Devoir à la maison n°5 de Mathématiques

noir exo 1 et exo 2 pour réviser, après plutôt facile, à faire par tous

Code couleur : bleu un peu plus dur, (où complément)

rouge assez difficile

vert difficile (ou 5/2 uniquement)

Exercice 1: Révisions

1) Montrer que : $I = \int_{0}^{+\infty} \frac{sh(t) - ln(1+t)}{e^{t}t^{5/2}} dt$ est convergente.

2) Etudier suivant le paramètre $\alpha \in \mathbb{R}$ la convergence de : $\sum_{n=2}^{+\infty} \frac{1}{n+n^{\alpha}}$

Exercice 2 : une norme algébrique sur $M_n(\mathbb{R})$

On pose : $E=M_n(\mathbb{R})$ et $\begin{array}{cccc} N & : & E & \longrightarrow & \mathbb{R} \\ & & A=(a_{i,j}) & \longmapsto & n \sup_{(i,j)\in [\![1,n]\!]^2} |a_{i,j}| \end{array}$

- 1) Montrer que N est une norme sur E.
- 2) Montrer que N est une norme d'algèbre, c'est-à-dire que : $\forall (A,B) \in E^2$, $N(AB) \leq N(A)N(B)$

Exercice 3: e3A PC 2020 exercice 5

Dans cet exercice, E désigne l'espace vectoriel $\mathbb{R}_2[X]$ des polynômes de degré inférieur ou égal à 2 et à coefficients réels et $\mathcal{B} = (1, X, X^2)$ sa base canonique.

Pour tout couple (P,Q) d'éléments de E, on pose :

$$< P, Q > = P(1)Q(1) + P'(1)Q'(1) + P''(1)Q''(1).$$

- 1. Vérifier que l'on définit ainsi un produit scalaire sur ${\cal E}.$
- 2. Déterminer une base orthonormale de ${\cal E}$ pour ce produit scalaire.
- 3. Déterminer la distance du polynôme $U=X^2-4$ à $\mathbb{R}_1[X].$
- 4. Soit H l'ensemble des polynômes P de E tels que P(1)=0.
 - (a) Vérifier que H est un sous-espace vectoriel de E. Quelle est sa dimension ?
 - (b) Soit φ la projection orthogonale sur H. Déterminer la matrice de φ dans la base \mathcal{B} .

Exercice 4: ccINP MP 2025, mathématiques 2, exercice 2

On définit une suite $(P_n)_{n\in\mathbb{N}}$ de $\mathbb{R}[X]$ en posant $P_0=1, P_1=X$ et pour tout entier naturel n:

$$P_{n+2} = 2XP_{n+1} - P_n.$$

Dans les questions suivantes, n et k sont des entiers naturels.

- Q1) Donner le degré et le terme dominant de P_n en fonction de n.
- Q2) Justifier que pour tout réel θ : $P_n(\cos(\theta)) = \cos(n\theta)$

Pour
$$P$$
 et Q dans $\mathbb{R}[X]$, on pose : $\langle P, Q \rangle = \int_{-1}^{1} \frac{P(t)Q(t)}{\sqrt{1-t^2}} dt$

- Q3) Justifier la convergence de cette intégrale.
- Q4) Démontrer que \langle , \rangle est un produit scalaire sur $\mathbb{R}_k[X]$ (ensemble des polynômes de $\mathbb{R}[X]$ de degré inférieur ou égal à k).
 - Q5) Calculer pour n et m entiers naturels, $\int_{0}^{\pi} \cos(n\theta) \cos(m\theta) d\theta$.
 - Q6) Donner une base orthonormale de $\mathbb{R}_k[X]$ pour ce produit scalaire.

Exercice 5 : centrale 2025 PSI, mathématiques 1 : début

Conditionnement d'une matrice et applications

Dans tout ce problème, n désigne un entier naturel non nul, et on rappelle que $\mathcal{M}_n(\mathbb{R})$ désigne l'ensemble des matrices carrées à n lignes et n colonnes.

On note $D_n(\mathbb{R})$ le sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$ des matrices diagonales.

On rappelle que l'on désigne par M^{\top} la transposée d'une matrice M.

Pour alléger les notations, on identifiera les vecteurs de \mathbb{R}^n aux matrices colonnes de $\mathcal{M}_{n,1}(\mathbb{R})$.

On désignera par $\mathcal{B} = (E_1, E_2, \dots, E_n)$ la base canonique de \mathbb{R}^n .

On munit
$$\mathbb{R}^n$$
 de la norme $\|\cdot\|$, en posant pour tout $x=(x_1,\ldots,x_n)\in\mathbb{R}^n, \|x\|=\sqrt{\sum_{i=1}^n x_i^2}$ qui est

la norme euclidienne associée au produit scalaire canonique $\langle \cdot, \cdot \rangle$ de \mathbb{R}^n où par définition, pour tout X et Y de \mathbb{R}^n , $\langle X, Y \rangle = X^\top Y$.

Pour toute matrice M de $\mathcal{M}_n(\mathbb{R})$ on note $\rho(M)$ le réel défini par: $\rho(M) = \max_{\lambda \in \operatorname{Sp}_{\mathbb{C}}(M)} |\lambda|$. On note par ailleurs $\mathcal{S}_n^+(\mathbb{R})$ l'ensemble des matrices symétriques positives de $\mathcal{M}_n(\mathbb{R})$ et par $\mathcal{S}_n^{++}(\mathbb{R})$

l'ensemble des matrices symétriques définies positives de $\mathcal{M}_n(\mathbb{R})$.

Partie A - Construction d'une norme sur $\mathcal{M}_n(\mathbb{R})$

On se propose dans cette partie de montrer que l'application N donnée sur $\mathcal{M}_n(\mathbb{R})$ par :

$$N: A \longmapsto \sup_{\|X\|=1} \|AX\|$$

est une norme sur $\mathcal{M}_n(\mathbb{R})$ et d'en étudier quelques propriétés.

I - Étude de l'application N

Dans toute cette partie, on considère A une matrice quelconque de $\mathcal{M}_n(\mathbb{R})$ dont on note L_1, L_2, \ldots, L_n les n lignes et $C_1, C_2, \ldots C_n$ les n colonnes, que l'on pourra identifier à des éléments de \mathbb{R}^n .

1. Soit $X \in \mathbb{R}^n$ tel que ||X|| = 1. En notant $M = \max_{1 \le i \le n} ||L_i||$, montrer que :

$$||AX|| \leqslant M\sqrt{n}$$

On pourra au préalable s'intéresser à la i^e ligne de la matrice AX et utiliser l'inégalité de Cauchy-Schwarz pour les vecteurs de \mathbb{R}^n .

- 2. En déduire que l'application N est bien définie, puis que : $N(A) = \sup_{X_0 \neq 0} \frac{\|AX_0\|}{\|X_0\|}$.
- 3. Montrer que l'application N ainsi définie est une norme sur $\mathcal{M}_n(\mathbb{R})$.
- 4. En est-il de même pour l'application $S: \left| \begin{array}{ccc} \mathcal{M}_n(\mathbb{R}) & \longrightarrow & \mathbb{R}_+ \\ M & \longmapsto & \rho(M) \end{array} \right| ? (5/2)$
- 5. Soit $\Delta \in D_n(\mathbb{R})$ dont on note $\delta_1, \ldots, \delta_n$ les termes diagonaux. Vérifier que $N(\Delta) = \max_{1 \leq i \leq n} |\delta_i|$.
- 6. À l'aide de l'application $X \longmapsto \|AX\|$, démontrer que: $N(A) = \max_{\|X\|=1} \|AX\|$.
- 7. Établir que : $\forall X \in \mathbb{R}^n$, $||AX|| \leq N(A)||X||$.
- 8. Soit B une autre matrice quelconque de $\mathcal{M}_n(\mathbb{R})$. Montrer que :

$$N(AB) \leqslant N(A)N(B)$$

3

- 9. Montrer que : $\max_{1 \leqslant i \leqslant n} ||C_i|| \leqslant N(A)$.
- 10. Déterminer N(A) dans le cas où toutes les colonnes de A sont nulles, sauf la dernière.

En déduire
$$N(A)$$
 dans le cas où $A = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & 1 \end{pmatrix}$.