $\Leftrightarrow \frac{2}{(t+3)(t+1)}=\frac{a(t+1)+b(t+3)}{(t+1)(t+3)}$

$$\frac{2}{(t+3)(t+1)} = \frac{a}{t+1} + \frac{b}{t+3}$$

$$\Leftrightarrow \frac{2}{(t+3)(t+1)} = \frac{a(t+1)+b(t+3)}{(t+1)(t+3)}$$

$$\Leftrightarrow 2 = a(t+1) + b(t+3) \Leftrightarrow \begin{cases} 2 = a+3b \\ 0 = a+b \end{cases} \Leftrightarrow \begin{cases} a = -1 \\ b = 1 \end{cases}$$

On a donc $\frac{2}{t^2+4t+3} = \frac{-1}{t+3} + \frac{1}{t+1}$

Soit
$$X > 0$$
.

Soit
$$X > 0$$
.
$$\int_{0}^{X} \frac{2}{t^2 + 4t + 3} dt = \int_{0}^{X} \frac{-1}{t + 3} + \frac{1}{t + 1} dt = [-ln(t + 3) + ln(1 + t)]_{0}^{X} = ln(\frac{1 + X}{3 + X}) + ln(3) \xrightarrow{X \to +\infty} ln(3)$$

On en déduit que :
$$A$$
 est convergente et que $A = \int\limits_0^{+\infty} \frac{2}{t^2 + 4t + 3} dt = \ln(3)$

Déterminer la nature de $\sum \frac{1}{n\sqrt{\ln(n)}}$

Correction

On va utiliser le théorème de comparaison série-intégrale.

On pose
$$\forall x > 1$$
 , $f(x) = \frac{1}{x\sqrt{\ln(x)}}$

$$f$$
 est dérivable et $f'(x) = \frac{1}{(x\sqrt{ln(x)})^2} \left[\sqrt{ln(x)} + x \frac{\frac{1}{x}}{2\sqrt{ln(x)}} \right] = \frac{-1}{(x\sqrt{ln(x)})^2} \left[\sqrt{ln(x)} + \frac{1}{2\sqrt{ln(x)}} \right]$

On a donc $f'(x) \leq 0$ pour x > 1 et donc f est décroissante sur $[2; +\infty[$.

Par le théorème de comparaison série intégrale $\sum f(n)$ et $\int_{2}^{+\infty} f(t)dt$ sont de même nature.

Soit
$$X > 2$$
. On a :

Soit
$$X > 2$$
. On a :
$$\int\limits_2^X f(t)dt = \int\limits_2^X \frac{1}{t\sqrt{ln(t)}}dt = [2\sqrt{ln(t)}]_2^X = 2\sqrt{ln(X)} - 2\sqrt{ln(2)} \underset{X \to +\infty}{\longrightarrow} +\infty$$

On en déduit que $\int_{0}^{+\infty} f(t)dt$ est divergente.

Par le résultat obtenu par comparaison série-intégrale on a donc $\sum \frac{1}{n\sqrt{ln(n)}}$ divergente

Déterminer la nature de
$$B=\int\limits_0^{+\infty} \frac{t^2}{1+t^2 exp(t)} dt$$

Correction

 $t\mapsto \frac{t^2}{1+t^2exp(t)}$ est continue sur $[0;+\infty[,\,B$ pose donc problème en $+\infty$

On a :
$$\frac{t^2}{1+t^2 exp(t)} \sim_{+\infty} e^{-t} > 0$$

Or, on sait d'après le cours que $t \mapsto e^{-t}dt$ est intégrable sur $[0, +\infty[$, donc, par la règle de l'équivalent on a que $t\mapsto \frac{t^2}{1+t^2exp(t)}$ est intégrable sur $[0,+\infty[$, et donc, par absolue convergence :

$$B = \int_{0}^{+\infty} \frac{t^2}{1 + t^2 exp(t)} dt \text{ est convergente}$$

Enoncé exercice 6.4

Déterminer la nature de
$$C = \int_{1}^{+\infty} \frac{\sin t(t+3t^2)}{t^2} dt$$

Correction

 $t\mapsto \frac{sint(t+3t^2)}{t^2}$ est continue sur [1; +\infty[, C est donc impropre en +\infty]

On a :
$$\left|\frac{sint(t+3t^2)}{t^2}\right| \leq \frac{1}{t^2}$$
 et donc $\left|\frac{sint(t+3t^2)}{t^2}\right| = O(\frac{1}{t^2})$

Or, on sait d'après le cours (Riemann) que $t \mapsto \frac{1}{t^2}dt$ est intégrable sur $[1, +\infty[$ donc, par comparaison on a que $t \mapsto \frac{\sin t(t+3t^2)}{t^2}$ est intégrable sur $[1, +\infty[$.

3

On en déduit donc, par absolue convergence que : $C = \int_{1}^{+\infty} \frac{\sin t(t+3t^2)}{t^2} dt$ est convergente

$$C = \int_{1}^{+\infty} \frac{\sin t(t+3t^2)}{t^2} dt \text{ est convergente}$$

Déterminer la nature de $D = \int_{0}^{+\infty} cos(t^2)dt$

Correction

 $t\mapsto \cos(t^2)$ est continue sur $[0;+\infty[,\,D$ est donc impropre en $+\infty$

 $t\mapsto t^2$ est une bijection de classe C^1 de $[1,+\infty[$ dans $[1,+\infty[$.

Effectuons dans $\tilde{D} = \int_{1}^{+\infty} \cos(t^2) dt$ le changement de variable C^1 bijectif $u = t^2$, alors $t = \sqrt{u} \Rightarrow dt = \frac{1}{2\sqrt{u}} du$

On en déduit \tilde{D} est de même nature que $\int\limits_{1}^{+\infty} \frac{\cos(u)}{2\sqrt{u}} du$

Soit X > 1.

On effectue une intégration par partie avec les fonctions C^1 sur $[1; +\infty[$: $\begin{cases} f' = cos(u) \\ g = \frac{1}{2\sqrt{u}} \end{cases}$ et $\begin{cases} f = sin(u) \\ g' = \frac{-1}{4v^{3/2}} \end{cases}$

On obtient : $\tilde{D} = \int_{1}^{+\infty} \frac{\cos(u)}{2\sqrt{u}} du = \left[\frac{\sin(u)}{2\sqrt{u}}\right]_{1}^{X} + \frac{1}{4} \int_{1}^{X} \frac{\cos(u)}{u^{3/2}} du = \frac{\sin(X)}{2\sqrt{X}} - \frac{\sin(1)}{2} + \frac{1}{4} \int_{1}^{X} \frac{\cos(u)}{u^{3/2}} du$

Comme sin est bornée, on a : $\frac{sin(X)}{2\sqrt{X}} \underset{X \to +\infty}{\longrightarrow} 0$ et donc \tilde{D} est de même nature que $\int\limits_{1}^{+\infty} \frac{cos(u)}{u^{3/2}} du$

Mais $\forall u \geq 1$, $\left|\frac{\cos(u)}{u^{3/2}}\right| \leq \frac{1}{u^{3/2}}$ et $t \mapsto \frac{1}{t^{3/2}}$ est intégrable (Riemann) sur $[1, +\infty[$, donc comparaison on a : $t \mapsto \frac{\cos(u)}{u^{3/2}}$ intégrable sur $[1, +\infty[$, donc, par absolue convergence $\int\limits_{1}^{+\infty} \frac{\cos(u)}{u^{3/2}} du$ est convergente.

On en déduit \tilde{D} convergente et donc $D = \int\limits_0^{+\infty} cos(t^2) dt$ convergente.

Montrer que $G = \int_{0}^{+\infty} exp(-t^2)dt$ est convergente.

Correction

 $t\mapsto exp(-t^2)$ est continue sur $[0,+\infty[$. G ne pose donc problème qu'en $+\infty$

puisque $\lim_{t\to +\infty}\frac{\exp(-t^2)}{\frac{1}{t^2}}=\lim_{t\to +\infty}t^2exp(-t^2)=0$ Mais $t\mapsto \frac{1}{t^2}$ est intégrable sur $[1,+\infty[$ par Riemann, donc par négligeabilité $t\mapsto exp(-t^2)$ est intégrable sur $[1,+\infty[$

Comme il n'y a pas de problème sur [0,1], $t\mapsto exp(-t^2)$ est intégrable sur $[0,+\infty[$ et par absolue

convergence $G = \int_{0}^{+\infty} exp(-t^2)dt$ est convergente.

Montrer que $D = \int_{0}^{+\infty} \frac{\sin(t)}{t} dt$ est convergente.

Correction

 φ est continue sur $]0, +\infty[$, D pose donc problème aux bornes 0 et $+\infty$.

• En 0

Au voisinage de $t = 0^+$: $\varphi(t) = \frac{\sin(t)}{t} \sim \frac{t}{t} = 1$ donc φ est prolongeable par continuité en t = 0.

 $D_1 = \int_0^1 \varphi(t)dt$ est donc convergente, comme intégrale d'une fonction continue sur un segment.

• En $+\infty$

Soit $\overline{A > 1}$. Alors, par intégration par partie :

$$\int_{1}^{A} \frac{\sin(t)}{t} dt = \int_{1}^{A} \underbrace{\sin(t)}_{u'} \underbrace{\frac{1}{t}}_{v} dt = \underbrace{\left[-\cos(t)\right]}_{u} \underbrace{\frac{1}{t}}_{v} \Big]_{1}^{A} - \int_{1}^{A} \underbrace{-\cos(t)}_{u} \underbrace{\frac{-1}{t^{2}}}_{u'} dt = \underbrace{-\cos(A)}_{A} + \cos(1) - \int_{1}^{A} \frac{\cos(t)}{t^{2}} dt$$

Pour $t \geq A$, on a : $\left|\frac{\cos(t)}{t^2}\right| \leq \frac{1}{t^2}$. De plus, par Riemann $t \mapsto \frac{1}{t^2}$ est intégrable sur $[1, +\infty[$, donc, par comparaison, $t \mapsto \frac{\cos(t)}{t^2}$ est intégrable sur $[1, +\infty[$.

Donc $\int_{1}^{+\infty} \frac{\cos(t)}{t^2} dt$ est convergente.

Avec l'égalité obtenue par intégration par partie on obtient, puisque $\frac{-\cos(A)}{A} \underset{A \to +\infty}{\longrightarrow} 0$ (cos bornée) :

$$\int_{1}^{A} \varphi(t)dt \xrightarrow[A \to +\infty]{} cos(1) - \int_{1}^{+\infty} \frac{cos(t)}{t^{2}} dt \in \mathbb{R}$$

 $D_2 = \int_1^{+\infty} \varphi(t)dt$ est donc convergente.

• Comme
$$D = D_1 + D_2$$
 et que D_1 et D_2 sont convergentes alors :
$$D = \int_0^{+\infty} \frac{\sin(t)}{t} dt$$
 est convergente.

6