Feuille TD "libre" (Toussaint)

Exercise 1. Calcul de
$$\int_{0}^{+\infty} \frac{\sin(t)}{t} dt$$

Pour tout réel t et tout entier $n \ge 1$, on pose : $S_n(t) = \frac{1}{2} + \sum_{k=1}^n \cos(kt)$

- 1°) a) Pour $t \in]0; 2\pi[$, calculer : $\sum_{k=1}^{n} e^{ikt}$
- 1°) b) Montrer que : $S_n(t) = \frac{\sin((n+\frac{1}{2})t)}{2\sin(\frac{t}{2})}$ pour $t \neq 0$ et $S_n(0) = n + \frac{1}{2}$
- 1°) c) Calculer la valeur de $A = \int_{0}^{\pi} \frac{\sin((n+\frac{1}{2})t)}{2\sin(\frac{t}{2})} dt$

On définit la fonction f sur $[0;\pi]$ par : $\begin{cases} f(0) = 0 \\ f(t) = \frac{1}{2\sin(\frac{t}{2})} - \frac{1}{t} & 0 < t \leq \pi \end{cases}$

- 2°) a) Montrer que f est de classe C^1 sur $]0;\pi]$ et calculer f'(t) sur cet intervalle.
- 2°) b) Montrer que f est continue en 0.
- 2°) c) Montrer que f est dérivable en 0.
- 2°) d) Montrer que f est de classe C^1 sur $[0; \pi]$.
- 2°) e) Montrer qu'il existe un réel M tel que : $\forall t \in [0;\pi] \mid f'(t) \mid \leq M$
- 3°) a) Montrer que :

$$\int_{0}^{\pi} f(t)sin((n+\frac{1}{2})t)dt = \frac{2}{2n+1} \int_{0}^{\pi} f'(t)cos((n+\frac{1}{2})t)dt$$

3°) b) Montrer que :

$$\left| \int_{0}^{\pi} f(t) sin((n+\frac{1}{2})t) dt \right| \le \frac{2\pi M}{2n+1}$$

3°) c) Montrer que :

$$\lim_{n \to +\infty} \int_{0}^{\pi} f(t) sin((n+\frac{1}{2})t) dt = 0$$

- 4°) Montrer que $\int_{0}^{+\infty} \frac{\sin(t)}{t} dt$ est convergente.
- 5°) a) Montrer, en le justifiant avec soin que : $\int_{0}^{+\infty} \frac{\sin(t)}{t} dt = \lim_{n \to +\infty} \int_{0}^{\pi} \frac{\sin((n + \frac{1}{2})t)}{t} dt$
- 5°) b) En déduire la valeur de $\int\limits_0^{+\infty} \frac{\sin(t)}{t} dt$

Exercice 2: e3A PC 2024, exercice 3

Question de cours

1. Soit x un réel positif. Comparer x et x^2 .

Soit $\alpha \in]0,1[$.

On se propose d'étudier la série de terme général $a_n = \frac{\sin(n^{\alpha})}{n}, n \ge 1.$

- 1. On pose pour tout $t \ge 1$, $\varphi(t) = \frac{\sin(t^{\alpha})}{t}$.
 - (a) Justifier que la fonction $t \mapsto \sin(t^{\alpha})$ est dérivable sur $[1, +\infty[$ et déterminer sa dérivée.
 - (b) Justifier que φ est dérivable sur $[1, +\infty[$ et déterminer φ' .
 - (c) Montrer que l'on a : $\forall t \in [1, +\infty[, |\varphi'(t)| \le \frac{1 + \alpha t^{\alpha}}{t^2}]$.
 - (d) En déduire que pour tout entier $n \geq 1$:

$$\forall t \in [n, n+1], |\varphi(t) - \varphi(n)| \le \left(\frac{1}{n^2} + \frac{\alpha}{n^{2-\alpha}}\right) |t-n|.$$

- 2. On pose, pour tout $n \ge 1$: $u_n = \int_n^{n+1} \varphi(t) dt$. Prouver que l'on a : $\forall n \ge 1$, $|u_n - a_n| \le \frac{1}{n^2} + \frac{\alpha}{n^{2-\alpha}}$.
- 3. Convergence de l'intégrale $\int_1^{+\infty} \frac{\sin(t)}{t} dt$
 - (a) Démontrer que $t \mapsto \frac{\cos(t)}{t^2}$ est intégrable sur $[1, +\infty[$.
 - (b) À l'aide d'une intégration par parties, démontrer alors que $\int_1^{+\infty} \frac{\sin(t)}{t} dt$ converge.
- 4. Démontrer, à l'aide d'un changement de variable, que l'intégrale $\int_1^{+\infty} \frac{\sin(t^{\alpha})}{t} dt$ converge.
- 5. En déduire que la série de terme général u_n converge.
- 6. Prouver que la série de terme général $u_n a_n$ converge absolument.
- 7. Déduire des questions précédentes que la série $\sum_{n\geq 1} a_n$ converge.

- 8. On suppose que la série $\sum_{n\geq 1}|a_n|$ est convergente.
 - (a) Montrer qu'alors la série $\sum_{n\geq 1} \frac{\sin^2(n^{\alpha})}{n}$ est convergente. On pourra utiliser la question de cours.
 - (b) Prouver que l'intégrale $\int_1^{+\infty} \frac{\cos(2x)}{x} dx$ converge. On procédera comme à la question 3b
 - (c) On admet alors, en procédant comme précédemment, que la série $\sum_{n\geq 1} \frac{\cos(2n^{\alpha})}{n}$ est convergente.

Conclure sur la nature de la série $\sum_{n\geq 1} a_n$.

On pourra utiliser la formule de duplication : $\cos(2\theta) = 1 - 2\sin^2(\theta)$.

e3a PSI 2019

On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par: $u_0=a>0$ et la relation de récurrence:

$$\forall n \in \mathbb{N}, \quad u_{n+1} = u_n + u_n^2$$

- 1. En utilisant sa monotonie, étudier la convergence de la suite (u_n) .
- 2. On pose, pour tout entier naturel n: $v_n = \frac{1}{2^n} \ln(u_n)$.
 - (a) Prouver que l'on a: $\forall (n,p) \in \mathbb{N}^2$, $0 < v_{n+p+1} v_{n+p} \le \frac{1}{2^{n+p+1}} \ln \left(1 + \frac{1}{u_n} \right)$
 - (b) En déduire que l'on a, pour tous entiers naturels k et n:

$$0 < v_{n+k+1} - v_n \le \frac{1}{2^n} \ln \left(1 + \frac{1}{u_n} \right)$$

- (c) En utilisant sa monotonie, montrer que la suite (v_n) converge vers une limite L que l'on ne cherchera pas à calculer.
- 3. On pose alors pour tout entier naturel n: $t_n = e^{2^n L}$. Démontrer que l'on a: $u_n \underset{+\infty}{\sim} t_n$.
- 4. On pose alors pour tout entier naturel n: $s_n = t_n u_n$.
 - (a) Trouver une relation entre s_{n+1} , s_n et u_n .
 - (b) Prouver que la suite (s_n) est bornée.
 - (c) Montrer qu'il existe un réel b tel que l'on a: $u_n = t_n + b + o(1)$