PSI* 2025-2026

Chapitre 8 : Espaces vectoriels normés

Dans ce chapitre E désigne un K espace vectoriel de dimension quelconque avec K =R ou K = C.

1 Norme

1.1 Définition

Définition. On dit qu’une application N de E dans R est
une norme sur E si et seulement si V(z,y) € E* VA€ K :

1. N(z) >0 (positivité)

2. N(Az) = |\| N(x) (homogénéité)

3. Nz)=0=2=0g (séparation)

4. N(z+vy) < N(z)+ N(y) (inégalité triangulaire)

Si E est un K espace vectoriel muni d’une norme N alors on dit que (E, N) est un espace vectoriel normé.

Remarques. Si N(x) =1 alors on dit que © est unitaire. Autre notation : N(z) = ||z||

1.2 Premiéres propriétés
Propriétés. Soit (E,N) un K espace vectoriel normée. Alors
1. N(0g) =0
2.Vxe E, N(—z) = N(z)
3. Y(z,y) € E*, |N(z) — N(y)| < N(z —y) (deuziéme inégalité triangulaire)

preuve :

1.3 Cas particulier : norme euclidienne
Lemme. Si (E, <,>) est un espace préhilbertien alors la norme euclidienne (||z|| = \/< z,z >) est une norme.
Remarque. Toutes les normes ne sont pas euclidienne.

preuve :

2 Normes usuelles sur K"

2.1 Norme 1

Définition. Soit n € N*. On pose : Vo = (x1,...,2,) € K™, Ni(x) = |[z]|; = > |zl

Alors : Ny est une norme sur K™ appelée "norme 1",

Remarques. Dans le cas particulier K =R et n = 1, on retrouve la valeur absolue qui est donc une norme sur R.
Dans le cas particulier K = C et n = 1, on retrouve le module qui est donc une norme sur C.
Meéme si K =R, cette norme n’est pas euclidienne pour n > 2. (preuve en exo)

preuve :



2.2 Norme 2

Définition. Soit n € N*. On pose : Vo = (z1,...,2,) € K™, Nao(z) = ||z]|5 = Z ENE

Alors No est une norme sur K™ appelée "norme 2.

Remarque. Si K = R, c’est la norme associée au produit scalaire canonique de R™, c¢’est donc une norme
euclidienne.

preuve :

2.3 Norme infinie

Définition. Soit n € N*. On pose : Vo = (x1,...,2,) € K™ |, Noo(z) = ||z]| , = max |xg]

o0
1<k<n
Alors N4 est une norme sur K™ appelée "norme infinie.
preuve :

Remarques. Dans le cas particulier K =R et n = 1, on retrouve la valeur absolue qui est donc une norme sur R.
Dans le cas particulier K = C et n = 1, on retrouve le module qui est donc une norme sur C.
Pour n > 2, ce n’est pas une norme euclidienne.

2.4 Extension

Si E est un K espace vectoriel de dimension finie n, et si B = (e, ..., e,) est une base de F alors on peut poser :

Nig(z) = Ni((z1,...,24)), No.p(x) = Na((z1,...,25)) et Noo B(z) = Noo((21, ..., 2p))
et on définie ainsi trois normes sur E.

3 Autres normes usuelles

3.1 Sur M,(K)

En identifiant M, (K) avec K "2, on peut appliquer les résultats du paragraphe précédent et obtenir les normes
n

Ni(4) = |4l = 3 3 oy

i=1j

suivantes : pour A = (a;;) € M, (K) :

Remarques. Si K =R alors No(A) = /tr(AT A) qui est une norme euclidienne.
Si K = C on peut remarquer que : No(A) = (/tr(ATA)

3.2 Sur B(I,K)
3.2.1 Notations
Soit I une partie non vide de R. En particulier on peut prendre I un intervalle non vide de R.

Définition. Alors on dit qu’une fonction f définie sur I, a valeurs dans K est bornée sur I
si et seulement si AM >0, Ve eI |f(zx)| <M

Oun notera B(I, K) 'ensemble des fonctions a valeurs dans K bornées sur 1.
Lemme. B(I,K) est un K espace vectoriel.

preuve :



3.2.2 Norme
Définition. On pose, pour tout f € B(I,K) : Noo(f) = ||f]|.c =sup|f(z)| .
Alors N est une norme sur B(I, K) appelée "norme infinie’. !

preuve :

Remarques. Si E = C°([a;b],R) avec [a;b] un segment non vide de R, alors E est un sous espace vectoriel de
B([a;b],R) et on peut, par restriction, définir une norme infinie sur E.

3.3 Autre exemple

Exercice. Soit I = [a,b] un segment de longueur non nulle de R.
b

On pose E = C°(1,K) etVf e EN(f)= [|f(t)dt

Montrer que N est une norme sur E.

4 Distance associée & une norme

Dans ce paragraphe (F,||.||) est un K espace vectoriel normé.

4.1 Définition

d : ExE — R

Définition. On pose :
(@y) = llz—yll

Alors : d est appelée distance associée a ||.||

Remarque. Sila norme est euclidienne alors on dit que la distance est euclidienne.

4.2 Propriétés
i) dz,y)=0&2x=y
Propriétés. On a pour tout z,y,z € £ : (ii) d(x+ z,y+2)=d(z,y)
1) d(z,z) <d(z,y) +d(y, 2)

preuve et interprétation :

4.3 Boules
4.3.1 Définitions
Bla,r)={z € E, [z —a|| <7}
Définitions. Soit a € E et r > 0. Alors on pose :  Bla,r)={x € E , ||z —a|| <7}
S(a,r)={x € E, ||z —al|l =1}
é(a,r) est appelée boule ouverte de centre a et de rayon r.

B(a,r) est appelée boule fermée de centre a et de rayon r.
S(a,r) est appelée sphére de centre a et de rayon r.

Remarques. Sir =1 on parle de boule unité ou de sphére unité.
B(a,r) s’obtient par translation et homothétie de B(0g, 1).

Les boules ont donc toutes la méme forme.

Dans R les boules associées a la valeur absolue sont des intervalles.

4.3.2 Boules unités associées aux normes usuelles de R?

DESSINS des boules unités associés aux normes 1, 2 et oo



5 Comparaisons de normes

Dans cette partie E désigne un K espace vectoriel.

5.1 Normes équivalentes

Définition. Soit N1 et Ny deuzx normes sur E.
Alors on dit que : N1 et No sont deux normes équivalentes sur E
si et seulement si o > 0 et 5> 0 tels que : Ve € E, aNijx < No(x) < SNi(x)

Remarque. aNi(z) < Na(z) < fN1(z) < %Ng(x) < Ni(z) < LNy(z) donc on peut échanger le role de Ny et No.

5.1.1 Propriétés

Proposition. Si N1, Ny et N3 sont des normes sur E alors :

i) N1 est équivalente ¢ Ny (réfléxivité)

ii) N1 est équivalente & No = Ny est équivalente & Ny (symétrie)

ii1) N1 est équivalente a No et Ny est équivalente a N3 = Ny est équivalente & N3 (transivité)

Remarque. On parle de relation d’équivalence ...

preuve :

5.2 En dimension finie
5.2.1 Equivalence de norme

Théoréme . Dans un K espace vectoriel de dimension finie toutes les normes sont équivalentes.

preuve : H-P

5.3 Exemples
5.3.1 Dans K"

2]l < Mlly < nflzfl

Lemme. Dans K™ les normes : ||.||1, ||-||, €t ||.||., sont équivalentes et Vo € K™ :
v > 12]loe < [llly < vV ll2ll

preuve :

5.3.2 Normes non équivalentes

Exercice. Soit E = C°([0,1]), on pose Vf € E, N(f) = sup |f(x)| et N'(f) =f1|f(x)\d3:
z€[0;1] 0

Calculons N(f,) et N'(fn) avec fr : x — z"
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Compléments

preuve du 2.1 : la norme 1 est une norme
Soit z = (21,...,2n) E K",y = (y1,...,yn) E K" et A€ K

e Clairement : Ni(x) = Y |ag| >0
k=1

¢ Ni(hx) = 32 | = 5 N fal = A 3 fil = A Ma(e)

[ ] Nl(.T) =0

= Y |zg| = 0 somme de termes positifs qui est nulle
k=1

=Vke[l,n], |zx] =0

=Vke[l,n], 2 =0

= T = OKW,

e Par inégalité triangulaire dans K : Vk € [1,n] , |zx + yi| < |zk| + |y
n n n
En sommant, pour k variant de 1 anona: - [z +ykl < > [z + 3 [yk| et donc Ni(z +y) < Ni(z) + Ni(y)
k=1 k=1 k=1

Nl(SU)
' " 1()\ ) WNI( )
e On adonc: V(z,y) € (K")?, VA€ K , 1(x) =0=2=0gn
(

1@ +y) < Ni(z) + Ni(y)

2z =2

et donc ’ N; est une norme sur K". ‘

preuve du 2.2 : la norme deux est une norme

e On peut commencer par remarquer que si K = R, alors la norme deux est celle associée au produit scalaire
canonique de R™.

Ny c» — R

e On va donc montrer que :

" est une norme sur C".
(T1,...,2n) +— OREA

Soit & = (1,...,2,) €EC", y=(y1,...,yn) EC" et A€ C

i) Clairement Na(x) > 0 comme somme de termes positifs.

ii) Ny(Ax) = zuxk\ \/zu el = W,/zm — zw Al Na(2)

iii) Na(z) =0

n
= /> |zx]* = 0 on a une somme de termes positifs qui est nulle
\/ k=1

=Vke[l,n], |z =
=Vke[l,n], |zx|=0
=Vke[l,n], 2xy=0
=z = Ocn




iv) Posons X = (|z1],...,]|znl)et Y = (ly1|,-..,|yn]). On a alors deux vecteurs de R™ et on peut appliquer
I'inégalité triangulaire dans R™ pour obtenir, en notant, ||.|| la norme euclidienne usuelle de R™ :
IX + Y| < {IX][+ |]Y]]

Alors No(z +y) = Na((x1 + Y1, -+ -y X +Yn)) = 1| O |Tk + Yl
\/ k=1

Mais par inégalité triangulaire dans C : |y + yi| < |zk| + |ykl

n
Donc,en élevant au carré, en sommant ces inégalités et en prenant la racine : Nao(x + y) < \/Z (lzw] + lywl )2
k=1

. n 2
Mais \/kz (el + lykl)” = [1X + Y| et [|X]| = Na(2) et [[Y]| = Na(y)
=1
Donc, en utilisant || X + Y| <||X|| + ||Y]] on a finalement : No(z + y) < Na(x) + Na(y)
() >0
Az Al N
On a donc : V(z,y) € (C")? , VA e C, (Az) = [A| N2 ()
() =0= 2z =0cn»
(z+y) < Nao(z) + Na(y)

5555

et donc ’ N est une norme sur C". ‘

preuve du 2.3 : la norme infinie est une norme

Soit & = (21,...,2n) E K",y = (y1,...,yn) E K" et A€ K
lai t: N = >

¢ Clairemen oo () 11%15%1 |xg] >0

¢ Noo(Az) = max [Azg| = max |A|ox] =[N max |zx| = |\ Noo(2)

e Noo(z) =0
= max |zx|=0=Vke[l,n], |zg <0
1<k<n
=Vke[l,n], |zkg] =0
=Vke[l,n], =0
ixZOKn

e Par inégalité triangulaire dans K : Vk € [1,n] , |zr + yk| < |zk| + |yl
Par définition de No : Vk € [1,n] , |2k + y&| < Noo(z) + Noo ()
En passant au max : max |2k + yk| < Noo(2) + Noo(y) et donc Noo(x 4+ y) < Noo(z) + Noo(y)

x) >

Noof

N N
e On a donc : V(z,y) € (K")? , VA€ K , oo (A2 ) |)\| ( )
Noof

2 +y) < Noo(2) + Noo(y)

et donc ’ N est une norme sur K. ‘




preuve du 5.3.1 : équivalences de normes
Soit = (1,...,2,) € K™

e Comme N (z) est un max, alors Jig € [1,n] , Noo(z) = |24 |

Mais |z;,| < > |zk| = N1(z) et on a donc Noo(z) < Ny (z)
k=1

n
De méme |z;,|> < 3 |zx|* = (Na(x))? et en prenant la racine : Noo(z) < No(x)
k=1

o Vk € [Lnﬂ ) |$k| < Noo(l‘)

n
En sommant pour k variant de 1 an,on a: Y, |zg| < > Noo(z) et donc Ny(z) < nNeo(x)
k=1 k=1

De méme : |z;]> < Noo ()2
n n

En sommant pour k variant de 1 an, ona: 3. |zx)* < 3 (Neo(2))? et donc (Na(2))? < n(Neo(z))?
k=1 k=1

En prenant la racine : Ny(z) < /nNyo(x)



