CPGE PSI* 2025/2026
Lycée La Fayette

Devoir surveillé n°2 - Corrigé

Informatique
Nathalie Planche

Exercice 1 : 1. On considére L=[6,9,4,8,12], donc len(L)=5.
Appel de mystere(L,2) :

ei=2#(-1)
L[2] < L[3], donc appel a mystere(L,3)
ei=3#(5-1)

L[3] < L[4], donc appel a mystere(L,4)

e i=4=(5—1) donc le programme s’arréte : return True

Appel de mystere(L,0) :
ei=0#(-1)
L[0] < L[1], donc appel a mystere(L,1)
ei=1#(5-1)

L[1] > L[2], donc le programme s’arréte : return False

2. Cette fonction détermine si la liste est triée dans I'ordre croissant a partir de I'indice p.
3. Voici une fonction non récursive qui réalise la méme chose :

def croissant (L,p):
assert p>=0 and p<=len(L)—1
if p==len(L)—1:
return True
for i in range(p,len(L)—1):
if L[i]>L[i+1]:
return False

0 N O OB W N

return True

Exercice 2 : 1. (a) Nous créons un dictionnaire vide, et au fur et 3 mesure du parcours de la liste, nous créons

une entrée dans le dictionnaire, ou bien nous actualisons la valeur correspondant a une clef.

1 | def occurrences(L):
2| =

3 for x in L:

4 if x in d:

5 d[x]+=1
6 else:

7 d[x]=1
8 return d

(b) Complexité : Notons n la longueur de la liste L.

On observe qu’on a une boucle, qui va s'effectuer n fois, et que chaque tour de boucle a un coiit constant :

en effet le test x in d a une complexité qui ne dépend pas de la taille du dictionnaire d (qui au pire

des cas a une taille égale a n), ceci est une caractéristique des dictionnaires.

On peut donc évaluer a 3 le cout d'un tour de boucle, et finalement le cout de la fonction est

C(n)=143n+1=3n+2=0(n), il s'agit d'une (complexité Iinéaire}.

2. (a) Comparaison de deux listes de méme longueur en utilisant des dictionnaires :

def compare(L1,L2):
dl=occurrences(L1)
d2=occurrences(L2)
for cle in d1:
if cle not in d2:
return False
else:
if dlfcle]!=d2[cle]:
return False
return True

© 00 N O O A W N -

=
o

(b) Complexité : Notons n la longueur communes des deux listes.

= On a deux appels a la fonction occurrences, donc un coiit de O(n) + O(n) = O(n).

= On a ensuite une boucle qui tourne au pire n fois (la taille maximale du dictionnaire d1), et chaque
tour de boucle a un coiit constant (pour les mémes raisons que dans la question 1(b), le test cle not
in d2 se fait en temps constant), donc finalement |'exécution des tours de boucle a un coiit en O(n).

Finalement le cout de la fonction est C'(n) = O(n) + O(n) = O(n), il s'agit d’'une [complexité Iinéaire}.

5 3 2
Exercice 3 : 1. On considére la matrice M = |1 9 1
0 2 8

Pour effectuer un déplacement de la case (0,0) a la case (2,2), on effectue exactement 2 déplacements a droite
4
et 2 déplacements en bas, soit 4 déplacements; |'ordre des déplacements détermine le chemin. Il y a <2> =6

chemins. Voici les chemins (en notant R pour droite et D pour bas) et leurs poids :

» RRDD (— —] |) : cases parcourues 5,3,2,1,8
somme =5+3+2+1+8=19.

» RDRD (—] — |) : cases 5,3,9,1,8
somme =5+3+9+1+8=26.

» RDDR (— |] —) : cases 5,3,9,2,8
somme =5+3+9+2+8=27.

= DRRD (| — — |) : cases 5,1,9,1,8
somme =5+14+9+ 148 =24.

» DRDR (| —] =) : cases 5,1,9,2,8
somme =5+ 1+9+ 248 = 25.

= DDRR (| | — —) : cases 5,1,0,2,8
somme =5+1+0+2+8=16.

Donc le poids maximal obtenu est , atteint par le chemin RDDR (— | | —).

2. (a) Pour aller de (0,0) a (n —1,n — 1) on doit effectuer exactement (n — 1) déplacements vers la droite et
(n — 1) déplacements vers le bas, soit au total 2(n — 1) déplacements.

Choisir un chemin revient donc a choisir ou placer les (n — 1) déplacements vers le bas parmi les 2(n — 1)
déplacements a faire. (les autres déplacements seront alors automatiquement des déplacements vers la

2(n—1
droite). Le nombre de chemins possibles est donc ((n 1)>
n —_

(b) Posons k =n — 1. On obtient :

TR (V2rkkke—k)2 2mkke 2 R oxk

k

(g)

Simplifions :

(2k)* (22)F = 4 Amk 2vmk 1
K2k - ok 2tk 1k

2k 4k 2(n — 1 4n—1
Donc ~ ——.,etenremplacant k=n—1: (n) ~N |
k ik n—1 m(n—1)

Complexité de I'approche exhaustive :

Un algorithme qui énumere tous les chemins et calcule la somme pour chacun aura une complexité propor-
tionnelle au nombre de chemins fois le colit par chemin. Chaque chemin comporte 2(n — 1) déplacements,
donc un coiit O(n) par chemin.

41171

Ainsi la complexité temporelle est O(n-
w(n—1

)> qui est exponentielle en n.

On peut résumer en disant que [I'approche exhaustive a une complexité exponentielle en nj)

Une implémentation simple en Python :

1 | def max2(a, b):
2 if a >=bh:
3 return a
4 else:

5 return b

Cas terminal : si (i,j) = (n — 1,n — 1) alors poids max(n-1,n-1)=M[n-1] [n-1].

Bord droit : sii =n —1 et j # n — 1 (derniére ligne, on ne peut que faire des déplacements a droite),
alors poids_max (i, j)=M[i] [j]l+poids max(i,j+1).

(On ajoute la valeur courante et on continue uniquement vers la droite.)

Bord bas : si j = n —1 et ¢ # n — 1 (derniére colonne, on ne peut que descendre), alors
poids max(i,j)=M[i] [jl+poids max(i+1,j).

Cas général : si i 2 n—1et j # n—1, on a le choix entre aller a droite ou aller en bas, donc

[poidsmax(i,j)=M[i] [j] + max2(poids max(i,j+1) ,poidsmax(i+1,j))].

Voici un script Python qui implémente poids max(M,i,j) de fagon récursive et qui utilise un dictionnaire
D pour mémoriser les sous-résultats.

1 | D={}

2

3 | def poids_max(M,i,j):

4 if (i,j) in D:

5 return D[(i,j)]

6 n=len(M)

7 if i==n—1 and j==n—1:

8 DI(i,)I=MIL]

9 return D[(i,j)]

10 if i==n—1 and jl=n—1:

11 D[(i,])]=M[i][j]+poids_max(M, i, j+1)
12 return D[(i,j)]

13 if i'=n—1 and j==n—1:

14 D[(i,j)]=MIi][j]+poids_max(M, i+1, j)
15 return D[(i,]j)]

16 D[(i.j)]=MI[i][j]+max2(poids_max(M, i+1, j),poids_-max(M, i, j+1))
17 return D[(i,j)]

Pour obtenir le poids maximal global, appeler poids max(M,0,0).

