
CPGE PSI* 2025/2026 Informatique
Lycée La Fayette Nathalie Planche

Devoir surveillé no2 - Corrigé

Exercice 1 : 1. On considère L=[6,9,4,8,12], donc len(L)=5.
Appel de mystere(L,2) :

• i = 2 ̸= (5 − 1)
L[2] ≤ L[3], donc appel à mystere(L,3)

• i = 3 ̸= (5 − 1)
L[3] ≤ L[4], donc appel à mystere(L,4)

• i = 4 = (5 − 1) donc le programme s’arrête : return True

Appel de mystere(L,0) :
• i = 0 ̸= (5 − 1)

L[0] ≤ L[1], donc appel à mystere(L,1)
• i = 1 ̸= (5 − 1)

L[1] > L[2], donc le programme s’arrête : return False

2. Cette fonction détermine si la liste est triée dans l’ordre croissant à partir de l’indice p.
3. Voici une fonction non récursive qui réalise la même chose :

1 def croissant (L,p):
2 assert p>=0 and p<=len(L)−1
3 if p==len(L)−1:
4 return True
5 for i in range(p, len(L)−1):
6 if L[i]>L[i+1]:
7 return False
8 return True

Exercice 2 : 1. (a) Nous créons un dictionnaire vide, et au fur et à mesure du parcours de la liste, nous créons
une entrée dans le dictionnaire, ou bien nous actualisons la valeur correspondant à une clef.

1 def occurrences(L):
2 d={}
3 for x in L:
4 if x in d:
5 d[x]+=1
6 else :
7 d[x]=1
8 return d

(b) Complexité : Notons n la longueur de la liste L.
On observe qu’on a une boucle, qui va s’effectuer n fois, et que chaque tour de boucle a un coût constant :
en effet le test x in d a une complexité qui ne dépend pas de la taille du dictionnaire d (qui au pire
des cas a une taille égale à n), ceci est une caractéristique des dictionnaires.
On peut donc évaluer à 3 le cout d’un tour de boucle, et finalement le cout de la fonction est
C(n) = 1 + 3n + 1 = 3n + 2 = O(n), il s’agit d’une

�� ��complexité linéaire .
2. (a) Comparaison de deux listes de même longueur en utilisant des dictionnaires :

1

1 def compare(L1,L2):
2 d1=occurrences(L1) #on crée les dictionnaires une fois pour toutes
3 d2=occurrences(L2)
4 for cle in d1:
5 if cle not in d2:
6 return False
7 else :
8 if d1[cle]!=d2[cle]:
9 return False

10 return True

(b) Complexité : Notons n la longueur communes des deux listes.
• On a deux appels à la fonction occurrences, donc un coût de O(n) + O(n) = O(n).
• On a ensuite une boucle qui tourne au pire n fois (la taille maximale du dictionnaire d1), et chaque

tour de boucle a un coût constant (pour les mêmes raisons que dans la question 1(b), le test cle not
in d2 se fait en temps constant), donc finalement l’exécution des tours de boucle à un coût en O(n).

Finalement le cout de la fonction est C(n) = O(n) + O(n) = O(n), il s’agit d’une
�� ��complexité linéaire .

Exercice 3 : 1. On considère la matrice M =


5 3 2

1 9 1

0 2 8

 .

Pour effectuer un déplacement de la case (0, 0) à la case (2, 2), on effectue exactement 2 déplacements à droite

et 2 déplacements en bas, soit 4 déplacements ; l’ordre des déplacements détermine le chemin. Il y a
(

4
2

)
= 6

chemins. Voici les chemins (en notant R pour droite et D pour bas) et leurs poids :
• RRDD (→ → ↓ ↓) : cases parcourues 5, 3, 2, 1, 8

somme = 5 + 3 + 2 + 1 + 8 = 19.
• RDRD (→ ↓ → ↓) : cases 5, 3, 9, 1, 8

somme = 5 + 3 + 9 + 1 + 8 = 26.
• RDDR (→ ↓ ↓ →) : cases 5, 3, 9, 2, 8

somme = 5 + 3 + 9 + 2 + 8 = 27.
• DRRD (↓ → → ↓) : cases 5, 1, 9, 1, 8

somme = 5 + 1 + 9 + 1 + 8 = 24.
• DRDR (↓ → ↓ →) : cases 5, 1, 9, 2, 8

somme = 5 + 1 + 9 + 2 + 8 = 25.
• DDRR (↓ ↓ → →) : cases 5, 1, 0, 2, 8

somme = 5 + 1 + 0 + 2 + 8 = 16.
Donc le poids maximal obtenu est 27 , atteint par le chemin RDDR (→ ↓ ↓ →).

2. (a) Pour aller de (0, 0) à (n − 1, n − 1) on doit effectuer exactement (n − 1) déplacements vers la droite et
(n − 1) déplacements vers le bas, soit au total 2(n − 1) déplacements.
Choisir un chemin revient donc à choisir où placer les (n − 1) déplacements vers le bas parmi les 2(n − 1)
déplacements à faire. (les autres déplacements seront alors automatiquement des déplacements vers la

droite). Le nombre de chemins possibles est donc
(

2(n − 1)
n − 1

)
.

(b) Posons k = n − 1. On obtient :(
2k

k

)
= (2k)!

k! k! ∼
√

2π(2k) (2k)2ke−2k(√
2πk kke−k

)2 =
√

4πk (2k)2ke−2k

2πk k2ke−2k
= (2k)2k

k2k
·

√
4πk

2πk
.

2

Simplifions :
(2k)2k

k2k
= (22)k = 4k,

√
4πk

2πk
= 2

√
πk

2πk
= 1√

πk
.

Donc
(

2k

k

)
∼ 4k

√
πk

. , et en remplaçant k = n − 1 :
(

2(n − 1)
n − 1

)
∼ 4 n−1√

π(n − 1)
.

Complexité de l’approche exhaustive :
Un algorithme qui énumère tous les chemins et calcule la somme pour chacun aura une complexité propor-
tionnelle au nombre de chemins fois le coût par chemin. Chaque chemin comporte 2(n − 1) déplacements,
donc un coût O(n) par chemin.

Ainsi la complexité temporelle est O
(
n · 4 n−1√

π(n − 1)

)
qui est exponentielle en n.

On peut résumer en disant que
�� ��l’approche exhaustive a une complexité exponentielle en n .

3. (a) Une implémentation simple en Python :
1 def max2(a, b):
2 if a >= b:
3 return a
4 else :
5 return b

(b) Cas terminal : si (i, j) = (n − 1, n − 1) alors poids max(n-1,n-1)=M[n-1][n-1].
(c) Bord droit : si i = n − 1 et j ̸= n − 1 (dernière ligne, on ne peut que faire des déplacements à droite),

alors poids max(i,j)=M[i][j]+poids max(i,j+1).
(On ajoute la valeur courante et on continue uniquement vers la droite.)

(d) Bord bas : si j = n − 1 et i ̸= n − 1 (dernière colonne, on ne peut que descendre), alors
poids max(i,j)=M[i][j]+poids max(i+1,j).

(e) Cas général : si i ̸= n − 1 et j ̸= n − 1, on a le choix entre aller à droite ou aller en bas, donc�� ��poids max(i,j)=M[i][j] + max2(poids max(i,j+1),poids max(i+1,j)) .
(f) Voici un script Python qui implémente poids max(M,i,j) de façon récursive et qui utilise un dictionnaire

D pour mémoriser les sous-résultats.
1 D={} #dictionnaire pour la mémöısation;
2 #clef = (i , j) , valeur = poids max à partir de (i , j)
3 def poids max(M,i,j) :
4 if (i , j) in D:
5 return D[(i , j)]
6 n=len(M)
7 if i==n−1 and j==n−1:
8 D[(i , j)]=M[i][j]
9 return D[(i , j)]

10 if i==n−1 and j!=n−1:
11 D[(i , j)]=M[i][j]+poids max(M, i, j+1)
12 return D[(i , j)]
13 if i !=n−1 and j==n−1:
14 D[(i , j)]=M[i][j]+poids max(M, i+1, j)
15 return D[(i , j)]
16 D[(i , j)]=M[i][j]+max2(poids max(M, i+1, j),poids max(M, i, j+1))
17 return D[(i , j)]

(g) Pour obtenir le poids maximal global, appeler poids max(M,0,0).

3

