Feuille d'exercices n°21 : chap. 8

Exercice 196. Soit E un K espace vectoriel.

Exercice 196. Soit E un K espace vectories. $\begin{cases} \forall x \in E \; , \; x \neq 0_E \Rightarrow N(x) > 0 \\ N(0_E) = 0 \\ \forall (x,y) \in E^2 \; , \; \forall \lambda \in \mathbb{R} \; , \; N(\lambda x + y) \leq |\lambda| \, N(x) + N(y) \end{cases}$

Montrer que N est une norme sur E.

Exercice 197. (\star)

Soit E un K espace vectoriel et soit N_1 et N_2 deux normes sur E.

On pose
$$\forall x \in E \ , \ N(x) = \sqrt{N_1(x)^2 + N_2(x)^2}$$

Montrer que N est une norme sur E.

Exercice 198. Soit E le \mathbb{R} espace vectoriel des suites réelles bornées.

Pour
$$u = (u_n)_{n \in \mathbb{N}}$$
 on pose : $N(u) = \sup_{n \in \mathbb{N}} |u_n|$ et $N'(u) = \sup_{n \in \mathbb{N}} (|u_n| + |u_{2n}|)$

- a) Montrer que N et N' sont deux normes équivalentes sur E.
- b) Optimiser α et β tels que : $\forall x \in E$, $\alpha N(x) < N'(x) < \beta N(x)$

Exercice 199. Soit (E, N_E) et (F, N_F) deux espaces vectoriels normés.

Montrer que :
$$N : E \times F \longrightarrow \mathbb{R}$$

 $(e,f) \mapsto Max(N_E(e), N_F(f))$ est une norme sur $E \times F$

Exercice 200. Soit
$$E = \mathbb{R}[X]$$
. On pose $\forall P \in E$, $N(P) = \sum_{k=0}^{+\infty} |P^{(k)}(0)|$

Montrer que N est une norme sur E.

Exercice 201. Soit n un entier supérieur ou égale à 2.

Existe-t-il une norme N sur $E = M_n(\mathbb{R})$ telle que $\forall A, B \in E$ N(AB) = N(BA) ?

Exercice 202. Soit
$$E = \mathbb{R}^2$$
. On pose $\forall X = (x, y) \in E$, $N(X) = Max(|x|, |2x - y|)$

- a) Montrer que N est une norme sur E.
- b) Dessiner la boule unité correspondant à cette norme.
- c) Trouver $(a,b) \in]0; +\infty[^2 \text{ tel que } : \forall X \in E, a ||X||_{\infty} \leq N(X) \leq b ||Y||_{\infty} \text{ avec a le plus grand}$ possible et b le plus petit possible.

Exercice 203. Soit
$$E = C^1([0; \pi], \mathbb{R})$$
. On pose $\forall f \in E \ , \ N(f) = \sqrt{\int_0^{\pi} \sin(t) f'(t)^2 dt + f(1)^2}$

Est-ce que N est une norme sur E?

Exercice 204. Soit $x_0, x_1, \ldots, x_n, n+1$ réels distincts et $E = \mathbb{R}_n[X]$.

On pose
$$\forall P \in E$$
, $N(P) = \sqrt{\sum_{k=0}^{n} (k+1)P(x_k)^2}$

Montrer que N est une norme sur E.