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Chapitre 8 : Espaces vectoriels normés

Dans ce chapitre E désigne un K espace vectoriel de dimension quelconque avec K = R ou K = C.

1 Norme

1.1 Dé�nition

Dé�nition. On dit qu'une application N de E dans R est
une norme sur E si et seulement si ∀(x, y) ∈ E2 ,∀λ ∈ K :

1. N(x) ≥ 0 (positivité)

2. N(λx) = |λ|N(x) (homogénéité)

3. N(x) = 0 ⇒ x = 0E (séparation)

4. N(x+ y) ≤ N(x) +N(y) (inégalité triangulaire)

Si E est un K espace vectoriel muni d'une norme N alors on dit que (E,N) est un espace vectoriel normé.

Remarques. Si N(x) = 1 alors on dit que x est unitaire. Autre notation : N(x) = ||x||

1.2 Premières propriétés

Propriétés. Soit (E,N) un K espace vectoriel normée. Alors

1. N(0E) = 0

2. ∀x ∈ E , N(−x) = N(x)

3. ∀(x, y) ∈ E2 , |N(x)−N(y)| ≤ N(x− y) (deuxième inégalité triangulaire)

preuve :

1.3 Cas particulier : norme euclidienne

Lemme. Si (E,<,>) est un espace préhilbertien alors la norme euclidienne (||x|| = √
< x, x >) est une norme.

Remarque. Toutes les normes ne sont pas euclidienne.

preuve :

2 Normes usuelles sur Kn

2.1 Norme 1

Dé�nition. Soit n ∈ N∗. On pose : ∀x = (x1, . . . , xn) ∈ Kn , N1(x) = ||x||1 =
n∑

k=1

|xk|

Alors : N1 est une norme sur Kn appelée "norme 1".

Remarques. Dans le cas particulier K = R et n = 1, on retrouve la valeur absolue qui est donc une norme sur R.
Dans le cas particulier K = C et n = 1, on retrouve le module qui est donc une norme sur C.
Même si K = R, cette norme n'est pas euclidienne pour n ≥ 2. (preuve en exo)

preuve :
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2.2 Norme 2

Dé�nition. Soit n ∈ N∗. On pose : ∀x = (x1, . . . , xn) ∈ Kn , N2(x) = ||x||2 =

√
n∑

k=1

|xk|2

Alors N2 est une norme sur Kn appelée "norme 2".

Remarque. Si K = R, c'est la norme associée au produit scalaire canonique de Rn, c'est donc une norme
euclidienne.

preuve :

2.3 Norme in�nie

Dé�nition. Soit n ∈ N∗. On pose : ∀x = (x1, . . . , xn) ∈ Kn , N∞(x) = ||x||∞ = max
1≤k≤n

|xk|
Alors N∞ est une norme sur Kn appelée "norme in�nie".

preuve :

Remarques. Dans le cas particulier K = R et n = 1, on retrouve la valeur absolue qui est donc une norme sur R.
Dans le cas particulier K = C et n = 1, on retrouve le module qui est donc une norme sur C.
Pour n ≥ 2, ce n'est pas une norme euclidienne.

2.4 Extension

Si E est un K espace vectoriel de dimension �nie n, et si B = (e1, . . . , en) est une base de E alors on peut poser :
N1,B(x) = N1((x1, . . . , xn)), N2,B(x) = N2((x1, . . . , xn)) et N∞,B(x) = N∞((x1, . . . , xn))
et on dé�nie ainsi trois normes sur E.

3 Autres normes usuelles

3.1 Sur Mn(K)

En identi�ant Mn(K) avec Kn2

, on peut appliquer les résultats du paragraphe précédent et obtenir les normes

suivantes : pour A = (aij) ∈ Mn(K) :



N1(A) = ||A||1 =
n∑

i=1

n∑
j=1

|aij |

N2(A) = ||A||2 =

√
n∑

i=1

n∑
j=1

|aij |2

N∞(A) = ||A||∞ = max
1≤i≤n
1≤j≤n

|aij |

Remarques. Si K = R alors N2(A) =
√
tr(ATA) qui est une norme euclidienne.

Si K = C on peut remarquer que : N2(A) =
√

tr(ATA)

3.2 Sur B(I,K)

3.2.1 Notations

Soit I une partie non vide de R. En particulier on peut prendre I un intervalle non vide de R.

Dé�nition. Alors on dit qu'une fonction f dé�nie sur I, à valeurs dans K est bornée sur I
si et seulement si ∃M > 0 , ∀x ∈ I |f(x)| ≤ M

On notera B(I,K) l'ensemble des fonctions à valeurs dans K bornées sur I.

Lemme. B(I,K) est un K espace vectoriel.

preuve :
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3.2.2 Norme

Dé�nition. On pose, pour tout f ∈ B(I,K) : N∞(f) = ||f ||∞ = sup
x∈I

|f(x)| .

Alors N∞ est une norme sur B(I,K) appelée "norme in�nie".

preuve :

Remarques. Si E = C0([a; b],R) avec [a; b] un segment non vide de R, alors E est un sous espace vectoriel de
B([a; b],R) et on peut, par restriction, dé�nir une norme in�nie sur E.

3.3 Autre exemple

Exercice. Soit I = [a, b] un segment de longueur non nulle de R.

On pose E = C0(I,K) et ∀f ∈ E N(f) =
b∫
a

|f(t)| dt

Montrer que N est une norme sur E.

4 Distance associée à une norme

Dans ce paragraphe (E, ||.||) est un K espace vectoriel normé.

4.1 Dé�nition

Dé�nition. On pose :
d : E × E −→ R

(x, y) 7→ ||x− y|| Alors : d est appelée distance associée à ||.||

Remarque. Si la norme est euclidienne alors on dit que la distance est euclidienne.

4.2 Propriétés

Propriétés. On a pour tout x, y, z ∈ E :


i) d(x, y) = 0 ⇔ x = y

ii) d(x+ z, y + z) = d(x, y)

iii) d(x, z) ≤ d(x, y) + d(y, z)

preuve et interprétation :

4.3 Boules

4.3.1 Dé�nitions

Dé�nitions. Soit a ∈ E et r > 0. Alors on pose :


B̊(a, r) = {x ∈ E , ||x− a|| < r}
B(a, r) = {x ∈ E , ||x− a|| ≤ r}
S(a, r) = {x ∈ E , ||x− a|| = r}

B̊(a, r) est appelée boule ouverte de centre a et de rayon r.
B(a, r) est appelée boule fermée de centre a et de rayon r.
S(a, r) est appelée sphère de centre a et de rayon r.

Remarques. Si r = 1 on parle de boule unité ou de sphère unité.
B(a, r) s'obtient par translation et homothétie de B(0E , 1).
Les boules ont donc toutes la même forme.
Dans R les boules associées à la valeur absolue sont des intervalles.

4.3.2 Boules unités associées aux normes usuelles de R2

DESSINS des boules unités associés aux normes 1, 2 et ∞

3



5 Comparaisons de normes

Dans cette partie E désigne un K espace vectoriel.

5.1 Normes équivalentes

Dé�nition. Soit N1 et N2 deux normes sur E.
Alors on dit que : N1 et N2 sont deux normes équivalentes sur E
si et seulement si ∃α > 0 et β > 0 tels que : ∀x ∈ E , αN1x ≤ N2(x) ≤ βN1(x)

Remarque. αN1(x) ≤ N2(x) ≤ βN1(x) ⇔ 1
βN2(x) ≤ N1(x) ≤ 1

αN2(x) donc on peut échanger le rôle de N1 et N2.

5.1.1 Propriétés

Proposition. Si N1, N2 et N3 sont des normes sur E alors :
i) N1 est équivalente à N1 (ré�éxivité)
ii) N1 est équivalente à N2 ⇒ N2 est équivalente à N1 (symétrie)
iii) N1 est équivalente à N2 et N2 est équivalente à N3 ⇒ N1 est équivalente à N3 (transivité)

Remarque. On parle de relation d'équivalence ...

preuve :

5.2 En dimension �nie

5.2.1 Equivalence de norme

Théorème . Dans un K espace vectoriel de dimension �nie toutes les normes sont équivalentes.

preuve : H-P

5.3 Exemples

5.3.1 Dans Kn

Lemme. Dans Kn les normes : ||.||1, ||.||2 et ||.||∞ sont équivalentes et ∀x ∈ Kn :

{
||x||∞ ≤ ||x||1 ≤ n ||x||∞
||x||∞ ≤ ||x||2 ≤

√
n ||x||∞

preuve :

5.3.2 Normes non équivalentes

Exercice. Soit E = C0([0, 1]), on pose ∀f ∈ E , N(f) = sup
x∈[0;1]

|f(x)| et N ′(f) =
1∫
0

|f(x)| dx

Calculons N(fn) et N
′(fn) avec fn : x 7→ xn
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Compléments

preuve du 2.1 : la norme 1 est une norme

Soit x = (x1, . . . , xn) ∈ Kn, y = (y1, . . . , yn) ∈ Kn et λ ∈ K

� Clairement : N1(x) =
n∑

k=1

|xk| ≥ 0

� N1(λx) =
n∑

k=1

|λxk| =
n∑

k=1

|λ| |xk| = |λ|
n∑

k=1

|xk| = |λ|N1(x)

� N1(x) = 0

⇒
n∑

k=1

|xk| = 0 somme de termes positifs qui est nulle

⇒ ∀k ∈ J1, nK , |xk| = 0
⇒ ∀k ∈ J1, nK , xk = 0
⇒ x = 0Kn

� Par inégalité triangulaire dans K : ∀k ∈ J1, nK , |xk + yk| ≤ |xk|+ |yk|
En sommant, pour k variant de 1 à n on a :

n∑
k=1

|xk + yk| ≤
n∑

k=1

|xk|+
n∑

k=1

|yk| et donc N1(x+ y) ≤ N1(x) +N1(y)

� On a donc : ∀(x, y) ∈ (Kn)2 , ∀λ ∈ K ,


N1(x) ≥ 0

N1(λx) = |λ|N1(x)

N1(x) = 0 ⇒ x = 0Kn

N1(x+ y) ≤ N1(x) +N1(y)

et donc N1 est une norme sur Kn.

preuve du 2.2 : la norme deux est une norme

� On peut commencer par remarquer que si K = R, alors la norme deux est celle associée au produit scalaire
canonique de Rn.

� On va donc montrer que :

N2 : Cn −→ R

(x1, . . . , xn) 7−→
√

n∑
k=1

|x2
k|

est une norme sur Cn.

Soit x = (x1, . . . , xn) ∈ Cn, y = (y1, . . . , yn) ∈ Cn et λ ∈ C

i) Clairement N2(x) ≥ 0 comme somme de termes positifs.

ii) N2(λx) =

√
n∑

k=1

|λxk|2 =

√
n∑

k=1

|λ|2 |xk|2 =

√
|λ|2

√
n∑

k=1

|xk|2 = |λ|
√

n∑
k=1

|xk|2 = |λ|N2(x)

iii) N2(x) = 0

⇒
√

n∑
k=1

|xk|2 = 0 on a une somme de termes positifs qui est nulle

⇒ ∀k ∈ [1, n] , |xk|2 = 0
⇒ ∀k ∈ [1, n] , |xk| = 0
⇒ ∀k ∈ [1, n] , xk = 0
⇒ x = 0Cn
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iv) Posons X = (|x1| , . . . , |xn|)et Y = (|y1| , . . . , |yn|). On a alors deux vecteurs de Rn et on peut appliquer
l'inégalité triangulaire dans Rn pour obtenir, en notant, ||.|| la norme euclidienne usuelle de Rn :
||X + Y || ≤ ||X||+ ||Y ||

Alors N2(x+ y) = N2((x1 + y1, . . . , xn + yn)) =

√
n∑

k=1

|xk + yk|

Mais par inégalité triangulaire dans C : |xk + yk| ≤ |xk|+ |yk|

Donc,en élevant au carré, en sommant ces inégalités et en prenant la racine : N2(x+ y) ≤
√

n∑
k=1

(
|xk|+ |yk|

)2
Mais

√
n∑

k=1

(
|xk|+ |yk|

)2
= ||X + Y || et ||X|| = N2(x) et ||Y || = N2(y)

Donc, en utilisant ||X + Y || ≤ ||X||+ ||Y || on a �nalement : N2(x+ y) ≤ N2(x) +N2(y)

On a donc : ∀(x, y) ∈ (Cn)2 , ∀λ ∈ C ,


N2(x) ≥ 0

N2(λx) = |λ|N2(x)

N2(x) = 0 ⇒ x = 0Cn

N2(x+ y) ≤ N2(x) +N2(y)

et donc N∞ est une norme sur Cn.

preuve du 2.3 : la norme in�nie est une norme

Soit x = (x1, . . . , xn) ∈ Kn, y = (y1, . . . , yn) ∈ Kn et λ ∈ K

� Clairement : N∞(x) = max
1≤k≤n

|xk| ≥ 0

� N∞(λx) = max
1≤k≤n

|λxk| = max
1≤k≤n

|λ| |xk| = |λ| max
1≤k≤n

|xk| = |λ|N∞(x)

� N∞(x) = 0
⇒ max

1≤k≤n
|xk| = 0 ⇒ ∀k ∈ J1, nK , |xk| ≤ 0

⇒ ∀k ∈ J1, nK , |xk| = 0
⇒ ∀k ∈ J1, nK , xk = 0
⇒ x = 0Kn

� Par inégalité triangulaire dans K : ∀k ∈ J1, nK , |xk + yk| ≤ |xk|+ |yk|
Par dé�nition de N∞ : ∀k ∈ J1, nK , |xk + yk| ≤ N∞(x) +N∞(y)
En passant au max : max

1≤k≤n
|xk + yk| ≤ N∞(x) +N∞(y) et donc N∞(x+ y) ≤ N∞(x) +N∞(y)

� On a donc : ∀(x, y) ∈ (Kn)2 , ∀λ ∈ K ,


N∞(x) ≥ 0

N∞(λx) = |λ|N∞(x)

N∞(x) = 0 ⇒ x = 0Kn

N∞(x+ y) ≤ N∞(x) +N∞(y)

et donc N∞ est une norme sur Kn.
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preuve du 5.3.1 : équivalences de normes

Soit x = (x1, . . . , xn) ∈ Kn

� Comme N∞(x) est un max, alors ∃i0 ∈ J1, nK , N∞(x) = |xi0 |
Mais |xi0 | ≤

n∑
k=1

|xk| = N1(x) et on a donc N∞(x) ≤ N1(x)

De même |xi0 |
2 ≤

n∑
k=1

|xk|2 = (N2(x))
2 et en prenant la racine : N∞(x) ≤ N2(x)

� ∀k ∈ J1, nK , |xk| ≤ N∞(x)

En sommant pour k variant de 1 à n, on a :
n∑

k=1

|xk| ≤
n∑

k=1

N∞(x) et donc N1(x) ≤ nN∞(x)

De même : |xk|2 ≤ N∞(x)2

En sommant pour k variant de 1 à n, on a :
n∑

k=1

|xk|2 ≤
n∑

k=1

(N∞(x))2 et donc (N2(x))
2 ≤ n(N∞(x))2

En prenant la racine : N2(x) ≤
√
nN∞(x)
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